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Abstract—This paper presents a graph-theoretic construct called a fuzzy metagraph (FM) with the capability of describing the

relationships between sets of fuzzy elements instead of only single fuzzy elements. The algebraic structure of FM and its properties are

extensively investigated. Subsequently, the FM construct is applied to rule-based systems. First, we propose FM-based knowledge

representation in both graphic and algebraic format. The representation is capable of identifying dependencies across compound

propositions in the rules. In the algebraic representation, the FM closure matrix is considered a precompiled rule base enabling efficient

query processing. An iterative approach is presented to facilitate the construction and expansion of the FM closure matrix, which is a

key for real-world applications. Next, we introduce the concept of indexing, which was originally developed for information retrieval (IR),

to enable an immediate extraction of relevant entries from the FM closure matrix. The indexing approach is applied in combination with

the FM closure matrix. Based on the combination, corresponding inference mechanisms are introduced to achieve instant acquisition

of relevant rules over a large collection of rules. The application in rule-based systems indicates that the combination of FM and

IR techniques offers advantages for the mathematical analysis of systems.

Index Terms—Fuzzy graphs, knowledge representation, fuzzy reasoning, information retrieval, rule-based systems.
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1 INTRODUCTION

IN past years, much effort has been devoted to net-based

mathematical modeling [1]. A net-based or graph-based

approach provides a two-dimensional language suitable for

visualization and a mathematical analysis scheme for the

analysis of system structures [2]. Because of their role in

reducing computations and improving visualization and
problem understanding, graph and net theory have become

important computational paradigms for representing and

analyzing intelligent systems [1], [2], [3], [4].

Various net and graph models have been reported in the

literature, e.g., Bayesian networks, digraphs, (fuzzy) Petri

nets, (fuzzy) hypergraphs, and so forth [5]. In modeling and

analyzing fuzzy systems, fuzzy graphs and nets are widely

applied [6], [7], [8], [9]. Despite the new developments,

graphical modeling remains a challenging and attractive

research topic. For example, existing fuzzy graph techni-

ques are not suitable for the analysis of the directed

relationships between sets of elements, which widely exist

in complicated fuzzy systems.
In crisp graphs, a number of new constructs that are

geared toward set-to-set mappings have been proposed,
e.g., directed hypergraphs [4], higraphs [10], and meta
graphs [11], [12]. In particular, the metagraph has shown
its capability of graphic presentation as well as its
efficiency of algebraic analysis. Directed hypergraphs
possess some similar properties to metagraphs. Both of
them can be regarded as a combination of directed graphs

and hypergraphs. Metagraphs, however, demonstrate a
great potential for mathematical analysis.

Even though metagraphs have been widely applied in
model management, data management, rule management,
and hierarchical modeling, the metagraph construct is
unable to tackle the issue of uncertainty and imprecision.
Originally, metagraphs focused on structural aspects, i.e.,
the connectivity relationships among components of sys-
tems. To extend the approach to include process attributes
such as time, attributed metagraphs have also been
proposed [13]. But, since the attributes are logical and
qualitative rather than quantitative, the extensions of
metagraphs still cannot manipulate imprecise information.
As a consequence, these approaches cannot support
uncertain knowledge representation and approximate
reasoning. However, most modes of human reasoning—
and, especially, common sense reasoning—fall under this
category [14]. We propose introducing fuzzy set operators
to create a fuzzy metagraph (FM) as a generalization of the
(crisp) metagraph. Subsequently, a number of concepts are
developed and the properties of FM are investigated.

The FM is then applied to fuzzy rule-based systems for
knowledge representation and reasoning. In the format of
algebraic representation, the FM closure matrix is consid-
ered a precompiled rule base enabling efficient query
processing. The fact that an FM closure matrix is often a
sparse matrix, however, indicates that a method providing
a quick extraction of entries from the matrix is a necessity.
Inspired by the success of information retrieval (IR)
techniques in Web-based queries, we introduce the concept
of indexing for creating a compact representation of an FM-
based rule base. Based on a combination of the indexing
approach and the FM closure matrix, inference mechanisms
are introduced to allow instant access to relevant rules over
a large collection of rules.
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The rest of this paper is organized as follows: Section 2
contains a brief review of fuzzy graphs and IR techniques.
In addition, the motivation of this work is discussed. In
Section 3, we define the proposed FM construct. Section 4
investigates the algebraic structure of FM. In Section 5,
FM-based knowledge representation and the indexing table
are presented and their implementation issues are ad-
dressed. Based on the FM closure matrix and the indexing
table, corresponding inference mechanisms are developed
in Section 6. Finally, conclusions are summarized in the last
section.

2 BACKGROUND AND MOTIVATION

This section briefly reviews fuzzy graphs and IR techniques,
followed by a discussion of the motivation of this work.

2.1 Fuzzy Graphs

A graph is defined by a pair G ¼ ðX;EÞ, where X ¼
fx1; x2 . . .xng is a finite set of vertices and E a collection of
edges that happen to connect these vertices. The edge set E
graphically demonstrates a relation on X �X.

The concept of a fuzzy graph is the “fuzzification” of the
crisp graphs using fuzzy sets. A fuzzy graph ~GG can be
defined as a triple ðX; ~XX; ~EEÞ, where ~XX is a fuzzy set on X
and ~EE a fuzzy relation on X �X [15].

A fuzzy set ~XX on X is completely characterized by its
membership function � : X ! ½0; 1�. For each x 2 X, �ðxÞ
illustrates the truth value of the statement of “x belongs to
~XX.” A fuzzy edge set ~EE is defined as a function
� : E ! ½0; 1�. Therefore, a fuzzy graph can be described
by two functions � and �. For the sake of notational
convenience, X is omitted and, thus, the notation ~GG ¼
ð ~XX; ~EEÞ or ~GG ¼ ð�; �Þ is used in literature where both vertices
and edges have membership values [16]. Often, the
membership value of an edge is also called certainty factor
(CF) of the edge. For simplicity, assign ~xxi denoting
xi; �ðxiÞð Þ and ~eek denoting ek; CFkð Þ, i.e., ek; �ðekÞð Þ.

Over the past decades, a number of fuzzy graphs have
been proposed to represent uncertain relationships between
fuzzy elements or sets of fuzzy elements. However, as
mentioned before, existing fuzzy graphs are not capable of
effectively modeling the directed relationships between sets
of fuzzy elements.

In understanding the value of metagraphs, [11] gives a
detailed comparison between metagraphs and conventional
graphs with illustrative examples. The commonly used
fuzzy graphs share the following limitations with conven-
tional graphs:

1. Albeit a fuzzy undirected graph can represent
relationships existing between two variables, it
cannot provide the direction of the relationships.

2. The input and output relationships between the
element pairs can be described by the fuzzy directed
graph. However, it cannot represent the relation-
ships where there is more than one variable in the
input and/or in the output.

3. Fuzzy hypergraph describes any fuzzy relationship
as a set of fuzzy elements, but it is not able to
distinguish the input variables from the outputs.

4. Using arcs to combine edges, a fuzzy AND/OR
graph attempts to represent relationships even
where there are more than one input and output
variables. When describing the relationships be-
tween the sets of variables, however, there are too
many combined edges for fuzzy AND/OR graph to
distinguish them.

It is critical that all of the graphs lack powerful algebraic
analysis methods for manipulating the directed relation-
ships between sets of elements. This motivates the devel-
opment of the FM to be defined in Section 3. The major
distinction between FMs and traditional graph-theoretic
constructs is that an FM describes the directed relationship
between sets of elements instead of single elements. Each
edge in the FM is an ordered pair of sets of elements. So, the
edge is neither an ordered pair of elements in a fuzzy
directed graph nor a disordered set of elements in a fuzzy
hypergraph.

2.2 Information Retrieval and Indexing Approach

The field of IR has witnessed the great success of search
engines such as Google and AlltheWeb, which are capable of
providing users instant acquisition of requested information
through more than three billion pages. For example, both
Google and AlltheWeb can immediately answer questions
like “What is the largest animal in the world?” The instant
query answering is achieved by seeking matches between
words in a query and words in the indexed pages rather than
in the original ones. The heart of search engines is indexing,
which is a process of converting a collection of documents
into a form suitable for efficient search and retrieval. It is
believed that the difficulty of searching is due to an
inadequate index or no index at all [17].

The creation of an IR system typically includes three
steps: gathering a collection of documents, preprocessing
the collection, and indexing the preprocessed collection.
Preprocessing and indexing are the two key processes. The
goal of preprocessing is to construct a canonical form of
documents by employing techniques such as tokenization,
stop-word filtering, stemming, and so forth. To enable fast
search for individual terms, an inverted indexing file is
often stored [17], [18]. An inverted file typically comprises a
lexicon and, for each word (or item) in the lexicon, an
inverted file stores a list of pointers to all occurrences of that
item in the main text. As a result, a document is represented
by indexing terms. This sort of method is followed by
almost all commercial IR systems [19].

Table 1 shows an example of word-level inverted file in
which terms are listed in the second column and, for each
term, the number of documents containing the term and the
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An Example of Word-Level Inverted File [17]



positions where the term occurs within each document are
demonstrated in the third column [17]. In reality, construct-
ing the inverted file (index) can be a very challenging task.
One commonly used approach called sort-based inversion
creates an inverted file by the following procedure. First,
documents are parsed to extract tokens (items), which are
then saved with their corresponding document ID and
positions. After all documents have been parsed, the
inverted file is then sorted alphabetically. Finally, multiple
term entries for a single document are merged.

The indexing technique motivates the development of FM-
based knowledge representation where FM closure matrix is
treated as a preprocessed rule base and indexing table is
created to speed up the searching over the rule base.

3 FUZZY METAGRAPHS

The fuzzy metagraph, a generalization of the metagraph
concept proposed by Basu and Blanning [11], [12], can be
defined as follows [20]:

Definition 1. Consider a finite set X ¼ xi; i ¼ 1 . . . :If g. A

fuzzy metagraph is a triple ~SS ¼ X; ~XX; ~EE
� �

in which ~XX is a

fuzzy set on X and ~EE is a fuzzy edge set ~eek; k ¼ 1:::Kf g.
Each component ~eek in ~EE is characterized by an ordered pair

~VVk; ~WWk

� �
. In the pair, ~VVk � ~XX is the in-vertex of ~eek and

~WWk � ~XX is the out-vertex. The co-input of any ~xx 2 ~VVk is
~VVkf~xxg and the co-output of any ~xx 2 ~WWk is ~WWkf~xxg.
The symbol “\” in this paper is used for set difference.
Fig. 1 shows an FM whose element set is X ¼ fx1 . . .x6g

and whose edge set consists of ~ee1 ¼< f~xx1; ~xx2g; f~xx3g > , and
~ee2 ¼< f~xx3; ~xx4g; f~xx5; ~xx6g > . The in-vertex and out-vertex of
~ee1, for example, are f~xx1; ~xx2g and f~xx3g, respectively.

An important property of graphs is that of connectivity.
In Fig. 1, there is a sequence of edges ~ee1; ~ee2h i that connects
~xx1 to ~xx5, which means that a path from ~xx1 to ~xx5 exists. In
order to infer ~xx5 from ~xx1, the values of ~xx2 and ~xx4 are all
required at the same time. To represent this type of
connectivity, a basic concept of FM called a simple path is
defined as follows:

Definition 2. Given a finite set X, an FM ~SS ¼ X; ~XX; ~EE
� �

and
two fuzzy elements ~bb; ~cc 2 ~XX, a simple path from ~bb to ~cc is a
sequence of fuzzy edges ~PP ~bb; ~cc

� �
¼ ~ffl; l ¼ 1 . . .L
� �

with ~ffl ¼
~VVl; ~WWl

� �
2 ~EE such that:

1. ~bb 2 ~VV1; ~cc 2 ~WWL and
2. ~WWl [ ~VVlþ1 6¼ �, for l ¼ 1 . . .L� 1.

The element ~bb is the source of ~PP ~bb; ~cc
� �

and ~cc is the target.

The number L of edges in the path is the length of the path.

The co-input of ~bb in ~PP ~bb; ~cc
� �

is [Ll¼1
~VVln [Ll¼1

~WWl

� 	
n ~bb
� �

, and the

co-output of ~cc is [Ll¼1
~WWln ~ccf g.

In the FM in Fig. 1, for example, the sequence of edges
~ee1; ~ee2h i is a simple path from ~xx1 to ~xx5 with a length of two.

The co-input of ~xx1 can be calculated as

[Ll¼1
~VVln [Ll¼1

~WWl

� 	
n ~bb
� �

¼ ½f~xx1; ~xx2; ~xx3; ~xx4gnf~xx3; ~xx5; ~xx6g�nf~xx1g ¼ f~xx2; ~xx4g:

The co-output of ~xx5 is

[Ll¼1
~WWln ~ccf g ¼ f~xx3; ~xx4; ~xx6gnf~xx5g ¼ f~xx3; ~xx6g:

Based on the path, ~xx5 can be calculated from ~xx1, provided
~xx2 and ~xx4 are also given. Simultaneously, ~xx3 and ~xx6 are
figured out as by-product outputs. The above path ~ee1; ~ee2h i
can also be regarded as a simple path from ~xx2 to ~xx5, ~xx2 to ~xx6

or ~xx1 to ~xx6 with different co-inputs and co-outputs.
A simple path ~PP ~bb; ~bb

� �
from an element to itself is a cycle.

An FM with one or more cycles is cyclic and an FM without
any cycles is acyclic. Fig. 2 illustrates a cyclic FM that
contains two identical cycles ~PP ~xx2; ~xx2ð Þ ¼ < ~ee1; ~ee2 > and
~PP ~xx3; ~xx3ð Þ ¼ < ~ee2; ~ee1 > .

In this paper, both relationships and elements (variables)
are fuzzy or uncertain. Although an FM models the
relationships and the corresponding CFs, it does not specify
the truth values of elements. In other words, the truth
values of elements in an FM are unknown parameters to be
decided on-the-fly. The notation ~xxi in the graph just
indicates that xi is a fuzzy variable and its truth value is
to be determined by input or inference.

4 FM ADJACENCY MATRIX AND ITS CLOSURE

An alternative approach to the representation and analysis
of graphical structures is a matrix. In the following, we
develop the algebraic structure for the FM, called an FM
adjacency matrix, and a closure of the FM adjacency matrix.

4.1 FM Adjacency Matrix

Demonstrating all the direct linkages between the elements
in a fuzzy set, the adjacency matrix A of an FM is a square
matrix with rows and columns labeled by the elements in
the fuzzy set. One of the usages of an FM adjacency matrix
is to determine whether there is any edge with a length of
one connecting an element in the row to one in the column.
Each entry ai;j in the matrix is a null set or a few ordered
triples according to whether ~xxi and ~xxj are adjacent or not
and how many edges connect ~xxi to ~xxj. In each triple, the
first component is the co-input of ~xxi; the second is the co-
output of ~xxj; the third is a simple path from ~xxi to ~xxj with a
length of one.

Definition 3. Given a finite set X ¼ fxi; i ¼ 1 . . . Ig and an
FM ~SS ¼ fX; ~XX; ~EEg with ~EE being a fuzzy edge set
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Fig. 1. Fuzzy metagraph with simple path.

Fig. 2. Cyclic fuzzy metagraph.



~eek; k ¼ 1 . . .Kf g, the FM adjacency matrix A of ~SS is an I �
I matrix. For i; j 2 f1 . . . Ig, each entry ai;j is defined as:

ai;j ¼ [Kk¼1 �i;j
� �

k
;

where

�i;j
� �

k
¼

~VVkn ~xxif g; ~WWkn ~xxj
� �

; ~eekh i
� �

if both ~xxi 2 ~VVk

and ~xxj 2 ~WWk;

� otherwise:

8><
>:

The FM adjacency matrix of the FM in Fig. 1 can be
illustrated as Table 2. Strictly speaking, this FM adjacency
matrix should be a matrix of 6� 6. But, in this paper, the
null entries are omitted to make the table as concise as
possible. Each nonempty entry ai;j consists of one or more
triples, one for each path of length one connecting ~xxi to
~xxj. For instance, a1;3 ¼< f~xx2g; �;< ~ee1 >> indicating that a
path < ~ee1 > connects ~xx1 to ~xx3 with co-input f~xx2g and co-
output �. Since there is no path of length one connecting
~xx1 to ~xx5, a1;5 ¼ �.

4.2 The Closure of FM Adjacency Matrix

The FM adjacency matrix only shows the adjacent linkages
in the graph. There may be many other paths existing, but
not visible from the FM adjacency matrix. For example, if ~xxi
is adjacent to ~xxj and ~xxj adjacent to ~xxk, then it can be inferred
that there is a path with a length of two from ~xxi to ~xxk. The
closure of FM adjacency matrix (FM closure matrix for
short) is developed to disclose all paths of any length
connecting two arbitrary vertices ~xxi and ~xxj, if any exist.

The FM closure matrix A� is formed by adding
successive powers of the FM adjacency matrix, namely,
the multiplication by itself. Obviously, the addition and
multiplication operations of adjacency matrices are essential
for computing the FM closure matrix, which are defined in
the appendix. The square, A2, of the adjacency matrix of the
FM in Fig. 1 is given in Table 3. Each nonempty entry a2

i;j

consists of one or more triples, one for each path of length
two connecting ~xxi to ~xxj.

Then, the FM closure matrix is defined as follows:

Definition 4. Given an FM ~SS ¼ fX; ~XX; ~EEg and its FM adjacency
matrix A, the FM closure matrix is defined as an infinite sum,

namely, A� ¼ AþA2 þA3 þ . . .þAn; n!1.

It can be proven that the limit exists and

A� ¼
X1
n¼1

An ¼
XK
n¼1

An;

where K is the overall number of edges in the FM. In fact,
each triple in a nonempty entry inA represents a path with a
length of one, each in A2 represents a path with a length of
two, each in A3 represents a path with a length of three, and
so forth. When n > K, An may have nonempty entries, but
only along their diagonal and only for elements that are
members of a cycle. The truncation operator TrncðÞ used in
matrix multiplication (see the Appendix), however, removes
the repetition of an edge and, thus, limits triples in
nonempty entries along diagonal to the length of cycles.
Therefore, all information about paths and cycles is revealed
by the first K powers of A [12], [21]. In other word, all
Anðn > KÞ have no contribution to the sum A�.

The FM closure matrix for the FM in Fig. 1 is given in
Table 4, which discloses paths of all lengths in the FM. The
FM closure matrix for the cyclic FM in Fig. 2 is given in
Table 5. It is noticed that entries a�2;2 and a�3;3 of the diagonal
are nonempty, indicating that two identical cycles are
passing through ~xx2 and ~xx3. Since an FM is acyclic if and
only if all the diagonal entries of A� are null, the FM closure
matrix is also capable of identifying cycles. The issue of
cycles in FM will not be further addressed in this paper.

A normal transitive closure matrix of a graph is a 0-1
matrix M ¼ ½mij�, mij ¼ 1, if there is a path from vertex i to
vertex j; 0, otherwise. By describing all the paths, co-inputs
and co-outputs between any two elements, the FM closure
matrix distinguishes the FM from other fuzzy graphs and
can be utilized as a preprocessed rule base. As the focus of
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TABLE 2
The Adjacency Matrix of the FM in Fig. 1

TABLE 3
The Square of the Adjacency Matrix of the FM in Fig. 1

TABLE 4
The Closure of the Adjacency Matrix of the FM in Fig. 1



this paper is on the use of graphical tools for mathematical
analysis, our exploration will concentrate on the algebraic
analysis by employing the specific FM closure matrix.

5 FM-BASED KNOWLEDGE REPRESENTATION AND

INDEXING TABLE

A fuzzy inference system comprises a set of fuzzy IF-THEN
rules that describes the input-output mapping relationship
of the system [22]. The basic structure of a fuzzy inference
system consists of four principal components: a knowledge
base, a data base, an inference mechanism, and an interface
of fuzzification and defuzzification [22], where only the
knowledge base and inference mechanism are particularly
relevant to the specific modeling approach, namely, FM in
this paper. In the following two sections, the FM-based
knowledge representation approach and the corresponding
reasoning algorithms will be proposed for rule-based
systems.

Knowledge representation is one of the most important
and actively investigated areas in artificial intelligence [14].
Fuzzy production rules (FPRs) among others are widely
used in expert systems to represent fuzzy, imprecise, and
vague concepts [23]. In this section, we address issues of
applying FM to FPRs. In FM-based knowledge representa-
tion, each edge represents a rule in which the in-vertex
represents the antecedent of the rule and the out-vertex
represents the consequent. Furthermore, each path—a
sequence of edges—represents a reasoning chain.

5.1 FM-Based Representation of Rules

The uncertainty of an elementary rule can be modeled by an
FM as shown in Fig. 3. The figure illustrates the following
rule: IF ~xx1 THEN ~xx2 (CF1). According to the rule, the truth
value of the consequent is the product of the truth value of
the antecedent and the CF of the rule.

An FPR is called a compound FPR if its antecedent part
and/or consequent part “AND” or “OR” connectors. Fig. 4
models various types of compound production rule in
accordance with [25], [9]. Fig. 4a describes the following
rule: IF ~xx3 AND ~xx4 THEN ~xx5 (CF2). There is conjunction
operation in this rule. Zadeh proposed to use the operators
“min = ^” for conjunction, and “max = v” for union [26].
Thus, �ðx5Þ ¼ minð�ðx3Þ; �ðx4ÞÞ � CF2. Fig. 4b describes the
following two rules: 1) IF ~xx6 THEN ~xx8 (CF3) and 2) IF ~xx7

THEN ~xx8 (CF4). In this case, the truth value of consequent
equals the maximal one among those obtained from
different rules. When the two rules have the same CF ,
i.e., CF3 ¼ CF4 ¼ CF , the combined rule illustrated by the
FM is IF ~xx6 OR ~xx7 THEN ~xx8 (CF ). If there are several union
antecedents, the overall truth value of the antecedents
equals the maximal one. Fig. 4c illustrates the following
rule: IF ~xx9 THEN ~xx10 AND ~xx11 (CF5). In Fig. 4d, two
separate basic rules are described. We do not model a rule
like: IF ~xx12 THEN ~xx13 OR ~xx14 (CF ) since it is not allowed in a
rule base [9].

The graphic representation is of help in understanding
the system yet difficult for computers to process. In
addition, a graph of any kind will not be interpretable for
a complex system. Hence, there is a need for an alternative
representation in an algebraic format namely the FM
closure matrix, e.g., as shown in Table 4.

In order for the FM closure matrix of any use in real-
world applications, there are two key issues to be
addressed, namely, the construction of the matrix and the
extraction of entries from the matrix. The following two
sections are devoted to solving these problems. In
Section 5.2, the indexing table is introduced to enable
efficient extraction of entries. The issue of construction will
be coped with in Section 5.3 by presenting an iterative
construction scheme. The two approaches are capable of
improving query processing time and matrix construction
time, respectively.
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TABLE 5
The Closure of the Adjacency Matrix of the Cyclic FM in Fig. 2

Fig. 3. FM-based representation of a basic rule. Fig. 4. FM-based representations of compound rules.



5.2 Indexing Table

According to the definition, an FM closure matrix is an I � I
matrix where I is the total number of elements. For a large
system, however, empty entries are often the majority in the
matrix, i.e., the FM closure matrix is a sparse matrix. This
results in a demand for a method that is able to avoid
searching over a mass of empty entries. The indexing
technique described in Section 2.2 becomes an obvious
choice, as the motivation of indexing technique is to handle
the issue of how relevant portions of data can be located
and extracted. An indexing table is thus proposed to speed
up access to the FM closure matrix. Similar to the inverted
file example in Table 1, an indexing table contains a
complete list of elements. To facilitate both forward and
backward chaining, the indexing table further uses two—in-
stead of only one in an inverted file—tuples for each
element where the first one stores a list of pointers to all
nonempty entries in the row of that element in the closure
matrix (for forward chaining) and the second tuple stores a
list of pointers to all nonempty entries in the column of that
element (for backward chaining). An FM closure matrix is
thus indexed by elements—equivalent to terms in an
IR system. The indexing table for the FM closure matrix
in Table 4 is given in Table 6, whereas the generating
process of the indexing table will be discussed in the next
subsection. In Table 6, for example, the third column of row
~xx3 of the indexing table is ða�3;5; a�3;6Þmeaning that in the row
~xx3 of the corresponding FM closure matrix in Table 4, only
a�3;5 and a�3;6 are nonempty entries. The fourth column of
row ~xx3 of the indexing table is ða�1;3; a�2;3Þmeaning that in the
column ~xx3 of the corresponding FM closure matrix, only
a�1; 3 and a�2;3 are nonempty entries. The third column of
row ~xx5 of the indexing table is indicating that in the row ~xx5

of the corresponding FM closure matrix, there is no
nonempty entry.

5.3 Construction and Expansion of FM-Based
Knowledge Base

The other issue is how to efficiently construct the FM-based
rule base (i.e., the FM closure matrix). It is not efficient to
calculate the FM closure matrix as defined in Section 4.
Especially, it is not feasible to expand the FM-based rule
base in that way. Therefore, we propose an iterative way of
constructing it, which can significantly reduce the construc-
tion time and facilitate the expansion.

The FM-based knowledge base can be constructed in
similar steps to IR system as described in Section 2.2,

namely, gathering a collection of rules, preprocessing the

collection, and indexing them. Consider the following five

example rules R1 � R5 taken out from a real-world, large-

scale fault diagnosis system.

. R1: IF voltage is high AND altitude is low THEN
guidance system breaks down ðCF1 ¼ 0:90Þ.

. R2: IF guidance system breaks down AND relay is
abnormal THEN guidance cabin breaks down
ðCF2 ¼ 0:95Þ.

. R3: IF voltage is high AND altitude is high THEN
control system breaks down ðCF3 ¼ 0:80Þ.

. R4: IF voltage is low AND output is large THEN
guidance cabin cable net breaks down ðCF4 ¼ 0:95Þ.

. R5: IF guidance system breaks down AND relay is
normal THEN guidance cabin cable net breaks down
ðCF5 ¼ 0:85Þ.

First, each proposition is assigned a number ~xxi starting

from ~xx1 one by one, resulting in a list of propositions as

shown in Table 7. The list is then sorted alphabetically to

speed up querying, as shown in Table 8. By using these

notations, rules R1 � R5 are represented by r1 � r5 as

follows:

. r1: IF ~xx1 AND ~xx2 THEN ~xx3 ðCF1 ¼ 0:90Þ.

. r2: IF ~xx3 AND ~xx4 THEN ~xx5 ðCF2 ¼ 0:95Þ.

. r3: IF ~xx1 AND ~xx6 THEN ~xx7 ðCF3 ¼ 0:80Þ.
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TABLE 6
The Indexing Table of the FM Closure Matrix in Table 4

TABLE 7
List of Propositions



. r4: IF ~xx8 AND ~xx9 THEN ~xx10 ðCF4 ¼ 0:95Þ.

. r5: IF ~xx3 AND ~xx11 THEN ~xx10 ðCF5 ¼ 0:85Þ.
These rules are then illustrated by the FM as shown in

Fig. 5 where edge ek represents rule rk. The closure matrix of
the FM can be generated from scratch in the following way. It

starts from r1: IF ~xx1 AND ~xx2 THEN ~xx3 ðCF1 ¼ 0:90Þ, in which
there are two input elements ~xx1 and ~xx2 and one output
element ~xx3. This results in two nonempty entries in the
closure matrix, namely, a�1;3 and a�2;3 with values of a�1; 3 ¼
< f~xx2g; �;< ~ee1 >> and a�2; 3 ¼< f~xx1g; �;< ~ee1 >> , respec-
tively. These entries containing paths with a length of one can
be immediately added into the closure matrix as shown in
Table 9. Since this is the first rule added, there is no effect on

other entries that are in fact all empty. The indexing table is
intuitively constructed by listing elements and grouping
their occurrences, as shown in Table 10. Next, we consider r2:
IF ~xx3 AND ~xx4 THEN ~xx5 ðCF2 ¼ 0:95Þ, where there are two

input elements ~xx3 and ~xx4 and one output element ~xx5. It yields
two nonempty entries, namely, a�3;5 and a�4;5 with values of
a�3;5 ¼< f~xx4g; �;< ~ee2 >> and a�4;5 ¼< f~xx3g; �;< ~ee2 >> , re-
spectively. These entries can be immediately merged into the

closure matrix. Subsequently, each of the added rules (here is
~ee2) should be concatenated with existing paths if possible. It
is done by checking whether the input elements ~xx3 and ~xx4 are
other rules’ (edges’) output elements and whether the output

element ~xx5 is other rules’ input element. From the fourth

column of the row ~xx3 in Table 10, it is found that the input

element ~xx3 is the output of both ~xx1 and ~xx2. So, a�3;5 should be

combined with a�1;3 and a�2;3 to form new entries a�1;5 and a�2;5.

According to the definition of a simple path in Definition 2,

the co-input, co-output, and path can be easily calculated and

then we have a�1;5 ¼< f~xx2; ~xx4g; f~xx3g; < ~ee1; ~ee2 >> , and so

forth, as shown in Table 11. This sort of update for path

concatenation ought to be done in only one step. For

example, the input element ~xx3 results in an update from ~xx1

and ~xx2, whereas there is no need for the further check of

whether ~xx1 and ~xx2 are other elements’ output since it should

have been done when they were added. From Table 10, it is

found that ~xx5 is not an input element so far. Thus, there is no

update to follow. Accordingly, the indexing table is updated

as shown in Table 12. To the end, the closure matrix and

corresponding indexing table are generated and shown in

Table 13 and Table 14, respectively.
In rule-based systems, the demand for updating a rule

base is obvious, indicating a rule base should be possible

and easy to add new rules or modify existing ones. The

proposed iterative method is able to efficiently recapture or
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TABLE 8
List of Propositions in Alphabetic Order

Fig. 5. Fuzzy metagraph of rules r1 � r5.

TABLE 9
The FM Closure Matrix of R1

TABLE 10
The Indexing Table of the FM Closure Matrix in Table 9



update the FM closure matrix and the indexing table in the
same way as they are constructed.

It is seen that the indexing table can be constructed in a
similar, but slightly different, way to the inverted file [17].
First, indexing elements (terms) are gathered, e.g., as given
in Table 7 and sorted alphabetically, e.g., as given in Table 8.
Second, nonempty entries associated with each elements are
grouped, resulting in an indexing table, e.g., as given in
Table 14. As a result, the search space is reduced from I � I
to I, which is further facilitated by sorting the list in
alphabetic order such that binary searching is achieved.
With the implementation of the indexing technique, it is
possible to find nonempty entries without resorting to an
entry-by-entry search through the closure matrix.

6 INFERENCE MECHANISMS

On the basis of the FM closure matrix and the indexing
table, this section investigates corresponding inference
mechanisms with the aim of instantly acquiring relevant
rules over a large collection of rules. In general, there exist
three inference strategies. The first one is called a forward

chaining where the truth values of initial propositions are
known and truth values of unspecified noninitial proposi-
tions need to be computed. In the second strategy, called a
backward chaining, the existence of a goal needs to be
established. The last one is a hybrid strategy in which truth
values of initial propositions are known and the goal
propositions are specified in advance for which their truth
values need to be computed.

In order for inference, the system will need to have
access to facts that are statements like “Temperature is
low.” The collection of facts known to the system at any
given time is called a fact base [27]. In general, a fact base ~BB
is established in advance and can be updated during the
inference process.

6.1 Mechanism 1—Forward Chaining
(A Data-Driven Strategy)

In the forward chaining, rules are examined and fired on
the basis of the available fact base without any predeter-
mined goals, indicating all possible propositions are to be
explored during the reasoning procedure. The reasoning
algorithm is proposed as follows:

Step 1. Construct fact base ~BB according to the given facts.
Select the first fact from ~BB and go to next step.

Step 2. Assume the fact is ~xxi and find the tuple in the third
column in the row ~xxi of the indexing table. According to
the tuple, collect entries from the FM closure matrix, and
then sort them by the length of edge in ascending order.
Pick up the first entry and go to next step.

Step 3. Assume the entry is a�i;j which is one or more triples.
The algorithm handles these triples one by one. Each
triple consists of three components. The first one is co-
inputs that cannot be inferred by the reasoning path
according to the definition of A� and, thus, should be
given prior to reasoning. If all co-inputs are known, the
reasoning algorithm invokes the sequence of edges (i.e.,
rules) given by the third component, namely, a simple
path. Otherwise, request the truth values of the
unknowns in co-inputs (if any of them does not exist,
this path(triple) fails and the algorithm deals with next
triple). The co-outputs in the second component can be
expected as by-product outputs during the reasoning
process. Append all the results to the end of ~BB. After
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TABLE 11
The FM Closure Matrix of R1 and R2

TABLE 12
The Indexing Table of the FM Closure Matrix in Table 11

TABLE 13
The Closure of the Adjacency Matrix of the FM in Fig. 5



examining all the triples of a�i;j in the same way, go to
next step.

Step 4. Is there another entry that has been collected from
the FM closure matrix?
1) If yes, pick up next entry and then go to Step 3.
2) Otherwise, go to next step.

Step 5. Is there another nonprocessed fact in ~BB?
1) If yes, select the next fact from ~BB and then go to Step 2.
2) Otherwise, go to next step.

Step 6. Draw a conclusion. One or more conclusion
propositions can be generated depending on the actual
application. For each conclusion proposition, one or
more truth values will be produced depending on the
number of rules leading to this proposition. Since
different rules have a union relationship, select the
maximum truth value as its truth value.

In the above reasoning process, a depth-first search
strategy is adopted as described in [29]. To illustrate the
procedure, we utilize the rules R1 � R5 as an example
whose FM, closure matrix, and indexing table are given in
Fig. 5, in Table 13 and in Table 14, respectively.

Assume that the initial proposition is “altitude is low”

with a truth value of 0.95. According to Table 8, the

proposition is ~xx2 so that a fact base ~BB ¼ f~xx2g ¼ fðx2; 0:95Þg
can be constructed. The reasoning starts by selecting the

only element ~xx2 from ~BB. First, the system finds the tuple in

the third column in the row ~xx2 of Table 14, namely,

ða�2;3; a�2;5; a�2;10Þ, meaning that a�2;3, a�2;5, and a�2;10 are none-

mpty entries in the FM closure matrix. They are sorted as

a�2;3, a�2;5, and a�2;10 by the length of edge in ascending order.

The first nonempty entry a�2;3 consists of only one triple

< f~xx1g; �;< ~ee1 >> , where the co-input is In a�2;3


 �
¼ ~xx1f g.

Since ~xx1 is not included in the fact base, we need the truth

value of x1. According to Table 7, ~xx1 is “voltage is high.”

Assume that the truth value of “voltage is high” is 0.85, i.e.,

�ðx1Þ ¼ 0:85. According to Path a�2;3


 �
¼< ~ee1 > , we have r1:

IF ~xx1 AND ~xx2 THEN ~xx3 ðCF1 ¼ 0:90Þ. It can be inferred that

~xx3 has a truth value of

�ðx3Þ ¼ minf�ðx1Þ; �ðx2Þg � CF1

¼ minf0:85; 0:95g � 0:90 � 0:77:

In addition, the co-output is Out a�2;3


 �
¼ �. As a result, the

fact base is updated as ~BB ¼ ðx2; 0:95Þ; ðx1; 0:85Þ; ðx3; 0:77Þf g.
The next step is to check the second entry a�2;5 consisting

of one triple < f~xx1; ~xx4g; f~xx3g; < ~ee1; ~ee2 >> that requires co-

inputs of In a�2;5


 �
¼ ~xx1; ~xx4f g. Although ~xx1 is given by the

fact base, ~xx4 is not. According to Table 7, ~xx4 is “relay is

abnormal.” Assume “relay is abnormal” has a truth value of

0.1, i.e., �ðx4Þ ¼ 0:1. To cope with the low truth value, one

useful parameter in approximate reasoning is threshold

value. A threshold value may be assigned to each proposi-

tion in the antecedent of a FPR to prevent and reduce rule

misfiring [24]. In this paper, we assign a single threshold

value (� 2 ½0; 1�) to all propositions, which is set as 0.2.

Therefore, the proposition with a truth value lower than 0.2

should be disregarded. Since ~xx4 has a truth value of 0.1, the

path—chain of rules—consisting of < ~ee1; ~ee2 > cannot be

fired. The fact base does not need to be updated. It is noticed

that even though a single co-input fact is not true, the chain

of rules (in a�2;5) will not be examined and fired. This is

another advantage of FM-based representation.
The last entry a�2;10 is one triple < f~xx1; ~xx11g; f~xx3g; <

~ee1; ~ee5 >> with a co-input of In a�2;10


 �
¼ ~xx1; ~xx11f g. Accord-

ing to Table 7, ~xx11 is “relay is normal.” Assume “relay is

normal” has a truth value of 0.9, i.e., �ðx11Þ ¼ 0:9. Since ~xx1 is

already given by the fact base, two rules r1 and r5 identified

by < ~ee1; ~ee5 > can be fired. Because r1 has been executed

previously, only r5: IF ~xx3 AND ~xx11THEN ~xx10 ðCF5 ¼ 0:85Þ
will be fired. Therefore, a conclusion ~xx10 can be drawn with

a truth value of

�ðx10Þ ¼ minf�ðx3Þ; �ðx11Þg � CF5

¼ minf0:77; 0:9g � 0:85 � 0:65:
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TABLE 14
The Indexing Table of the FM Closure Matrix in Table 13



According to Table 7, ~xx10 is “guidance cabin cable net
breaks down.” The fact base is updated again as

~BB ¼ ðx2; 0:95Þ; ðx1; 0:85Þ; ðx3; 0:77Þ; ðx11; 0:9Þ; ðx10; 0:65Þf g:

At the end of the reasoning, the conclusion of “guidance
cabin cable net breaks down” can be reached with the truth
value of 0.65. The truth value of proposition ~xx3—“guidance
system breaks down” is also obtained.

The main advantage of the proposed method is that in
the entire reasoning process only rules relevant to initial
proposition ~xx2 have been examined whereas the remaining
rules (for example, r3 and r4) in the rule base are untouched.
Furthermore, even though a single co-input fact in a
reasoning chain (a simple path) is not true, the whole chain
will immediately be disregarded without requirement for
examining individual rules. In the standard forward
chaining, however, all of the rules (or a subset) in the rule
base are examined [27] and so it can be wasteful. When the
rule base is large, the time saving is significant.

6.2 Mechanism 2—Backward Chaining
(A Goal-Driven Strategy)

The backward chaining is the same as the forward chaining
except that the fourth column of the indexing table is
applied. The algorithm is described as follows:

Step 1. Select the goal proposition and go to next step.

Step 2. Assume the goal is ~xxj and find the tuple in the fourth
column in the row ~xxj of the indexing table. According to
the tuple, collect entries from the FM closure matrix, and
then sort them by the length of edge in ascending order.
Pick up the first entry and go to next step.

Step 3. Assume the entry is a�i;j which is one or more triples.
The algorithm deals with these triples one by one. Each
triple consists of three components. The first one is co-
inputs that should be given prior to reasoning. If all co-
inputs are known, the reasoning algorithm invokes the
sequence of edges (i.e., rules) given by the third
component, namely, a simple path. Otherwise, request
the truth values of the unknowns in co-inputs (if any of
them does not exist, this path (triple) fails and the
algorithm deals with next triple). The co-outputs in the
second component can be expected as by-product out-
puts during the reasoning process. Append all the results
to the end of ~BB. After examining all the triples of a�i;j in
the same way, go to next step.

Step 4. Is there another entry that has been collected from
the FM closure matrix?
1) If yes, pick up next entry and then go to Step 3.
2) Otherwise, go to next step.

Step 5. Is there another goal?
1) If yes, select the next goal and then go to Step 2.
2) Otherwise, go to next step.

Step 6. Draw a conclusion.
For example, assume the goal is ~xx10—“guidance cabin

cable net breaks down.” The procedure will be to first find
the tuple in the fourth column of the row ~xx10 of the indexing
table in Table 14. According to the tuple, collect the entries
from the FM closure matrix and examine the co-input facts

for each entry. If co-input facts are true with a certain truth

value, the corresponding rule is fired. In this example, rules

r4, r5, and r1 may be examined and fired, yet r2 and r3 will

not be touched at all.

6.3 Mechanism 3—Backward and Forward Chaining
(A Hybrid Strategy)

The backward and forward chaining is suggested to solve

a problem of if there is an antecedent-consequent relation-

ship from the initial proposition to the goal proposition.

This strategy makes the computation applicable to more

situations [28].
Assuming the given fact is ~xxi and the goal proposition is

~xxj, the reasoning algorithm can be presented as follows:

Step 1. Examine the entry a�i;j. Is it an empty entry?
1) If yes, it means ~xxj cannot be derived from ~xxi and the

reasoning process terminates.
2) Otherwise, construct fact base ~BB according to the

given fact ~xxi. Select ~xxi and go to next step.

Step 2. a�i;j is one or more triples. The algorithm deals with

these triples one by one. Each triple consists of three

components. The first one is co-inputs that should be

given prior to reasoning. If all co-inputs are known, the

reasoning algorithm invokes the sequence of edges (i.e.,

rules) given by the third component, namely, a simple

path. Otherwise, request the truth value of the unknown

in co-inputs (if any of them does not exist, the path

(triple) fails and the algorithm deals with next triple).

The co-outputs in the second component can be expected

as by-product outputs during the reasoning process.

Append all the results to the end of ~BB. After examining

all the triples of a�i;j in the same way, go to next step.

Step 3. Draw a conclusion.
Assume that the truth value of ~xx2 “altitude is low” is 0.95

and the question is what the truth value of proposition ~xx10

“guidance cabin cable net breaks down” is. Therefore, a fact

base ~BB ¼ f~xx2g ¼ fðx2; 0:95Þg can be constructed. It is found

that a�2;10 consists of one triple < f~xx1; ~xx11g; f~xx3g; < ~ee1; ~ee5 >> .

The first component of this triple is the co-inputs f~xx1; ~xx11g
that should be given beforehand. Even if only one of the co-

inputs is false, it can immediately be concluded that the

proposition ~xx10 cannot be derived from ~xx2. Otherwise, if the

truth value of ~xx1 is 0.85 and ~xx11 is 0.9, the rules r1 and r5

corresponding to ~ee1 and ~ee5 can be fired successively.

According to r1, the truth value of ~xx3 is

�ðx3Þ ¼ minf0:85; 0:95g � 0:90 � 0:77:

As a result, the fact base is updated as

~BB ¼ ðx2; 0:95Þ; ðx1; 0:85Þ; fx11; 0:9g; ðx3; 0:77Þf g:

Next, r5 is fired and we can conclude

�ðx10Þ ¼ minf0:77; 0:9g � 0:85 � 0:65:

By employing backward and forward chaining, only a

single entry is explored and there is no need for indexing

table because the reasoning path between antecedent and

consequent is acquired directly from the FM closure matrix.
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6.4 Discussion

Standard (conventional) inference algorithms involve a
great deal of redundant rule examination [27], which
wastefully explores all or a subset of rules. The search time
for conventional method is linear on the rule base size and
may be exponential on the size of variables (the number of
elements) since the total number of rules in a system is often
an exponential function of the number of system variables
[30]. By employing the FM and IR-based approaches, the
time-consuming task of searching and matching in a large
rule base becomes a relatively simple task of picking-up and
only relevant rules are to be examined. Since there is no
need to match rules, the time saving is tremendous as
compared to standard inference algorithms.

The improvement comes from two-fold. First, the FM-
based method is able to directly acquire relevant reasoning
paths since the entries of the FM closure matrix provide all
the paths, co-inputs, and co-outputs between any two
elements (i.e., propositions in rule-based systems). It means
that the FM closure matrix can be considered a powerful
precompiled rule base. Second, the alphabetic indexing
table enables a binary search and, therefore, instant
extraction of entries from the FM closure matrix is achieved.

7 CONCLUSION

In this paper, we have proposed a new graph-theoretic
construct, namely, the FM for graphical modeling and
mathematical analysis. As a combination of fuzzy directed
graphs and fuzzy hypergraphs, the FM is capable of
describing directed relationships between sets of fuzzy
elements. Moreover, the FM closure matrix—the algebraic
structure of FM—distinguishes the FM from conventional
fuzzy graphs by providing all the paths, co-inputs and co-
outputs between any two elements. This makes the FM a
powerful tool for the analysis of the connectivity between
sets of fuzzy elements.

In applying the FM to rule-based systems, we first
developed a knowledge representation scheme based on the
FM closure matrix, which is regarded as a preprocessing of
rule base. As the complexity of this preprocessing is a key
for real-world applications, an iterative approach was
presented to facilitate the construction and expansion of
the FM closure matrix. Inspired by the success of IR
techniques in Web-based query, we further introduced the
indexing table to allow a quick extraction of relevant entries
from the FM closure matrix by means of a binary search. In
the end, on the basis of the combination of the indexing
table and the FM closure matrix, inference algorithms were
proposed to enable an instant access to relevant rules over a
large collection of rules. As compared to standard inference
algorithms, the improvement of the proposed algorithms in
terms of inference efficiency is significant. The larger the
rule base is, the more time the method is expected to save.
Therefore, the proposed approach is most effective in the
situation where the rule base is large and often accessed as
the cost of using the approach is to establish the system
though not high.

There are three main contributions in this paper. The first
one is the proposal of the FM construct and the FM closure

matrix, which brings metagraphs into the realm of un-
certain representation and approximate reasoning. The
second contribution is to present an iterative approach for
facilitating the construction and expansion of the FM
closure matrix. The third one is to employ an inverted-file
approach for a quick index into the FM closure matrix and
to apply the combined approaches to rule-based systems.
The last two are considered as optimization algorithms for
computing the FM closure matrix. It is justified that the
combination of the FM and the IR technique offers an
effective tool for rule-based systems. In addition, the
iterative approach and IR technique can be applied to the
metagraph closure matrix as well.

APPENDIX

MULTIPLICATION AND ADDITION OF ADJACENCY

MATRICES

The addition and multiplication operations of adjacency
matrices are essential for the calculation of the FM closure
matrix. Before defining such matrix operations, we deploy
some special operators particularly for the triples in the
entries of the FM adjacency matrix.

Similar to [12], we first define the following three
operators: Inð Þ, Outð Þ, and Pathð Þ. These operators can
be applied on the triples to extract the three components
(i.e., co-inputs, co-outputs, and path) in the triples,
respectively. Consider the entry a2;3 of the FM adjacency
matrix in Table 2. There is only one triple as follows:

ða2;3Þ1 ¼< f~xx1g; �;< ~ee1 >> :

Then, Inðða2;3Þ1Þ ¼ f~xx1g, Outðða2;3Þ1Þ ¼ �, and

Pathðða2;3Þ1Þ ¼< ~ee1 > :

Subsequently, we introduce two set operators, namely, a
catenation operatorCatð Þ and a truncation operator Trncð Þ.
The catenation operator Catð Þ catenates two ordered sets as
following:

Catð< a >; < b >Þ ¼< a; b >;

e.g., Catð< w; u; v >; < y; z; v; t >Þ ¼< w; u; v; y; z; v; t > .
On the right side of the above equation, we notice that

component v appears twice. In FM, an ordered set
represents a series of edges (a path) and each component
in the set is an edge. The truncation operator Trncð Þ is
defined to remove the repetition of an edge in a path by
operating on the ordered set. The operator continuously
checks the elements in the set, starting at the first one. When
a repetition of a component is found, the operator deletes
one of the two repeated components and all other
components between them. The process continues in the
same way until the end of the ordered set and returns the
remaining set in which all elements are unique. For
example,

Trncð< w; u; v; y; z; v; t >Þ ¼< w; u; v; t > :

Then, we can define an important operator for the
multiplication of adjacency matrices, called the “	” opera-
tor. Given that ~xxi links to ~xxk in FM ~SS and ~xxk links to ~xxj in FM
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~TT , we want to combine ~SS and ~TT defined on X or to combine

the path from ~xxi to ~xxk and the path from ~xxk to ~xxj. By

manipulating the triples in adjacency matrices, the “	”

operator can be used to combine the co-inputs, co-outputs,

and paths of ðai;kÞn and ðbk;jÞm in order to generate a new

path from ~xxi to ~xxj and its co-input and co-output.

Definition 5. Given a finite set X, FM ~SS with an FM adjacency

matrix A and ~TT with an FM adjacency matrix B are defined

on X. Assume that ðai;kÞn and ðbk;jÞm are triples in A and B,

respectively, such that

ai;k ¼ fðai;kÞn; n ¼ 1 . . .Ng;
bk;j ¼ fðbk;jÞm;m ¼ 1 . . .Mg:

Then, “	” operator can define a triple or null as follows:

1. If ðai;kÞn 6¼ � and ðbk;jÞm 6¼ �, then ðai;kÞ	nðbk;jÞm is a
triple with the following co-input, co-output, and
path

Inððai;kÞ	nðbk;jÞmÞ
¼ ðInððai;kÞnÞ [ Inððbk;jÞmÞÞnðOutððai;kÞnÞ [ f~xxigÞ
Outððai;kÞ	nðbk;jÞmÞ
¼ ðOutððai;kÞnÞ [Outððbk;jÞmÞ [ f~xxkgÞnf~xxjg
Pathððai;kÞ	nðbk;jÞmÞ
¼ TrncðCatðPathððai;kÞnÞ; Pathððbk;jÞmÞÞÞ:

2. If ðai;kÞn ¼ � or ðbk;jÞm ¼ �, ðai;kÞ	nðbk;jÞm ¼ �.

With the “	” operator, the multiplication of adjacency

matrices follows the same rule as the multiplication of

conventional matrices, except that the multiplication of

elements should obey the “	” operator.
When a matrix multiplies another matrix, the row-by-

column dot product is executed by replacing real multi-

plication with the “	” operator. Real addition is not needed.

Instead, the operation just concatenates all the triples to

generate a set of triples.
In the case of the multiplication of matrix by itself,

A ¼ B. For instance, we examine the multiplication of the

FM adjacency matrix in Table 2 by itself, especially the

operation a	2;3a3;5. According to the table, we have

a2;3 ¼ f< f~xx1g; �;< ~ee1 >>g;
a3;5 ¼ f< f~xx4g; f~xx6g; < ~ee2 >>g:

Obviously, both of the entries have only one triple. Thus,

we consider the dot operation ða2;3Þ	1ða3;5Þ1.

Inðða2;3Þ	1ða3;5Þ1Þ ¼ ðf~xx1g [ f~xx4gÞnð� [ f~xx2gÞ ¼ f~xx1; ~xx4g
Outðða2;3Þ	1ða3;5Þ1Þ ¼ ð� [ f~xx6gÞ [ f~xx3gÞnf~xx5g ¼ f~xx3; ~xx6g
Pathðða2;3Þ	1ða3;5Þ1Þ ¼ TrncðCatð<~ee1>;<~ee2>ÞÞ ¼< ~ee1; ~ee2> :

Thus,

ða2
2;5Þ1 ¼ ða2;3Þ	1ða3;5Þ1 ¼< f~xx1; ~xx4g; f~xx3; ~xx6g; < ~ee1; ~ee2 >>;

which means there is one path with a length of two from ~xx2

to ~xx5, as shown in Table 3. The path is a sequence of edges

< ~ee1; ~ee2 > determined by the Pathð Þ operation. The Trncð Þ

operator is necessary to prevent the path from growing

without bound as n!1 in the calculation of An.
The matrix addition for FM adjacency matrix is similar to

standard matrix addition. The only difference is to replace

real addition with the concatenation of the triples.
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