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Abstract 

In standard Spectral Subtraction (SS), Half-Wave 
Rectification SS (HWR-SS) is normally applied to avoid 
negative values in the Power Spectral Density (PSD) that 
occur mainly due to inaccurate noise estimation caused by a 
Voice Activity Detector (VAD).  

In this paper analyses show that, given accurate noise 
estimation, the phase relationship between speech and noise 
becomes the dominant cause of the negative values. Full-
Wave Rectification based SS (FWR-SS) combined with 
Instantaneous Noise Estimation (INE) is therefore proposed 
to be applied instead of VAD based HWR-SS as it is better 
capable of maintaining the speech information in those 
negative values. It is also shown in the paper that FWR-SS 
provides optimum orthogonality between the estimated noise 
and speech signals. 

The INE method proposed in this paper is Likelihood 
Controlled Instantaneous Noise Estimation (LCINE), which 
combines long-term statistical characteristics of noise 
resulting from a VAD with a method of short-term INE. 

The combination of FWR-SS and LCINE is 
computationally efficient and shows a 51% error rate 
reduction on the Aurora 2 database in comparison to the basic 
Aurora front-end provided by ETSI [1].  

 

1. Introduction 

Automatic Speech Recognition (ASR) has reached a stage 
where ASR in moderate noisy environments has a very high 
level of performance – even for large vocabulary tasks. 
However, deploying an ASR system in environments in which 
the acoustic noise is less controlled – e.g. for speech operated 
hand-held terminals in connection with wireless 
communication – the speech signal may be severely 
contaminated resulting in dramatic degradation in recognition 
performance. It is therefore a challenging research task to 
develop effective and efficient methods for robust speech 
recognition. 

SS is often used as an efficient front-end noise reduction 
method, mainly due to its simple implementation. As 
proposed in [2] and further improved in [3], SS to some 
extent effectively removes additive noise by subtracting noise 
estimated in non-speech segments. The drawback of this SS 
technique, however, is that it may generate “musical noise” 
due to inaccurate noise estimation. A further drawback is that 
it may also result in negative values occurring in the PSD. 
Forcing these to zeros or small positive floor values, as is 
extensively used by HWR-SS, results in the loss of speech 
information. 

In this paper an initial analysis is conducted which 
illustrates that negative values occur not only due to 
inaccurate noise estimation but also to the phase relationship 
between noise and speech. Further analysis shows that if 
accurate noise estimation is available the phase relationship is 
the dominant cause of negative values and this research 
applies FWR-SS with the aim of maintaining the speech 
information in negative valued bins and proves that it can 
provide optimum orthogonality between the estimated noise 
and speech signals than HWR-SS. 

Accurate noise estimation is vital for successful 
deployment of SS. INE has been used [4], [5], [6] to estimate 
the noise without explicitly utilising speech pause detection. 
It is shown that INE can provide SS with more accurate noise 
estimation than methods based on VAD and improved 
performance for both speech enhancement and robust ASR is 
obtained. However, based on short-term estimation only, the 
INE method inevitably causes large variations in the 
estimated noise. To counteract this, [7] introduced a method 
in which the probability of speech presence is taken into 
account in the noise estimation strategy.  

In this paper a different strategy is proposed, which 
estimates the reliability of the INE: Based on the fact that 
non-speech segments can provide reliable statistical 
information about the noise, LCINE combines long-term 
noise statistical characteristics with the short-term INE 
resulting in more accurate noise estimation.  

The paper is organised as follows. Section 2 presents the 
analysis of negative values and the basic rationale behind 
applying FWR-SS. Section 3 proposes LCINE technique to 
provide better noise estimation. Results from experiments on 
Aurora 2 are presented and discussed in Section 4. The 
conclusions are in Section 5. 

 

2. Rationale Behind Full-Wave Rectification 
Based SS 

Assuming that )(kX , )(kY  and )(kN  are the kth FFT bin of 
the spectrum for clean speech, noisy speech and noise in a 
frame, respectively, SS subtracts the estimated noise from the 
noisy speech signal in the PSD domain according to the 
following formula:  
 

222 |)(ˆ||)(||)(ˆ| kkk NYX −=     (1) 
 

where )(ˆ kN  and )(ˆ kX  are estimations of )(kN  and )(kX , 
respectively, and )(ˆ kN  is normally calculated from non-
speech segments identified by a VAD.  



2.1. Analysis of negative values 

It is clear from Eq(1) that negative values of 2|)(ˆ kX|  may 
occur. Based on the fact that most negative values result from 
inaccurate noise estimation, the HWR-SS method replaces 
them with zeros or small positive floor values [3]. However, 
the negative values can also be caused by the phase 
relationship between the clean speech and the noise. 
Since )(kX , )(kY  and )(kN  are complex valued stochastic 
variables and can be treated as vectors in complex plane, the 
relationship among them can be illustrated as:  
 

kkkkkk θcos|)(||)(|2|)(||)(||)(| 222 XNNXY ++=     (2) 
 

where kθ  is the random phase difference between )(kX  and 
)(kN . When [ ]|)(|*2/|)(cos kkk NX|- <θ , |)(| kY  is smaller 

than |)(| kN , and therefore a negative value for 2|)(ˆ kX|  
occurs when applying Eq(1) even though the noise estimation 
is exact.  
 

 
Figure 1: Example of negative valued bins during the SS 

caused by the phase relationship  
(a) Amplitude spectrum of clean speech; 
(b) Amplitude spectrum of “car” noise;  
(c) Absolute value of negative 2|)(ˆ kX|  
 

To illustrate the occurrence of negative values caused by 
the phase relationship, Fig.1 shows three spectra as an 
example. The noisy speech is calculated by adding “car” noise 
(Fig.1(b)) to clean speech (Fig. 1(a)) with a SNR equal to 
0dB.  2|)(ˆ| kX  is calculated from Eq(1) using the added noise 
PSD as the noise estimate. Fig.1(c) shows the negative values 
of 2|)(ˆ| kX  where it is observed, that even with exact noise 
estimation, some negative values still occur. These negative 
values are solely caused by the random phase difference kθ  
between )(kX  and )(kN .  

From the analysis it is concluded that the more accurate 
the noise estimation is, the larger part of the negative values is 
caused by the phase relationship. In this case, setting them 
artificially to zeros or small positive floor values as in HWR-
SS will inevitably result in the loss of speech amplitude 
information. Using the FWR-SS algorithm instead and 
reversing the negative values will exploit speech information 
remaining in the bin, which can be expressed as: 

 

222 |)(ˆ||)(||)(ˆ| kkk NYX −=         (3) 

2.2. FWR-SS and orthogonality  

Geometrical considerations are given below aimed at 
explaining and interpreting FWR-SS. SS – as given by Eq(1) 
– assumes that the vector )(kX  and )(kN  are uncorrelated 
and the mean value of the noise is equal to zero, namely they 
are orthogonal in a statistical sense [3]. Further assuming that 

|)(ˆ kN| = |)(kN| , )(kY , )(ˆ kX  and )(ˆ kN  should statistically 
build a right angled triangle in which )(kY  acts as the 
hypotenuse. For |)(| kY > |)(ˆ| kN  and |)(| kY < |)(ˆ| kN , FWR-
SS can be illustrated in Fig.2(a) and 2(b), respectively.  
 

 
Figure 2: Geometrical illustration of FWR-SS 
(a) for |)(| kY > |)(ˆ| kN  (b) for |)(| kY < |)(ˆ| kN  

 
For |)(| kY  > |)(ˆ| kN , FWR-SS exactly constructs such a 

right angled triangle mentioned above. However, for 
|)(| kY < |)(ˆ| kN , by reversing the negative values, FWR-SS 

actually constructs a right angled triangle with )(ˆ kN  the 
hypotenuse. This in fact maximally meets the requirement for 
orthogonal relationship as the angle between )(ˆ kX  and )(ˆ kN  
is closest to 900 when )(ˆ kX  lies on the tangent line of the 
circle whose radius is |)(| kY .  

Therefore, for exploiting speech information and keeping 
the orthogonal relationship, FWR-SS is better than HWR-SS 
and should be used in the precondition of accurate noise 
estimation. 

 

3. Instantaneous Noise Estimation 

Accurate noise estimation is of paramount importance for the 
SS algorithm, particularly the FWR-SS. The Minimum 
Statistics Noise Estimation (MSNE) presented in [4] and [6] 
is a method based on the assumption that speech cannot take 
up a frequency bin all the time. Therefore a window of for 
example 0.5 second is set, and the minimum value in the PSD 
domain in the window of each frequency bin is treated as the 
noise estimate within the current frame. The advantages of 
this method are that it does not need VAD and that it tracks 
noise changes even during speech which gives relatively more 
accurate and instantaneous estimation of the noise. The 
disadvantage is large variations in the estimate of noise [5]. 
To reduce these variations and enhance the accuracy of 
MSNE, the next sections introduce the use of noise estimation 
smoothing and LCINE. 
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3.1. Smoothing 

First, a simple smoothing algorithm is applied to average the 
variations in the instantaneous estimation of noise. Assuming 

Mn kP )(ˆ  and Sn kP )(ˆ  are the PSDs of MSNE and the smoothed 
noise estimation for the kth FFT frequency bin in the nth 
frame respectively, the smoothing is performed as follows: 
 

MnSnSn kPkPkP )(ˆ)1()(ˆ)(ˆ
1 ξξ −+= −   (4) 

 
where ξ  is the memory factor, chosen to be smaller than 0.5 
as a compromise to enable tracking both stationary and non-
stationary noise. 

3.2. LCINE 

Using this simple smoothing only has a limited improvement. 
To further enhance the performance of the INE, the effect of 
exploiting the long-term information available - from non-
speech frames identified by the VAD - is analysed. Two facts 
have been observed. Firstly, the long-term characteristics of 
noise such as the Probability Density Function (PDF) are 
relatively stable, which may assist the INE in reducing 
variations. Secondly, INE is a short-term estimation method 
that introduces estimation errors. The likelihood of the INE in 
each bin calculated from long-term properties may be used to 
discriminate such errors. LCINE can be fulfilled as follows: 
•  Firstly, the statistical characteristic, the mean µ  of the 

noise value in a PSD bin, is estimated from non-speech 
frames. Then the PDF of the PSD for Gaussian noise is 
defined by an exponential distribution [6]: 
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where U(x) is the unit step function and x is the noise 
value in the PSD bin. 

•  Secondly, the normalized likelihood of MSNE 
))(ˆ( Snn kPL  is calculated by Eq(6a) according to the 

noise PDF obtained in Eq(4), and smoothing is carried 
out to track the long term tendency by Eq(6b): 
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where γ  is a forgetting factor, normally chosen to be 
smaller than 0.5. 

•  Finally, the noise estimation is given as follows: 
 

SnSnnn kPkPLkP )(ˆ))(ˆ()(ˆ =   (7) 

 
By Eq(7), the final estimation of noise is proportional to 
its likelihood. Therefore, the larger the likelihood is, the 
more noise SS will subtract. In the extreme case, if the 
likelihood is zero indicating the MSNE is completely 
unreliable, by applying Eq(7), no noise will be removed 

in this frequency bin, which prevents the loss of speech 
information due to unreliable noise estimation. 
  

4. Experiments and Discussions 

To evaluate the performance of the proposed methods, a 
number of experiments on the basis of noise-free speech data 
training and multi-condition testing on the Aurora 2 database 
are conducted. The English digit utterances are artificially 
contaminated with different types of noise in Set A, Set B and 
Set C. The recognizer and the baseline results below are from 
the Aurora 2 CDs provided by ETSI[1]. 

4.1. FWR-SS 

Table 1 summarises the results for the combination of the 
HWR-SS and FWR-SS methods with the noise estimation 
methods VAD and MSNE, where HWR-SS is the algorithm in 
[3] with β  = 0.02. It is observed that the combination of 
FWR-SS and MSNE gives the largest improvement by 29% 
average error rate reduction. Such significant improvement 
verifies that FWR-SS is able to exploit the speech information 
inherent in negative valued bins on the basis of a relatively 
accurate noise estimation. When the noise estimation is 
provided by a VAD, the performance of FWR-SS is even 
worse than HWR-SS. The reason for this may be that the 
VAD-based noise estimation is non-instantaneous and makes 
the estimation inaccuracy the dominant cause for negative 
values. 

 
Table 1: Recognition rates (%) and Relative Improvement 

(%) over baseline for FWR-SS, HWR-SS, VAD, MSNE 

Algorithm Set A Set B Set C Overall Imprv. 
Baseline 61.34 55.75 66.14 60.06 -- 

HWR-SS+VAD 65.67 65.13 58.55 64.03 9.9 
FWR-SS+VAD 65.36 61.29 62.29 63.12 7.7 

HWR-SS+MSNE 68.59 65.42 72.20 68.04 20.0 
FWR-SS+MSNE 71.86 69.56 75.53 71.67 29.1 
 

4.2. LCINE combined with FWR-SS 

 
Table 2: Recognition rates (%) and Relative Improvement 

(%) over baseline for smoothing and LCINE with FWR-SS 

Algorithm Set A Set B Set C Overall Imprv. 

Smoothing 74.71 73.64 75.95 74.53 36.2 

LCINE 81.27 79.15 81.07 80.38 50.9 
 

Further experiments are conducted to evaluate the effect of 
smoothing and LCINE. The results are given in Table 2. All 
experiments are based on FWR-SS. It is noticed that the 
simple smoothing algorithm gives a 36% improvement. 
Significant improvement has been observed by applying 
LCINE, indicating that LCINE is an effective method for 
noise estimation. 

Additionally, detailed comparisons between LCINE and 
MSNE, combined with FWR-SS are given in Fig.3 and Fig.4. 
The LCINE method shows better overall performance than 



the MSNE method both for different SNRs and for different 
noise types. This indicates that the LCINE is a more general 
method. 
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Figure 3: Comparison for LCINE and MSNE across a range 

of SNR values 
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Figure 4: Comparison for LCINE and MSNE for different 
noise types (“M” represents Set C in the Aurora 2 database 

where convolutional noises are added) 
 
 

5. Conclusions 

This research focuses on methods aimed at improving speech 
recognition front-end processing to be deployed in noisy 
environments. Negative values during SS are not only caused 
by the inaccurate noise estimation but also by the phase 
relationship between the spectra of noise and clean speech. 
These negative values are usually substituted with zeros or 

small positive floor values to compensate for the annoying 
musical effects from inaccurate noise estimation. The 
substitutions, however, cause the loss of speech information 
within these negative PSD bins. Assuming that instantaneous 
noise can be estimated accurately, analyses show that FWR-
SS is superior to HWR-SS by reversing the negative values 
and thus retaining potential speech information. Consequently, 
MSNE based INE is applied with the further improvement by 
using LCINE for enhancing the estimation accuracy by 
combining long-term statistical characteristics with 
instantaneous estimation.  

The performance of the proposed methods is verified by 
experiments on the Aurora 2 database. It is shown that LCINE 
used in combination with FWR-SS improves the performance 
by 51% over the baseline front-end algorithm while FWR-SS 
alone achieves 29%. It is pointed out that the combined use of 
both FWR-SS and LCINE has low computational complexity 
and is rather robust to varying types of noise. These properties 
are of importance when applied in mobile devices. 
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