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With the aim of improving noise robustness of speech recognition an

approach that exploits the variance information in spectral sub-bands

is presented. The variance based features are used in combination with

the normally used Mel-frequency cepstral coefficients (MFCC), and

experimental results show that the combined features outperform

MFCC alone, perceptual linear prediction features and entropy

based features.

Introduction: The pre-processing in automatic speech recognition

(ASR) systems extracts a set of speech features with the purposes

of achieving high discrimination among recognition classes and

maintaining the performance for noise corrupted speech signals.

The commonly used MFCC features [1] are calculated from

Mel-filter outputs mainly reflecting information of sub-band spectral

mean values. It is noted, however, that spectral mean values are highly

dependent on the additive noise occurring in speech signals, and thus

cause a drop in ASR performance. With the aim of counteracting this

influence, entropy-based features [2] were proposed to convey the peak

energy in each band as opposed to the mean values of the MFCC

features. In [2] the entropy-based features were combined with percep-

tual linear prediction features (PLP) [3] also and showed a slight

improvement over the PLP alone.

This Letter investigates the variances of the speech magnitude

spectrum in Mel sub-bands resulting in variance-based MFCC

(VMFCC) features. The variance focuses on the dynamically changing

information and the VMFCC features are thus expected to be more

noise robust.

The combination of MFCC and VMFCC is compared with MFCC

alone, with PLP features in addition to entropy based features and

shows better recognition performance.

MFCC and VMFCC: The MFCC features are calculated based on the

magnitude spectrum in Mel-filter bands. As shown in Fig. 1, mean

values of the Mel-filtered magnitude spectrum are calculated, and

transformed by the logarithmic function and the discrete cosine

transform together, resulting in the final cepstrum. However, the

mean values are vulnerable to additive noise, which may lead to

poorer ASR performance. In addition, the magnitude spectrum of a

voiced speech segment is generally characterised by a number of

peaks and valleys, and by only using the mean values in MFCC

detailed information of the dynamical change in each band is lost.

Fig. 1 Feature extraction processes

VMFCC features are introduced with the goal of maintaining ASR

performance for corrupted speech signals. The calculation of the

VMFCC features are conducted based on the variance of the unfiltered

magnitude spectrum in each Mel sub-band as shown in Fig. 1.

Compared to the MFCC features, the VMFCC features represent the

dynamic variation within each band.

It is noted that calculation of the VMFCC removes the mean value of

the combined speech and additive noise signal from the spectrum

rendering the VMFCC features less sensitive to noise. For the extreme

case with full-band white additive noise, the VMFCC features are – in a

statistical sense – not influenced by noise.

Mel-grams for the MFCC (measuring the output of Mel-filter bank)

are compared with Mel-grams for the VMFCC (measuring the output of

sub-band variance) as shown in Fig. 2. It is observed that the VMFCC

Mel-grams are less influenced by noise than the MFCC Mel-grams.

However, in calculating the variances, the VMFCC features also ‘filter

out’ the relatively flat speech valleys resulting in the loss of information

here.
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Fig. 2 Comparisons of Mel-grams for MFCC and VMFCC for utterance
‘one three nine oh’ corrupted by ‘subway’ noise with different signal-to-
noise ratios (SNRs)

It may therefore be advantageous to combine the VMFCC with the

MFCC features. In this Letter the combination is carried out – for

simplicity – by appending the VMFCC to the original MFCC features.

A reduction of the combined feature length can be achieved, for

example, by applying LDA or multi-stream methods but experiments

on this are not included in this Letter.

Experiments: A set of experiments have been conducted to test the

robustness by measuring the ASR performance. The evaluations are

based on the continuous English digits speech recognition task Aurora

2 [4], encompassing two training sets (clean training and multi-

condition training) and three test sets. In the experiments, the clean

speech material is used for training the hidden Markov model (HMM)

models and test set A is selected as the only test set which includes the

speech data contaminated with four types of additive noise (subway,

babble, car and exhibition) with SNR ranging from 20 to 0 dB. Each

HMM model has 16 states with three Gaussian mixtures per state

whereas ‘silence’ is modelled with three states each with six Gaussian

mixtures.
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Fig. 3 Recognition accuracy (%) (averaged over all SNRs) for MFCC with
23 sub-bands and VMFCC with variable number (denoted as x) of
sub-bands

In the first experiment, the MFCC features are calculated on the basis

of 23 Mel-filters and encompass 12 cepstral components with the zeroth

component excluded. The number of sub-bands for calculating the

VMFCC features varies from 1 to 23. When the number is equal to or

ELECTRONICS LETTERS 2nd March 2006 Vol. 42 No. 5



larger than 13, VMFCC features include 12 cepstral components the

same as the MFCC, and otherwise include all components except the

zeroth component.

In all experiments the MFCC features, the VMFCC features, and

logarithmic energy (LogE) are appended with their corresponding

velocity and acceleration components.

Fig. 3 shows that the combined MFCC and VMFCC features start to

outperform the purely MFCC features for the band number ranging

from six to nine dependent on noise type and achieve the best results at

11 for all the tested noise types. The effect of the sub-band number on

recognition performance may be explained as the need for a trade-off

between the sub-band resolution and the robust variance estimation.

The results of the second set of experiments are shown in Fig. 4

comparing four different feature combinations. The PLP features are

constructed from HTK [5] with 12 components whereas the

‘Entropyþ PLP’ features are obtained as in [2]. The results show that

the combined ‘VMFCC(11)þMFCC(23)’ features give the highest

ASR performance over all the SNR values.

Fig. 4 Recognition accuracy (%) (averaged over four noise types)
against SNR for four feature combinations with VMFCC using eleven
sub-bands

Conclusion: In this Letter, spectral variance based features are

introduced by calculating the variances of the unfiltered magnitude

spectrum in each Mel-band. The variance features are used in

combination with the normally used MFCC features with the aim of

improving ASR noise robustness. Test results show that the proposed

feature combination outperforms the MFCC, PLP and ‘Entropyþ PLP’

based features justifying that sub-band variance includes relevant

speech information and is helpful for noise robustness.
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