
A CONFIGURABLE DISTRIBUTED

SPEECH RECOGNITION SYSTEM

Haitian Xu1, Zheng-Hua Tan1, Paul Dalsgaard1, Ralf Mattethat2, Børge Lindberg1
 1Speech and Multimedia Communication (SMC), Center for TeleInFrastruktur (CTIF),

Aalborg University, Denmark
2Technology Institute, Århus, Denmark

{hx,zt,pd,bli}@kom.aau.dk ralf.mattethat@teknologisk.dk

Abstract

The growth in wireless communication and mobile
devices has supported the development of distributed
speech recognition (DSR) systems. During the last
decade this has led to the establishment of DSR
standards and an increased interest in research aimed at
systems exploiting DSR. So far, however, DSR-based
systems executing on mobile devices are only in their
infancy. One reason probably is the missing availability
of corresponding easy-to-use software development
packages. This paper presents a prototype version of a
configurable DSR system for the development of
speech enabled applications on mobile devices.

The system is implemented on the basis of the ETSI-
DSR advanced front-end and the SPHINX IV
recogniser. A dedicated protocol is defined between the
DSR client and the recognition server supporting
simultaneous access from a number of clients. This
makes it possible for different clients to create and
configure recognition tasks on the basis of a set of
predefined recognition modes.

The paper gives a detailed introduction to this
system including its architecture, design considerations
and evaluation results.

1. Introduction

It is expected that the growth in wireless
communication and mobile devices will enable
ubiquitous access to a large pool of different
information resources and services. To make such
development successful there is a demand to include
ASR as a key component into the user interface.
Present mobile devices only have limited memory and
CPU capacities which pose several challenges to ASR.
As a result most ASR systems today executing on
mobile devices only support low-complexity
recognition tasks such as simple name dialling.

The resource-limitation can be partly alleviated by
adopting a client-server based DSR network
architecture where only the front-end feature extraction
lies in the client while the time-consuming recognition
decoding is conducted in a powerful server [1]. With
such an architecture the resource limited client

becomes independent of the recognition tasks and
therefore enables the implementation of complex
recognition tasks - e.g. large vocabulary speech
recognition.

Another challenge in deploying speech recognition
in mobile devices is the continually changing acoustic
environment. This additionally requires the deployment
of noise-robust signal processing techniques generally
of high computational complexity. The introduction of
noise robustness techniques in the DSR architecture
may be achieved in the client e.g. by establishing
feature enhancement. At the server side, this can be
accomplished e.g. by compensating acoustic models or
modified decoding strategies.

For more than a decade research in the DSR area
has led to the establishment of a number of ETSI-DSR
standards. The first standard [2] for the cepstral
features was published in 2000 with the aim of
handling the degradation of ASR over mobile channels
caused by both lossy speech coding and transmission
errors and enabling interoperability over mobile
networks. Currently, one of the most well known
standards – the ETSI-DSR advanced front-end (AFE)
[3] – further includes client-side technqiues providing
the DSR system with excellent noise-robustness.
However, even given these DSR standards, it is
infrequent to find real-life DSR implementations
executing in standard mobile devices, thus manifesting
a barrier for applying the DSR technology in speech
driven applications.

This paper presents a configurable DSR system that
has recently been developed at Aalborg University for
being deployed into real-life speech driven applications.
The AFE is integrated as part of the client and the
SPHINX IV [4] is employed as the back-end recogniser.
The AFE as used in the system is modified by
optimising some time consuming parts of the FFT
algorithm. The system is able to support flexible
communication to a number of independent user
devices each with different requirements to the
complexity of the recognition task (e.g. different
vocabularies, grammars, etc).

The remainder of this paper is organised as follows.
Section 2 presents the system architecture; section 3
describes a number of factors taken into consideration

during system design and implementation and the
system evaluation results are provided in section 4. The
conclusions are given in section 5.

2. System architecture

Fig.1 The system architecture

2.1. System architecture

As illustrated in Fig. 1 an embedded Recorder in the
client simply collects speech signals using a pre-
defined sampling rate. The optimised AFE client-side
module [3] enhances input speech data and generates
voice activity detection (VAD) information which
together with the set of cepstral features are encoded
sequentially and packed into speech packages for
network transmission.

At the server side the received speech packages are
processed by the AFE server-side module. Firstly - on
the detection of transmission errors - error concealment
is conducted for feature reconstruction. Secondly, the
error-corrected speech packages are decoded into a set
of cepstral features and VAD information.
Subsequently, the cepstral features are processed by the
SPHINX speech recogniser. The recogniser presents its
result (either the best or N-best results) at the utterance
end – detected by the VAD information - and transmits
back to the Result Listener of the client. To increase
system usability and flexibility, three typical

recognition modes are represented, namely: Isolated
word recognition, Grammar based recognition and
Large vocabulary recognition. Each is defined by a set
of prototype files at the server side. The choice is done
at system initialisation, and specific settings can be
changed at any time. The setting may be different
across a group of end-users.

A Command Processor is implemented at both the
client and server side to support the interchange of
configuration commands. Potential commands include
control commands to start or stop recognition, choice
of recognition mode, commands providing feedback
information from the server to a client (e.g. success or
failure of any user request), etc.

2.2. Data streams and network load

In the current implementation two network connections
are established for each client accessing the system.
The first is the data channel for transmitting speech
packages and recognition results, and the second is the
control channel for the transmission of control
commands. Both connections are socket based.

During the recognition process the majority of
network load is on the data channel. In full consistency
with the DSR standard [3] using an 8 kHz sampling
rate, the load on the data channel is about 5.6kbps. The
control channel load is small and negligible as
compared to the data channel and varies only with the
user control settings. With this limited overall
bandwidth requirements, the system can be successfully
operated over almost all kinds of networks.

2.3. Client interactions with potential applications

The client is implemented in C/C++ for efficiency and
portability across different devices and operating
systems.

The client is encapsulated into a single dynamical
link library (DLL) which supports a series of simple-to-
use Application Programming Interfaces (API). For
some of them (e.g. functions for acquiring results)
different manners are offered. The client has so far
been used together with applications written in C, C++,
Java or C# demonstrating its compatibility.

Currently available API functions are listed in Fig.2
where they are separated into six clusters covering the
following overall functionalities:

 Initialisation and release functions: to allocate or
de-allocate resources in the client

 Network functions: to connect or disconnect a
client and the server. The Connect function takes
three parameters specifying the server IP address,
the port number and the recognition mode

 Grammar control functions: to configure the active
vocabularies or rule grammars in a Java Speech

Grammar Format [9] for the isolated word and
grammar-based modes, respectively

 Recognition control functions: to start or stop the
recogniser at the server

 Results related functions: to acquire results. Both
synchronous and asynchronous manners are
provided for the application. With the synchronous
manner, the application inserts a call back function
through SetCallBackFunction by which it receives
a “callback” notification when the result is ready.
With the asynchronous manner, the GetResult
function is called by the application and only
returns when the result is ready.

Fig.2 Client API functions

3. System implementation criteria

The design and implementation of the system requires a
number of special overall considerations to be
accounted for at both the client and the server side.

3.1. Command Control Protocol (CCP) and
configurability

Proper communication between the client and the
server is supported by the Command processor
together with a simple communication protocol CCP as
illustrated in Fig.3. The CCP consists of a number of
control commands that submit the requirements from
the client and acquire the feedback from the server.
Specifically the client may choose the character set and
recognition mode, change recogniser configuration
such as grammars, control of recognition start and stop
etc. The client may be notified by the server about the
success or failure of server actions for each client

control command. Each control command is
acknowledged to ensure error-free consistent
command- transmissions over the command channel.

By means of the CCP the client can flexibly
configure the system functionality.

Fig.3 CCP in client-server communication

3.2. Client efficiency

Today the CPU in most mobile devices is only able to
conduct floating point arithmetic by replacing it by
fixed point calculations. This causes a dramatic drop in
computational efficiency. The system presented in this
paper integrates a fixed-point AFE implementation.
This executes several times faster than the floating-
point AFE. It is further optimised for one of the most
popular CPUs used in PDAs, the Intel® XScale [5] by
substituting high-level language instructions with CPU-
dependent ASM instructions within the most time-
critical part of the FFT module.

Finally, multi-thread programming [6] is utilised
with the goal of utilising the CPU time optimally.

3.3. Choice and optimisation of speech recogniser

The speech recogniser is the primary module in the
server controlling not only the recognition performance
but also the flexibility and usability of the system.
There are several advantages given by the choice of the
SPHINX IV recogniser.

 SPHINX IV is based on an object-oriented design
which makes its integration with other DSR
modules simple

 SPHINX IV supports a wide range of recognition
tasks rendering it dynamically configurable

 SPHINX IV is computationally efficient and has
shown good recognition performance [4].

 However, during system development it is observed
that the loading time for acoustic and language models
for a large vocabulary speech recognition task is rather
long. This has resulted in the optimisation of the Java

source code in parts of the recogniser by using more
efficient C code.

3.4. Support of character sets

Given the fact that the ANSI character set is not always
supported in mobile devices, both the ANSI and the
UNICODE character sets are supported in
communicating commands and results between the
client and the server.

3.5. Choice of recognition mode

Each of the modes includes a set of pre-trained acoustic
models, a SPHINX recogniser configuration file (in
XML format) and a vocabulary. Additionally a
language model should be contained for the Large
vocabulary recognition mode. Wordlists (active
vocabularies) and grammars are dynamically
configured by the application through the APIs.

4. Evaluations

The DSR system described in this paper is evaluated
with respect to its recognition accuracy and time
efficiency.

4.1. Recognition performance

Four tests have been conducted each on a recogniser
with the cepstral features calculated either by a floating
point or by a fixed point AFE - with or without VQ.
The first two tests use the HTK recogniser [8]. The
word models used with these tests are trained using the
HTK training software. The latter two tests deploy the
SPHINX recogniser. The word models are trained by
the SPHINX training tools.

The speech data used for all tests are from the
English connected digits recognition task in the Aurora
2 database [7]. Each digit is modelled by 16 HMM
states each with three Gaussian mixtures. The acoustic
models are trained using the “Multi-condition training”
settings in [7] where clean speech and noise data of test
Set A are added. The training data thus includes four
types of noise (“Subway”, “Babble”, “Car” and
“Exhibition”). The speech features are the normally
used 39-dimensional MFCC vector.

The average word accuracies for the four test
sessions and across the four set of test data are shown
in Table 1.

It is observed that the vector quantised AFE
features, only cause the recognition accuracy to drop
slightly and rather uniformly across the four types of
noise data. With the current setting of the two
recognisers, the SPHINX IV shows lower averaged

word accuracy as compared to the floating point HTK
recogniser. It is noted that the fixed-point SPHINX
recogniser gives results that are very close to those
resulting from the floating point AFE.

Table 1 Test set A word accuracy (%)

 Subway Babble Car Exhibition Average
HTK

(Floating
point)

91.64 90.30 93.77 91.46 91.79

HTK
(Floating

point, VQ)
91.37 90.19 93.48 91.54 91.65

SPHINX
(Floating

point, VQ)
89.71 90.19 91.45 90.19 90.38

SPHINX
(Fixed

point, VQ)
89.73 90.18 91.44 90.17 90.38

4.2. Client resource consumptions

Tests have been conducted on PC or PDA devices
running either Windows or Windows CE (Pocket PC
2002 or 2003) using wired or WiFi network
connections.

The size of the client DLL library file is limited to
only about 74Kbytes, and the maximal memory
consumption at run-time is less than 29Kbytes.

0

5000

10000

15000

20000

25000

30000

35000

nois
eS

up

DoW
av

eP
ro

c

DoC
om

pC
ep

s

DoP
os

tP
ro

c

DoV
ADPro

c

T
im

e(
m

s)

F lo a ting P o int
F ixe d P o int
F ixe d + F F T o pt

Fig.4 Time efficiency comparisons for the major

components in AFE

The optimisation described in section 3.1 is

evaluated on a H5550 IPAQ with a 400MHz XScale
CPU and 128 MB memory. The data used is an 11-
second test sound clip sampled at 8 KHz. The detailed
test results are shown in Fig.4 with the comparison of
the major components in the AFE, namely noise
suppression, waveform processing, cepstral calculation,
cepstral post processing and VAD processing [3]. The
overall results are provided in Table 2 indicating a
large performance reduction in execution time when
replacing the floating point AFE with the fixed point
algorithm in combination with FFT optimisation.

Table 2 Real-time efficiency in using different
realisations of the AFE

Algorithm Floating
Point
AFE

Fixed Point
AFE

Fixed Point
AFE + FFT
optimisation

X Real-time 3.98 0.82 0.69

5. Conclusion

This paper introduces a DSR-based system that is
developed on the basis of the AFE and the SPHINX IV
speech recogniser. The system is designed for being
configurable and facilitating simultaneous access from
a number of clients each with its own requirements to
the recognition task. A system communication protocol
is designed to control the interaction between the client
and the server. The recogniser supports multiple
recognition modes covering isolated word recognition
tasks, grammar based recognition tasks, and large
vocabulary continuous speech recognition tasks.

The system has been tested and shows good
performances both in respect to real-time efficiency and
recognition accuracy.

6. Acknowledgement

This project is supported by the CNTK (Centre for
Network and Service Convergence) project which is
funded partly by the Danish Ministry of Research,
Technology and Development and partly by the
industrial partners. It includes participations from
Danish telecommunication companies and two Danish
technical universities. The Authors wish to thank Dr.
David Pearce, Motorola Corporation for providing the
help for the fixed-point AFE client implementation.

7. References

[1] Z.-H.Tan, P.Dalsgaard and B.Lindberg, “Automatic
speech recognition over error-prone wireless
networks,” to appear in Speech Communication,
2005.

[2] ETSI draft standard doc. Speech Processing,
Transmission and Quality aspects (STQ);
Distributed speech recognition; Front-end feature
extraction algorithm; Compression algorithms,
ETSI ES 202 108 V1.1.2 (2000-04), April 2000

[3] 3GPP TS 26.243: "ANSI-C code for the Fixed-
Point Distributed Speech Recognition Extended.
Advanced Front-end", December, 2004

[4] W.Walker, P.Lamere, and P.Kwok et.al. “Sphinx-4:
A Flexible Open Source Framework for Speech
Recognition”, Technical report TR-2004-139, Sun
corporation, USA, 2004

[5] Intel® XScale technology overview:

 http://www.intel.com/design/intelxscale/index.htm
[6] J.Richter. “Programming applications for Microsoft

Windows”, 4th Edition, Microsoft Press 1999, USA
[7] H.G.Hirsch and D.Pearce, “The aurora

experimental framework for the performance
evaluation of speech recognition systems under
noisy conditions”, ISCA ITRW ASR2000
(Automatic Speech Recognition: Challenges for the
Next Millennium), Paris, France, September 18 -
20, 2000

[8] S.Young. “HTK: Hidden Markov Model Toolkit
V1.5”. Cambridge Univ. Eng. Dept. Speech Group
and Entropic Research Lab. Inc., Washington DC,
Dec. 1993

[9] “Grammar Format Specification”, Technical
documentation, Sun Microsystems, Inc, October,
1998

