
Robust Speech Recognition Based on Noise and SNR 
Classification - a Multiple-Model Framework 

Haitian Xu, Zheng-Hua Tan, Paul Dalsgaard, Børge Lindberg 

Center for TeleInFrastructure (CTIF), SMC-Speech and Multimedia Communication,  
Aalborg University, Denmark 
{hx, zt, pd, bli}@kom.aau.dk 

 
Abstract 

This paper presents a multiple-model framework for noise-
robust speech recognition. In this framework, multiple HMM 
model sets are trained - each identified by a noise type and a 
specific Signal-to-Noise Ratio (SNR) value. This, however, 
does not increase the computational complexity of the 
recognition process since only one model set is selected 
according to the noise classification and SNR estimation. The 
optimal number of model sets is first identified on the basis of 
the Aurora 2 database. With only three model sets for each 
noise type, the framework shows superior performance to 
Multi-style TRaining (MTR) when testing on known noise 
types but lower performance on unknown noise types. To 
overcome this drawback, a modified Jacobian method is 
proposed to adapt the selected HMM models to the test 
environment. Furthermore, given the fact that MTR often 
gives relatively stable performance for unknown noise types, a 
combined technique is applied in which interpolation between 
the MTR and the adapted models is performed. This combined 
technique gives more than 24% performance improvement as 
compared to MTR. 
 

1. Introduction 
The deployment of Automatic Speech Recognition (ASR) in 
mobile devices imposes a much more varying acoustical 
environment than other typical settings such as in desktop   
computers. The performance of ASR systems in general in 
these cases is highly influenced by various noise types that 
each spans a wide range of Signal-to-Noise Ratio (SNR) 
values, causing huge mismatches between the data used for 
training and under real-life use. 

The goal of applying the Multi-style TRaining (MTR) 
method [1] is to recover the degraded ASR performance by 
training the acoustic models by using a speech corpus 
corrupted with acoustic noise of the types likely to be 
encountered during use. The MTR method in general 
improves the ASR performances for the trained (known) 
noise types as well as for untrained (unknown) noise types on 
the one hand, but on the other hand the HMM model sets are 
inevitably built with flatter Probability Density Functions 
(PDF) which reduce the discriminability among the speech 
models. One way to partly overcome this drawback is to sub-
divide the entire noise space into several smaller clusters (or 
noise types), and then train an HMM model set for each 
cluster. With the aim of maintaining the computational 
efficiency, the Multiple-Model Framework (MMF) is often 
combined with a Noise Classification (NC) technique to 
select one model set to be used during recognition [2]. 

The research of this paper extends the above NC based 

MMF (NC-MMF) by additionally taking the SNR-range of 
the individual noise types into account, namely SNC-MMF. 
The architecture of the SNC-MMF technique is illustrated in 
Fig.1 where the HMM Model Database (HMD) contains a 
number of HMM model sets each trained on data 
corresponding to a known noise type and a chosen SNR 
value. The NC and the SNR estimator shown in the figure 
estimate the noise type and the SNR value of the noise 
contaminated input signal, respectively. An HMM model set 
is then selected from the HMD and used for recognition. With 
this more detailed partitioning of the training database the 
PDF’s of each HMM set have less variance, and a better 
model discriminability is expected. 

 

 
Fig. 1 Architecture of SNC-MMF 

 
In this paper, a number of experiments are conducted with 

the aim of selecting a sufficient number of model sets for the 
model database, while still maintaining acceptable ASR 
performance. 

The experiments verify that the SNC-MMF gives good 
ASR performance for known noise types but low for 
unknown noise types due to the noise emphasis given in its 
individual model sets. With the goal of counteracting this 
discrepancy, adaptation based on the Jacobian method [3] [4] 
is introduced in this paper, and a modified version – the Zero-
noise-level difference Jacobian (Z-JAC) is proposed. For 
unknown noise types the MTR models generally give better 
ASR performance than the SNC-MMF models, directing us to 
suggest both MTR model interpolation and model adaptation 
in a combined framework. 

The remainder of the paper is organized as follows. 
Section 2 provides an analysis of the SNC-MMF framework. 
Based on this Section 3 introduces adaptation based on the 
Jacobian method and the MTR model interpolation with the 
goal of improving the overall ASR performance regardless of 
noise type. The results from the experiments are given and 
discussed in Section 4 and the conclusion is given in section 5. 
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2. The SNC-MMF framework 

2.1. SNC-MMF configuration 

The SNC-MMF models are constructed on the basis of the 
Aurora 2 database [5] which consists of connected English 
digits corrupted with a number of artificially added noise 
types. The four noise types occurring in test Set A (“Subway”, 
“Babble”, “Car” and “Exhibition”) are treated as known noise 
types in the following experiments. 

In this work a simple Voice Activity Detection (VAD) 
based SNR estimator is used. NC is achieved by a cepstral 
GMM based noise classifier with four mixtures trained on the 
noise files in [5]. The noise is classified on the basis of the 
first 10 frames of the non-speech segments in each test 
utterance.  

The confusion matrix of the noise classifier on test Set A 
is shown in Table 1. Only minor classification errors occur, 
except for the Car-noise (error in 3.62% of the cases).  

 
Table 1: GMM noise classification results for the known 

noise types (test Set A) 
         Results 
Test Noise Subway Babble Car Exhibition 

Subway 99.78% 0 0 0.22% 
Babble 0.01% 98.88% 0.96% 0.15% 

Car 0.34% 3.62% 95.52% 0.52% 
Exhibition 0 0 0 100% 

2.2. Performance analysis for the known noise types 

With the goal of investigating the performance of the SNC-
MMF, a set of training and recognition experiments are 
conducted. The HTK speech recogniser [6] is used for these 
experiments applying the scripts provided by [5]. Each digit 
is modelled by 16 HMM states each with three Gaussian 
mixtures. The speech features are the normally used 39-
dimensional MFCC vector. 

 
Fig.2 Word Error Rate (WER)-surface for Set A “Car” noise 
with different SNR combinations of training and test, and the 

lowest WER performance line 
For each known noise type (one of the four occurring in 

Set A), noise data and clean speech training data (8440 files) 
are artificially added with SNR values ranging from 0dB to 
30dB with 2dB intervals, resulting in an HMM model set for 

each of the SNR values. Recognition experiments are 
conducted with a separate speech corpus (1001 files) 
corrupted by the same type of noise and SNR range as used 
during training.  

As an example, the Word Error Rate (WER) results for 
“Car” noise are shown in Fig.2. Similar WER-surfaces are 
obtained for the “Subway”, “Babble” and “Exhibition” noise 
types.  

From the results in Fig.2 it is observed that: 
 No single model set can be chosen to give acceptable 

WER for all test SNR values. The lowest WER 
performance line on the WER-surface lies approximately 
along the diagonal from point (30, 30) to (0, 0)  
indicating that multiple model sets - each modelling a 
specific SNR value - are needed in order to achieve the 
lowest averaged WER for all the test SNR values. 

 A relatively flat low-WER surface range exists around 
the lowest WER performance line indicating that the 
SNC-MMF framework is relatively insensitive to 
inaccurate SNR value estimations. Though not shown 
here, this is also observed for the other three known 
noise types. 

 The lowest WER performance does not necessarily 
occur for an exact SNR value match between training 
and test data. This is further illustrated in Fig.3 where 
details from the experiments involving all four known 
noise types are given. The “Best performance Point” 
(BP) for each of the known noise types, defined as the 
point with the lowest WER performance for a given 
training SNR, is normally not the point where training 
and test SNR values are equal. It is noted that a majority 
of the BP’s are above the diagonal reference line, 
especially when the SNR value is low. This finding is 
further exploited in Section 3 in conducting model 
adaptation.  

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Test SNR(dB)

Tr
ai

ni
ng

 S
N

R
(d

B
)

subway
babble
car
exhibition
reference

 
Fig.3 BPs for the four known noise types  

 
Given that the SNC-MMF is relatively insensitive to 

inaccurate SNR estimation it is potentially feasible to reduce 
the number of model sets. With the aim of minimizing the 
number of models for each of the known noise types, an 
exhaustive search is carried out over the WER-surface for 
each chosen number of model sets (from one to sixteen), 
which identifies the combination of SNR model sets that 
results in the lowest WER.  



The results are shown in Fig.4. A drastic decrease in 
WER is observed when the number of model sets starts 
increasing from one while there is almost no significant 
performance improvement observed when choosing more 
than five model sets. This indicates that 3-5 model sets are 
enough to achieve acceptable overall performance. 

In the remainder of this paper, three model sets are used 
for each of the known noise types, which results in a relative 
4% performance drop only, as compared to using all 16 
models. An interesting fact observed from the search is that 
across all the four known noise types, the SNR values of the 
three models are similar and all close to 5dB, 10dB and 20dB.  
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Fig. 4 Best performance with different number of HMM 

model sets for each noise type 
 

3. Dealing with noise type mismatch 
This section deals with noise type mismatch between the 
selected HMM model set and the testing environments. 
Mismatch occurs as a result of either noise classification 
errors or the fact that the noise type is unknown. Two 
methods, namely Jacobian adaptation and model 
interpolation, are introduced. 

3.1. Jacobian adaptation 

Jacobian adaptation (JAC) [3] [4] is a commonly used method 
aimed at adapting models to the varying acoustical 
environments. For simplicity, this research considers the JAC 
adaptation on the 13 static cepstral components in the mean 
vectors only. 

Assume that the 1NC and 2NC  with components ci,x , 0 ≤ i 
≤ 12 and x ∈ {N1, N2}, are the averaged noise cepstral 
vectors of the known training noise N1 and the test noise N2 
respectively, and that the corresponding mean vectors of the 
HMM model Gaussian mixtures are 1NS+µ  and 2NS+µ . Then 
by linearly approximating the nonlinear cepstral distortion 
using a first-order Taylor series, the general JAC adapts the 
mean vector 2NS+µ  as follows: 

 
)( 1212 1 NNNSNS CCJ N −×+= ++ µµ   (1) 

 
where JN1 is the Jacobian matrix obtained during training. 
Generally JAC will result in significant approximation errors 
when the difference between 1NC and 2NC  is large. However, 

this is less likely to occur in the present SNC-MMF approach 
due to the expected smaller environmental difference between 
training and test in a multiple model framework. 

In the SNC-MMF, given that environmental SNR 
differences can be handled by using multiple model sets for 
different SNRs and that the exactly matched SNR training 
does not always guarantee the best performance, it is 
unnecessary and in some cases even harmful to eliminate 
them as JAC aims at in its standard form. Therefore we 
suggest a modified Jacobian adaptation (Z-JAC) which only 
attempts to eliminate the cepstral distortion caused by the 
mismatch in the noise types. Z-JAC assumes the same (noisy) 
speech energy in the two environments which otherwise can 
be achieved by energy normalization, and then simply sets the 
noise energy component c0,x = 0 in Eq. (1) but leaves the 
other cepstral components unchanged. This has the effect of 
adapting the trained model set to an environment with the test 
noise type while the same SNR value as the trained model set. 

3.2. Model interpolation 

In [1] it has been observed that by mixing the information 
characterizing data collected in different noisy environments, 
the MTR models are generally robust to unknown types of 
noise. Interpolation is therefore introduced to bring further 
robustness to SNC-MMF models on the basis of the trained 
MTR models. The interpolation is defined as follows: 
 

)()1()()( OMTRfONfOIf αα −+=                   (2) 
 

Given the observation O  in Eq.(2), )(OIf ,  )(ONf and 
)(OMTRf  are respectively the PDF’s for the finally 

interpolated model set, for the selected (or Z-JAC adapted) 
known noisy model set and for the MTR model set. The 
interpolation factor α  should ideally be expressed by the 
correlation between the test and training noises. In this work, 
a fixed value of 0.4 is empirically chosen for simplicity. 

 

4. Experiments 
The SNC-MMF is evaluated on the Aurora 2 database. As 
described in section 2, the experimental settings for SNC-
MMF are the same as the MTR in [5] that is therefore used 
here as the baseline. A set of recognition experiments are 
conducted for test Set A (including four known types of 
additive noise), Set B (including four unknown types of 
additive noise) and set C (including one known and one 
unknown type of noise with convolutional noises). Using the 
same weighting as in [5], the overall performance is calculated 
according to 0.4*(A+B) + 0.2*C. 

The comparisons between the baseline MTR and a 
number of SNC-MMF settings for Set A are illustrated in 
Fig.5. The three settings for SNC-MMF models are: i) “SNC-
MMF1” where SNC-MMF is given the a-priori knowledge of 
the known noise type and a given SNR value of the test data 
(i.e. no noise classification and SNR estimation errors), ii) 
“SNC-MMF2” where the known noise type is given but the 
SNR value is estimated by the SNR estimator, and iii) “SNC-
MMF” where both the noise type and the SNR value are 
estimated. The results show that, a) the SNC-MMF offers 
significantly better performance than the MTR for the known 



noise types, b) with only a minor deviation in performance 
among the three SNC-MMF settings, the SNC-MMF 
performance is robust to the provided SNR estimator and 
noise classifier, and c) the influence of the relatively small 
noise classification errors among the four types of noise - as 
given in Table 1 - can still be observed indicating that 
accurate noise classification is vital for this framework.  
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Fig. 5 Comparisons among different SNC-MMF settings 
and the MTR for the four known noise types in Set A 

 
This sensitivity to training-testing noise type difference is 

further confirmed by the lower performance for the unknown 
noise types in Set B as shown in Table 2. 

 
Table 2 WER (%) for different test sets and relative 

improvement (%) compared to MTR 
              Sets 
Methods Set A Set B Set C Average Improv. 

MTR 12.18 13.73 16.22 13.61 -- 
SNC-MMF 8.15 16.99 13.56 12.77 6.2 

JAC 8.80 13.47 13.37 11.58 14.9 
Z-JAC 8.35 13.01 12.94 11.12 18.3 

Model Interp. 8.11 13.43 12.57 11.13 18.2 
Model Interp. 

+Z-JAC 8.05 11.41 12.45 10.28 24.5 

 
Table 2 compares the WER performance over a number 

of test sets for MTR, SNC-MMF, Jacobian adaptation and 
model interpolation. The basic SNC-MMF shows a 
significant improvement over MTR for Set A (the known 
noise types) but lower performance for Set B (the unknown 
noise types). Deploying JAC together with the SNC-MMF 
improves the performance for the unknown noise types and 
employing the Z-JAC adaptation further improves the 
performance slightly but steadily. Model interpolation shows 
improved performance for both known and unknown types of 
noises, and when combined with Z-JAC it gives a relative 
WER reduction of more than 24% as compared to the MTR. 

 

5. Conclusions 
This paper introduces the SNC-MMF framework to improve 
the noise robustness of speech recognition in general. During 
training, different HMM model sets are built for a number of 
combinations of noise types and SNR values. The 
computational complexity during the recognition process is, 

however, kept low by selecting only one model set on the 
basis of the estimation of noise type and SNR value in the test 
environments. The Aurora 2 database is used in finding the 
optimal number of model sets and the results consistently 
show that with only a limited number (from three to five) of 
model sets for each noise type,  this framework is capable of 
achieving a good performance across a wide range of SNR 
values. 

Using only three model sets leads to significant 
improvements for the known noise types as compared to the 
MTR while lower performance is observed for the unknown 
noise types. The introduction of Jacobian model adaptation 
(both JAC and Z-JAC) results in more robust models when 
dealing with unknown noise types. Finally, MTR model 
interpolation combined with Z-JAC is introduced with the 
goal of exploiting the robustness properties of MTR against 
unknown noise types. This latter combination in particular 
exhibits superior performance compared to standard MTR.  
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