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Abstract

The past decade has witnessed a growing interest in deploying automatic speech recognition (ASR) in communica-
tion networks. The networks such as wireless networks present a number of challenges due to e.g. bandwidth
constraints and transmission errors. The introduction of distributed speech recognition (DSR) largely eliminates the
bandwidth limitations and the presence of transmission errors becomes the key robustness issue. This paper reviews
the techniques that have been developed for ASR robustness against transmission errors.

In the paper, a model of network degradations and robustness techniques is presented. These techniques are classi-
fied into three categories: error detection, error recovery and error concealment (EC). A one-frame error detection
scheme is described and compared with a frame-pair scheme. As opposed to vector level techniques a technique for
error detection and EC at the sub-vector level is presented. A number of error recovery techniques such as forward error
correction and interleaving are discussed in addition to a review of both feature-reconstruction and ASR-decoder based
EC techniques. To enable the comparison of some of these techniques, evaluation has been conduced on the basis of the
same speech database and channel. Special attention is given to the unique characteristics of DSR as compared to
streaming audio e.g. voice-over-IP. Additionally, a technique for adapting ASR to the varying quality of networks
is presented. The frame-error-rate is here used to adjust the discrimination threshold with the goal of optimising
out-of-vocabulary detection.

This paper concludes with a discussion of applicability of different techniques based on the channel characteristics
and the system requirements.
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1. Introduction

To facilitate the access to services over wireless
networks there is often a demand to include auto-
matic speech recognition (ASR) as a key compo-
nent in the user interface (Cox et al., 2000; Lee
and Lee, 2001). However, terminals of today are
often hand-held devices with limited battery life,
computing power and memory size which all taken
together constitute a challenge for the implementa-
tion of any complex ASR system into these
devices. For ASR systems associated with large
databases, security and consistency are additional
challenges to be taken into account for terminal-
based implementation (Rose et al., 2003). In addi-
tion, the ‘always-on’ facility of communication
networks offers improved opportunities for oper-
ating ASR modules using a distributed architec-
ture in which only the front-end processing
requires specific porting and implementation into
the hand-held devices. Therefore, the development
of network-based ASR emerges as a recent trend.

To enable low bit-rate data transmission in dis-
tributed architectures, speech coding is applied to
conduct data compression. Lossy speech codecs
may, however, significantly degrade the perfor-
mance of ASR (Haavisto, 1999). A way to elimi-
nate this degradation is to introduce distributed
speech recognition (DSR) (Pearce, 2000, 2004)
and DSR has been an important research focus
within ASR during the last decade. In the client-
server DSR system architecture, the ASR process-
ing is split into the client-based front-end feature
extraction and the server-based back-end recogni-
tion, where data are transmitted between the two
parts via heterogeneous networks. Comparative
studies have shown superior performance of
DSR to codec-based ASR (Kelleher et al., 2002;
Kiss, 2000).

Although DSR eliminates the degradations
originating from the speech compression algo-
rithms, the transmission of data across networks
still brings in a number of problems to speech rec-
ognition technology, in particular transmission
errors. This paper analyses the characteristics of
transmission error degradations and attempts to
model the degradations and the corresponding
error-robustness techniques. In order to reduce

transmission error degradation, client-driven
recovery and server-based concealment techniques
are applied within DSR systems (where the client
is always at the sender side and the server at the
receiver side) in addition to error detection
techniques. Client-based techniques e.g. retrans-
mission, interleaving and forward error correction
(FEC) may result in recovering a large amount of
transmission errors (e.g. Hsu and Lee, 2004; James
and Milner, 2004). However, generally these meth-
ods have a number of disadvantages such as
additional delay, increased bandwidth and compu-
tational overhead (Perkins et al., 1998). Server-
based error concealment (EC) techniques exploit
the redundancy in the transmitted signal and this
may be used independent of, or in combination
with, client-based techniques. When used in com-
bination, the purpose is to handle the remaining
errors that a purely client-based technique fails
to recover.

Server-based EC for DSR may either be
conducted through feature-reconstruction or
modification of the ASR-decoder. Feature-recon-
struction EC generally employs one of the
following techniques: splicing, substitution (with
silence, noise or source-data), repetition or
interpolation (Boulis et al., 2002; Milner and
Semnani, 2000). Tan et al. (2003b, 2004a) recently
proposed a partial splicing and a sub-vector conceal-
ment technique that both demonstrate better perfor-
mance. A group of statistical-based techniques have
been developed which all exploit the statistical infor-
mation about speech for feature-reconstruction
(Gomez et al., 2004; James et al., 2004). In wireless
communications, a number of studies exploit the
reliability information of the received bits to im-
prove feature-reconstruction (Haeb-Umbach and
Ion, 2004; Peinado et al., 2003).

In the ASR-decoding stage, the effect of trans-
mission errors can be mitigated by integration-
based EC techniques. Both (Bernard and Alwan,
2002; Weerackody et al.,, 2002) integrate the
reliability of the channel-decoded features into
the recognition process where the Viterbi decoding
algorithm is modified such that contributions
made by observation probabilities associated with
features estimated from erroneous features are
decreased. Endo et al. (2003) apply a theory of
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missing features to error-robust ASR where erro-
neous features generate constant contributions to
the Viterbi decoding with the goal of neutralising
the effect from these features.

In addition to these error-robustness methods,
ASR systems may benefit from adaptation to the
varying quality of network in order to optimise
its performance. This has been demonstrated in
an experiment that introduces a frame-error-rate
(FER) based out-of-vocabulary (OOV) detection
method (Tan et al., 2003a).

This paper gives a survey of the robustness is-
sues related to network degradations and presents
a number of analyses and experiments with a focus
on transmission error robustness.

The paper is organized as follows. Section 2
briefly reviews network-based speech recognition
and the ETSI-DSR standards. Section 3 analyses
the characteristics of transmission errors, presents
a model and categorizes error-robustness tech-
niques. Section 4 presents a number of error detec-
tion methods with an emphasis on error detection
at different levels. A number of client-based error
recovery techniques are investigated in Sections 5
and 6 presents server-based EC techniques. Exper-
imental evaluations are presented in Section 7. Sec-
tion 8 presents details of the FER-dependent OOV
detection method. Concluding remarks are given
in Section 9.

2. Speech recognition over networks

The deployment of ASR in networks requires
specific attention due to a number of factors, such
as the more complicated architecture, the limited
resources in the terminals, the bandwidth con-
straints and the transmission errors. These net-
work-linked issues have focussed the research in
network-based ASR on front-end processing for
remote speech recognition, on source coding and
on channel coding and EC.

2.1. Remote ASR
The integration of ASR into network environ-

ments may be implemented as either a terminal-
or network-based architecture. Because of their

different advantages both architectures are
expected to be used in connection with the deploy-
ment of future services. An overview and
comparison of these architectures is presented in
(Viikki, 2001). Since numerous devices already
exist and the types and number are still increasing
with an incredible rate, the limited resources in the
devices and the demand for services with user-
friendly interfaces are motivating factors for intro-
ducing remote (network-based) ASR. This paper
limits its attention to the network-based solu-
tions only. To enable remote speech recognition,
data representing speech may be transmitted from
the input device to the server as either coded
speech or as ASR features, resulting in two types
of network-based ASR: server only ASR and
DSR.

In the server only ASR approach, the client
compresses input speech via conventional speech
coders and transmits the coded speech to the ser-
ver (Kiss, 2000). One way of decoding is that the
server re-synthesises the speech, conducts feature-
extraction and subsequently performs recognition.
The influence of speech coding algorithms on ASR
performance, e.g. voice-over-IP (VolIP), Global
System for Mobile Communications (GSM) and
Universal Mobile Telecommunication System
(UMTS) codecs, has been extensively investigated
in the literature (e.g. 3GPP TR 26.943, 2004;
Besacier et al., 2001; Fingscheidt et al., 2002;
Kelleher et al., 2002; Lilly and Paliwal, 1996;
Mayorga et al., 2003; Pearce, 2004). As the quality
of the re-synthesised speech is highly dependent on
the speech coder, a low bit-rate speech coder may
cause significant degradations on recognition
performance (Haavisto, 1998). Although the
deployment of acoustic models trained in matched
conditions for each individual coding scheme re-
sults in substantial improvement, degradation in
ASR performance is still observed at bit-rates
below 16 kbps (Euler and Zinke, 1994). Another
way is to estimate the feature set directly from
the bit-stream of the speech coder without re-
synthesizing the coded speech (Huerta, 2000;
Huerta and Stern, 1998; Kim and Cox, 2000,
2001; Pelaez-Moreno et al., 2001).

The degradations observed in the above studies
have led to the introduction of DSR with the goal
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of avoiding the degradations from lossy speech
compression. In DSR, speech features suitable
for recognition are calculated and quantized in
the client and transmitted to the server, where they
are decoded, followed by appropriate EC and then
processed by the recogniser as shown in Fig. 1. To
provide reliable communication between the client
and the server, the deployment of selected channel
coding/decoding schemes together with appropri-
ate EC schemes is needed. This architecture pro-
vides a good trade-off between bit-rate and
recognition performance (Bernard and Alwan,
2002).

DSR standards have been produced within
ETSI in the STQ Aurora DSR working group—
often known as Aurora. The first standard for
the well-known cepstral features was published in
2000 with the aim of handling the degradations
of ASR over mobile channels caused by both lossy
speech coding and transmission errors (ETSI ES
201 108, 2000). The goal was also to provide
front-end standards to enable interoperability over
mobile network (Pearce, 2004). It has been exper-
imentally justified that DSR outperforms adaptive
multi-rate (AMR) codecs according to both ‘Aur-
ora tests’ (Kelleher et al., 2002) and a number of
extensive industrial tests organised by 3GPP
(3GPP TS 26.235 V6.1.0, 2004). When transmis-
sion errors are introduced speech codecs produce
even more degradation since those coding algo-
rithms generally have inter-frame dependency
(Pearce, 2004). The strength of DSR is that the
DSR frames are generally independent and thus
more robust to error-prone channels.

2.2. Source coding
The goal of source coding is to compress infor-

mation for transmission over bandwidth-limited
channels. One common class of coding schemes

for DSR applies vector quantization (VQ) to
ASR features. Split VQ together with scalar quan-
tization used to compress Mel-frequency cepstral
coefficients (MFCCs) were evaluated by Digalakis
et al. (1999). In the split VQ, each cepstral vector
was partitioned into sub-vectors and each sub-vec-
tor was independently quantized by using its own
codebook. It was concluded that split VQ has
lower storage and computational requirements as
compared to full VQ and that split VQ performs
significantly better than scalar quantization at
any bit-rate. By using split VQ and a bit-allocation
method, it was found that 2000 bps is sufficient for
the transmission of the 13 cepstral coefficients to
achieve ASR performance corresponding to un-
quantized coefficients. The ETSI-DSR standards
use a particular form of split VQ.

Another class of source coding is transform
coding in which features are transformed to
remove the correlation in the features and where
quantization is applied in the transformed domain.
Transform coding usually gives better perfor-
mance than quantizing in the original domain.
Milner and Shao (2003) study both Karhunen-
Loeve and discrete cosine transform (DCT) for
the compression of MFCC features. Zhu and
Alwan (2001) use a 2D-DCT to exploit inter-frame
(temporal) correlations between speech features.
Specifically, feature vectors from 12 frames are
grouped together to form one block of features,
which is then transformed by 2D-DCT. Since the
DCT compacts energy into the low-order compo-
nents, by setting the lowest energy components in
each block to zero and quantizing the nonzero
components only, a low bit-rate is achieved. Rec-
ognition performance is maintained even at
634 bps though at the expense of a block-sized
delay.

Paliwal and So (2004) exploited the multi-frame
Gaussian mixture model-based block quantizer for

1 1
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1 1

Fig. 1. Block diagram of DSR system.
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the coding of MFCC features. The strengths of the
block quantizer are computational simplicity and
bit-rate scalability.

The inter-frame coding schemes discussed
above all exploit the correlation across consecutive
MFCC features. This results in the fact that the
error in one frame has considerable impact on
the quality of the following frames. Due to the
removal of the inherent redundancy that exists in
speech features, a low bit-rate source coding
method is highly sensitive to transmission errors.
To some extent, there is a trade-off between the
error-resistance and the low bit-rate (achieved by
the removal of redundancy)—sometimes called
the “no free lunch theorem” (Ho, 1999): coding
efficiency multiplied by robustness is constant.

Considerable work has been conducted on
investigating how to allocate the bits among e.g.
sub-vectors given an overall bit-rate. Digalakis
et al. (1999) allocate bits among sub-vectors by
using the word-error-rate (WER) as a metric. An
iterative bit-allocation method is deployed in
(Hsu and Lee, 2004) but driven by syllable error
rates. Srinivasamurthy et al. (2004) propose a
bit-allocation algorithm based on a mutual infor-
mation measure, which is superior to the conven-
tional mean square error (MSE) metric. The
justification for using the mutual information mea-
sure is that the goal in DSR is to ensure minimal
degradation in classification performance rather
than minimal MSE.

2.3. Channel coding and error concealment

While source coding aims at compressing infor-
mation, channel coding techniques attempt to pro-
tect (detect and/or correct) information from
distortions (Bossert, 2000). Channel coding is
defined as an error-control technique used for
reliable data delivery across error-prone channels
by means of adding redundancy to the data (Sklar
and Harris, 2004). In the context of DSR, consid-
erable research has been conducted aimed at
exploring the potential of channel coding and EC
techniques (e.g. Bernard, 2002; Boulis et al.,
2002; James and Milner, 2004; Milner, 2001; Pei-
nado et al., 2003; Potamianos and Weerackody,
2001; Tan et al., 2004a). In addition, some work

investigates the joint design of source and channel
coding (Riskin et al., 2001; Weerackody et al.,
2001).

2.4. The ETSI-DSR standards

The ETSI-DSR basic front-end defines the fea-
ture-extraction processing together with an encod-
ing scheme (ETSI ES 201 108). The front-end
processing produces a 14-element vector consisting
of log energy (logE) in addition to 13 MFCCs
ranging from ¢y to c¢jp—computed every 10 ms.
Each feature vector is compressed using split VQ.
The split VQ algorithm groups two features (either
{c;and ¢4, i=1,3,...,11} or {¢o and log E}) into
a feature-pair sub-vector resulting in seven sub-
vectors in one vector. Each sub-vector is quantized
using its own split VQ codebook. The size of each
codebook is 64 (6 bits) for the feature-pair {¢; and
ci+1} and 256 (8 bits) for {cy and log E}, resulting
in a total of 44 bits for each vector.

Two quantized frames—in this paper equivalent
to a vector—are grouped together and protected
by a 4-bit cyclic redundancy check (CRC) creating
a 92-bit frame-pair. Twelve frame-pairs are com-
bined and appended with overhead bits resulting
in an 1152-bit multi-frame. Multi-frames are
concatenated into a 4800 bps bit-stream for
transmission. The decoding algorithm at the server
conducts two calculations to determine whether or
not a frame-pair is received with errors, namely a
CRC test and a data consistency test. The ETSI
standard uses a repetition scheme in its EC
processing to replace erroneous vectors.

The ETSI-DSR standard serves as a baseline
for presenting various techniques and a platform
for comparing a number of experiments in this
paper with the baseline results.

A noisy acoustical environment is in the very
nature of mobile services. Environmental noise
and speaker variation are key issues to be taken
into consideration for the success of ASR applica-
tions (Rose, 2004). Speech enhancement tech-
niques—used to counteract the detrimental effects
of acoustic noise—are mainly applied in the time
and frequency domain. However, as features sent
to the server-based recognition are commonly
cepstral coefficients, the speech enhancement
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techniques must be applied at the client side. This
motivated an update by ETSI to the basic front-
end to include noise-robustness techniques, lead-
ing to the publication of the advanced front-end
(ETSI ES 202 050, 2002).

On the basis of requests for server-side speech
reconstruction and for enabling improved tonal
language recognition, an additional extended ver-
sion of the basic front-end was later issued and
including fundamental frequency information
(ETSI ES 202 211, 2003; Ramabadran et al.,
2004; Sorin et al., 2004). The attempt of speech
reconstruction in DSR implies a convergence of
speech coding and DSR feature-extraction though
the difference still exists, namely that the optimisa-
tion criterion for speech coding is perceptual qual-
ity while it is ASR performance for DSR feature-
extraction. The combination of the advanced
front-end and the server-side speech reconstruc-
tion has resulted in the extended advanced front-
end ETSI ES 202 212 (2003). Presently, the DSR
extended advanced front-end is selected by the
3rd Generation Partnership Project (3GPP) as
the codec for speech enabled services (3GPP TS
26.235). Standards have also been agreed in the
Internet Engineering Task Force (IETF) to define
the Real-time Transport Protocol (RTP) payload
formats for these DSR codecs (Xie and Pearce,
2004).

3. Modelling transmission error degradation

Network-linked degradations are mainly caused
by the occurrence of transmission errors. This sec-
tion analyses the characteristics of transmission
errors, presents a model of error degradation and
categorizes error-robustness techniques.

3.1. Transmission channel types and simulation

Two types of network connections exist: circuit-
switched and packet-switched data channels over
which the DSR client and server are interlinked.
Transmission errors in connection with packet-
switched networks occur in the form of packets
that are lost (also known as erasure errors), or
packets that are delayed and therefore in a real-

time application discarded (Perkins et al., 1998).
Packet loss and delay are mainly caused by conges-
tion at routers. Bit errors seldom happen in
packet-switched networks. In contrast, bit errors
occur more frequently during transmission over
circuit-switched mobile networks, resulting in bit
errors in the speech data streams. When a speech
frame is detected as erroneous and is dropped by
the receiver, the situation is equivalent to a packet
loss.

Considerable efforts have been spent on investi-
gating and simulating various network degrada-
tion phenomena, mainly transmission errors. In
general DSR system performance is evaluated
either in channel simulations or in real transmis-
sion. Channels are simulated in three ways: by
adding random errors, by adding burst errors or
by using simulated networks. Random errors are
intuitively tested in simulations by randomly add-
ing errors to the speech bit-stream or by randomly
dropping packet with a given probability. An
AWGN (Additive White Gaussian Noise) channel
generates random bit errors while a Rayleigh
fading channel produces bit errors that occur in
bursts. The well-known two-state Gilbert model
is widely used to generate error bursts (Gilbert,
1960; Kanal and Sastry, 1978). Two states are used
to model error-free transmissions (good) and erro-
neous transmissions (bad), respectively. Milner
and James (2004) suggested using a three-state
Markov model. The basic idea of the three-state
model is to add the extra state associated with
the bad state allowing for some short error-free
periods to occur during intervals of error bursts.
Tests showed that the three-state model traces
real-network packet losses better.

In many investigations the widely used GSM
circuit switched channel error patterns (EPs) are
applied (Pearce, 2004). The EPs are realistic in
the sense that they include a merging of both ran-
dom and burst errors. The three EPs are EP1, EP2
and EP3 corresponding to a carrier-to-interference
(C/I) ratio of 10dB, 7dB and 4 dB and corre-
sponding to average bit error rate of 0.0049%,
0.18% and 3.55%, respectively.

The literature references a number of network
simulators. Hsu and Lee (2004) use a General
Packet Radio Service (GPRS) simulator where a
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large number of complicated transmission phe-
nomena have been considered such as the propa-
gation model and multi-path fading. Tan et al.
(2003a) applied UMTS statistics. The UMTS sta-
tistics are provided from a system-level network
simulator which is able to simulate a large variety
of scenarios and user deployments and is able to
extract realistic performance statistics regarding
packet error rate or blocking probability.

Besides evaluations in channel simulations,
real-world network transmissions have also been
tested. Mayorga et al. (2003) have investigated
the effect of both packet loss simulated by the Gil-
bert model and packet loss in real transmission. A
strong correlation between WER and packet loss
rate has been observed in simulated conditions.
In real conditions, however, the same correlation
observed in simulated conditions did not occur.

3.2. Modelling transmission error degradation

The traditional model of the degradation of
speech signals is depicted in Fig. 2 (Acero, 1993;

Degraded
speech
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Huang et al., 2001). The speech signal is corrupted
by both linear distortion and additive noise. To
compensate for these distortions three categories
of noise-robustness techniques are introduced.
These are noise-resistant features, speech enhance-
ment and speech model compensation for noise as
shown in Fig. 2 (Gong, 1995).

The link between feature-extraction and the
ASR-decoding module in the context of DSR is
broken by one or more network connections that
each introduces additional transmission errors into
the data streams. The architectural model of
degradations involving both acoustic noise and
transmission errors is illustrated in Fig. 3. The fig-
ure demonstrates how errors may be introduced
into the speech stream and shows which type of
error-robustness techniques can be applied.

Note that the general goal of feature-extraction
remains to be the estimation of features that are
robust to acoustic noise since noise-robustness
often is the dominating factor for the degrada-
tions in ASR performance (Rose, 2004; Sukkar
et al.,, 2002). The degradation originating from
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x[m] —— — — —
m] him] extraction | decoding
“Clean”  Linear ﬂ ﬂ ﬂ Words
speech distortion n[m)
Additive Noise Speech Model
noise resistance | |enhancement| |Compensation
Fig. 2. Architectural model of degradation and robustness techniques.
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Fig. 3. Architectural model of network degradations and robustness techniques against transmission errors.
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transmission errors is handled by a number of
techniques such as error control and concealment.
As the MFCC features are extensively used and
have proved to be successful for ASR (Davis and
Mermelstein, 1980), MFCCs are used for most
DSR front-ends. One exception of this is the
adoption of perceptual linear prediction (PLP)
by Bernard and Alwan (2001). The advantage of
applying PLP is low bit-rate since PLP coefficients
can be quantized at 400 bps (Gunawan and Hase-
gawa-Johnson, 2001).

Source coding and decoding modules are added
to compress speech features to meet bandwidth
constraints as shown in Fig. 3. Data transferred
over networks are subject to various error sources
that cause changes in the stream of speech data
either at the bit or the packet level, depending on
the individual transmission channel. Channel
coding/decoding is deployed with the aim of en-
abling error detection and recovery and thus
providing reliable transmission across networks.
Deployment of server-based EC techniques is a
necessity in order to reduce the impact of
transmission errors still remaining in the speech
features.

3.3. Categorization of error-robustness techniques

As compared to acoustic noise, transmission
errors have distinctive characteristics and influence
speech signals and features differently. Firstly,
transmission errors occur at discrete-time frame
values whereas the acoustic noise influences the
speech signal (and the derived speech features) as

a running process. Secondly, transmission errors
in general affect the speech data in the cepstral do-
main whereas the environmental noise affects in
the time—frequency domain. Thirdly, transmission
errors are introduced into the speech signal after
the feature-extraction process which allows for
applying methods for client-based error control
prior to transmission. These characteristics are
the foundations for applying different compensa-
tion techniques for handling transmission errors
and environmental noise.

Generally, error-robustness techniques in DSR
have been developed in three manifestations.
Firstly, DSR features are protected by traditional
error control and recovery techniques such as
FEC, interleaving and joint source and channel
coding with the aim of lossless recovery. These
techniques require the participation of the client,
termed as client-based recovery. Secondly, DSR
shares a class of robustness techniques with audio
(Perkins et al., 1998) and video (Wang and Zhu,
1998) transmission over networks where feature-
reconstruction EC is applied to generate an esti-
mation of the original signal. Thirdly, since the
final receiver of DSR features is the ASR-decoder,
transmission errors can be further mitigated in the
ASR-decoding process through the modification
of the decoder, either by marginalisation according
to missing data theory (Cooke et al., 2001) or by
weighted Viterbi decoding (Yoma et al., 1998).
Transmission over networks may cause speech fea-
tures completely lost or partially corrupted, which
makes missing data techniques well suited for DSR
to combat transmission errors (Potamianos and

| Error-robustness techniques |

| Error detection |

| Client-based error recovery |

| Server-based error concealment |

Active .-

Passive

| Client-based | | Server-based | ARQ | FEC | | Interleaving | | Joint coding | | Feature-reconstruction || ASR-decoder EC |

| Parity check || Checksum || CRC | | Block | | Convolutional | | Insertion || Interpolation || Statistical || Soft-feature decoding |

Fig. 4. The taxonomy of error-robustness techniques.
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Weerackody, 2001). The taxonomy of these
techniques is shown in Fig. 4.

DSR applications have strict end-to-end delay
constraints and are generally requested to operate
using a RTP protocol (Schulzrinne et al., 2003).
Automatic repeat request (ARQ) is an error con-
trol mechanism in which a retransmission is
requested by the server when an error is detected,
resulting in a long delay. ARQ can be applied at
various network protocol layers e.g. the transport
layer or the application layer. ARQ at transport
layer is generally deployed by network operators
and it is in most cases not possible to turn this
feature off. ARQ at the application layer, however,
is not recommended for DSR and passive recovery
techniques e.g. interleaving become the preferred
client-based methods for correcting the errors.
However, ASR can tolerate a certain amount of
distortion in the speech features so that server-
based EC techniques such as feature-reconstruc-
tion and ASR-decoder EC are applicable for
concealing any remaining errors. Before any EC
techniques can be implemented, error detection
methods should first be applied to reveal whether
and where a transmission error has been intro-
duced (Wang and Zhu, 1998). Detection can be
realised on the basis of either adding redundancy
at the client-side or by exploiting the redundancy
inherent in the signal itself purely at the server
side. These techniques are thoroughly reviewed in
the following sections.

4. Error detection

There are two types of error detection methods
accomplished, either exploiting added redundancy
from the channel coding or exploiting the redun-
dancy of speech features.

In channel coding, redundant bits are added to
the data being transmitted and these are subse-
quently used by the decoder to determine whether
or not errors have been conveyed into the data.
Two classes of such techniques are used: parity
check and block check. Parity check is a simple
character-based error detection method that is sel-
dom used today for reliable communications. Two
of the most commonly used block check methods

are checksum and CRC. In the block check meth-
odology, data are segmented into blocks and an
additional check block is appended to each data
block at the client. At the server side, the check
block information is used to identify whether or
not there is an error in the data block. When an
error is detected, EC is conducted—as opposed
to a retransmission.

For circuit switched networks, the ETSI-DSR
standards (Pearce, 2004) apply CRC as the major
error detection scheme together with an additional
scheme in which a data consistency test exploits
the characteristics of speech features. For packet
switched networks, the CRC is still kept as part
of the payload for two reasons. Firstly, this en-
ables the interoperability with the circuit switched
networks as a circuit switched network could
potentially be connected to a network gateway
that encodes the ETSI-DSR features into the
RTP payload. If the features are sent in the RTP
payload over a packet switched network, the
RTP header information is then used for error
detection. Secondly, in the Internet Protocol
version 4 (IPv4), IP packets are dropped if there
is any error detected in the payload in contrast
to the Internet Protocol version 6 (IPv6) in which
it may be possible to transport RTP payloads that
contain errors and thus making the CRC internal
to the ETSI-DSR payload useful for error
detection.

In general, error detection by adding header
information and/or FEC codes at the client side
is more reliable than error detection exploiting
redundancy in the signal at the server although
at the cost of additional bandwidth (Wang and
Zhu, 1998).

Tan et al. (2004c) raise the problem of the size
(measured in bits) of a data block for error detec-
tion and concealment. Error rates corresponding
to the size of a data block are calculated as a func-
tion of bit error rates (BER) of random errors
according to the following formula

Error Rate = 1 — (1 — BER)"™® (1)

where bits is the number of bits in the data block.

The formula shows that given a BER value, the
smaller the number of bits is, the lower is the error
rate of the data block. This has motivated the
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introduction of two methods: one-frame based
error protection (Tan and Dalsgaard, 2002) and
sub-vector based error detection and concealment
(Tan et al., 2004a), which are channel coding based
and feature characteristic based method,
respectively.

4.1. Frame-pair versus one-frame

Within the ETSI-DSR standards, two quan-
tized frames are grouped together and protected
with a 4-bit CRC block together forming a 92-bit
frame-pair. This method results in the entire
frame-pair being labelled erronecous even if only a
single bit error occurs in the frame-pair packet.
To overcome this, a one-frame based error protec-
tion scheme was deployed to protect each frame by
its own 4-bit CRC block which together generates a
48-bit one-frame (Tan and Dalsgaard, 2002; Tan
et al., 2003a). The one-frame scheme causes the
overall probability of one frame in error to be low-

100
—4&— Frame-pair
80 H —— One-frame e
. Sub-vectorl
&)
% 60 —#— Sub-vector2
5
=4
5 40
£ /
m
20
a4
0 L L
0.1 0.5 1.0 1.5 2.0
a BER (%)
35
201 —&— Frame-pair -
—#— One-frame /
S 25 H Sub-vectorl /
5 2 —A— Sub-vector2 A
&
= 15
£ /
10 / /Ai
5
0 i——% ‘
EP1 EP2 EP3
b GSM EPs

Fig. 5. Percentage error rates of frame-pair, one-frame (vector)
and sub-vectors versus different channels. (a) Error rates versus
random BER values. (b) Error rates versus GSM EPs.

er, as shown in Fig. 5 (at the cost of only a marginal
increase in bit-rate, from 4800 bps to 5000 bps).
The data in Fig. 5(a) are achieved by applying
Eq. (1) with a range of BER values of bit errors
with Gaussian distribution and the results in Fig.
5(b) come from the calculation on the basis of the
GSM EPs where errors occur in bursts.

4.2. Vector versus sub-vector

As one feature vector consists of seven sub-vec-
tors, the error rates of the low bit sub-vectors are
significantly lower than both frame-pair and one-
frame as shown in Fig. 5. As compared to 92-bit
for the frame-pair and 48-bit for the one-frame,
sub-vectorl (corresponding to [c,cit1], =
1,3,...,11) and sub-vector2 (corresponding to
[co,logE]) are represented by 6-bit and 8-bit,
respectively. However, since there is no channel
coding based error detection applied at the sub-
vector level, error detection at this level can only
make use of feature characteristics, e.g. by a data
consistency test on each pair of the sub-vectors.
This is realistic due to the temporal correlation be-
tween speech features in consecutive frames caused
partly by the vocal tract inertia and partly by the
overlapping in the feature-extraction procedure.

Given that n denotes the frame number and V
the feature vector, each vector is formatted as

V" =cl, e, ... ,c’l’z,cg,logE"]T
= [[0?703], R [qul? 0112]’ [037 IOgEn”T
=[S, 181 186 (2)

where S (j=0,1,...,6) denotes the jth sub-vector
in frame n (ETSI ES 201 108).

The consistency test is conducted across consec-
utive frame-pair vectors [, 7"*!] such that each
sub-vector S;’ from V" is compared with its corre-
sponding sub-vector S;“ from V"' If any of the
two decoded features in a feature-pair sub-vector
does not possess a minimal continuity criterion,
the sub-vector is classified as inconsistent. Specifi-
cally both sub-vectors S;.’ and S;?“ in a frame-pair
are classified as inconsistent if

(@(s (1) - (1) > 7,(1)) 3
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where d(x,y) = |x — y| and §7(0) and §7*'(0) and
§7(1) and S_;’“ (1) are the first and second element,
respectively, in the feature-pair sub-vectors §7 and
S;’“ as given in (2); otherwise, they are classified as
consistent. The thresholds 7(0) and T1) are con-
stants given on the basis of measuring the statistics
of error-free speech features.

This test generates a consistency matrix that
discriminates between consistent and inconsistent
sub-vectors. Inconsistent sub-vectors are replaced
by their nearest neighbouring consistent sub-vec-
tors whereas the consistent sub-vectors are kept
unchanged (Tan et al., 2004a).

5. Error recovery—client-based techniques

Aimed at lossless repair, error recovery tech-
niques require the participation of the client
including both source and channel coding. Chan-
nel coding such as FEC plays an important role
in error recovery. On one hand, the process of
both FEC and EC relies on redundant informa-
tion. FEC techniques add redundancy to the
speech signal using a channel code whereas EC
techniques exploit the redundancy in the signal
itself. On the other hand, source coding removes
the redundancy from the speech signal to obtain
a high compression rate, resulting in hindrance
to the recovery and concealment of errors. One
solution to this is to deliberately keep some redun-
dancy in the coded signal to enable better error
recovery and concealment (Wang and Zhu,
1998), termed as error-resistant source coding.
Another solution is to jointly design source and
channel coder. In a broader sense, layer coding
(LC) and multiple description coding (MDC) fall
into both solutions.

Interleaving is a method that attempts to rear-
range burst errors into a set of random errors
and by this enabling FEC and EC to become more
effective.

5.1. Forward error correction
In using the FEC techniques redundant infor-

mation is transmitted along with the original data
to allow the server to detect and correct errors in

the data without any reference to the client (Carle
and Biersack, 1997). Two classes of techniques
exist: block encoding and convolutional encoding
(Bossert, 2000; Sklar and Harris, 2004). Block cod-
ing encodes a block of k information bits into a
block of n coded bits for transmission and thus
the codes are referred to as (n,k) codes. The
(n — k) redundant bits determine the error correc-
tion capability of the code. Commonly used block
codes are Hamming codes, Golay codes, BCH
codes and Reed-Solomon codes. Convolutional
coding considers the entire stream of data as one
single codeword. As a result, encoded data is
dependent on not only the current bits but also
the previous bits.

A convolutional code is used in combination
with unequal error protection (UEP) to protect
MFCC features in (Potamianos and Weerackody,
2001). However, block codes are preferred for
DSR systems as opposed to convolutional codes
due to independency between blocks, smaller delay
and lower complexity. The ETSI-DSR standard
applies a Golay code to protect the most impor-
tant information in the data stream e.g. the header
information. Bernard and Alwan (2002) use linear
block codes mainly for error detection with a
limited capacity to conduct bit error correction.
Boulis et al. (2002) apply Reed—Solomon codes
to achieve graceful degradation of ASR perfor-
mance over packet-erasure networks. Hsu and
Lee (2004) introduce BCH coding into DSR.

5.2. Multiple description coding and layered
coding

Unlike most conventional coders, both MDC
and LC encode a source into two or more sub-
streams that can be delivered on separate channels
in order to exploit channel diversity. MDC en-
codes the signal source into sub-streams (also
called descriptions) of equal importance in the
sense that each description can independently
reproduce the original signal into some basic qual-
ity (Goyal, 2001). The quality incrementally in-
creases when more descriptions are received. In
contrast, LC generates one base layer stream and
several enhancement layer streams. The base layer
stream is the most important and can provide a
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basic level of quality. The enhancement layer
streams can refine the quality of the signal recon-
structed from the base layer stream but is useless
on its own. According to (Wang et al., 2002),
MDC is more effective for applications with strict
delay constraints. On the other hand, LC is a good
choice when retransmission of the base layer or
UEP over different channels is feasible.

Kim and Kleijn (2004) observed that MDC
generally outperforms Reed-Solomon based
FEC. Zhong et al. (2002) compare the popular
G.729 standard against a number of MDC
schemes for recognizing VoIP and justify the supe-
rior performance of the MDC schemes. Aimed at
scalable DSR, Srinivasamurthy et al. (2001)
present a layered scheme encompassing two layers:
the base layer encodes speech using a coarse
DPCM (differential pulse code modulation) loop
while the enhancement layer encodes the quantiza-
tion error introduced by the coarse DPCM loop.

5.3. Joint source and channel coding

According to the well-known source—channel
separation theorem proposed by Shannon (1948),
the source and channel coder can be designed sep-
arately without loss of optimality. The assump-
tions are the property of stationary source and
channels and the unlimited complexity and pro-
cessing delay of the source and channel coder.
Since the above assumptions are not true for most
real-world applications, there is a need for joint
design of source and channel coding that exploits
the characteristics of source or source coder for
providing better error protection.

In (Weerackody et al., 2001), UEP is applied to
speech data by partitioning the data bit stream
into classes of different error sensitivity. Riskin
et al. (2001) introduce an unequal loss protection
(ULP) algorithm to assign unequal amounts of
FEC to different sub-vectors to minimise WER.

5.4. Interleaving

FEC and EC techniques have good efficiency in
counteracting errors randomly distributed in the
data stream but fail to manage burst errors. Inter-
leaving techniques have therefore been broadly

applied in communication systems as an optional
addition to error correction codes to counteract
the effect of burst errors at the cost of delay. On
the basis of interleaving, channel coding is
confronted with only a set of random errors that
are converted from burst errors.

Specifically, interleaving is a method that rear-
ranges the ordering of a sequence of code symbols
in order to spread burst errors over multiple code-
words for efficient error recovery and concealment
(Ramsey, 1970). At the server, the counterpart
de-interleaving restores the reordered sequence to
its original order. A common way to implement
interleaving is to divide symbol sequences into
blocks corresponding to a two-dimensional array,
and to read symbols in by rows and out by col-
umns. Extensive work has been done by James
and Milner (2004) to deploy interleaving in DSR.

5.5. Discussion of client-based techniques

Although the principles of the client-based tech-
niques reviewed in this section are different from
each other, they share a common attribute namely
the participation of the client with the aim of
exploiting the characteristics of channels and sig-
nals. The deployment of client-based techniques is
always a trade-off between the achieved perfor-
mance and the required resources. For example,
FEC trades bandwidth for redundancy, MDC
trades multiple channels for uncorrelated transmis-
sion errors among descriptions, and interleaving
trades delay for random distribution of errors.
Therefore, the employment of client-based tech-
niques is highly dependent on networks and applica-
tions. One disadvantage of client-based techniques
is their weak compatibility. Further discussions
and comparisons are presented in Section 7.

6. Error concealment—server-based techniques

Lossless error recovery is required in data trans-
mission as even a single bit error may cause the
entire data block to be discarded. In contrast, a
certain amount of distortions in the speech
features can be tolerated by the ASR-decoder.
This fact makes EC a feasible method to
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complement client-based error recovery techniques
to mitigate the effect of remaining transmission er-
rors without the request for a retransmission. EC
generally deploys the strong temporal correlation
residing in speech features and utilises the statisti-
cal information about speech.

An EC scheme often relies on a set of error-free
features received before and/or after erroneous or
lost features: either one- or two-sided EC schemes.
In real-time speech and audio streaming, one-sided
schemes are often used since discontinuities in a
re-synthesised signal may perceptually annoy the
user, especially during burst intervals. In DSR
applications, however, the discontinuities do not
disturb the ASR engine although it may increase
the end-to-end delay. Therefore, two-sided EC
techniques are favoured in DSR because of its sig-
nificantly superior performance.

The aim of EC is in general to create a substitu-
tion for a lost or erroneous packet as close to the
original as possible. This type of concealment tech-
nique is termed as feature-reconstruction EC. In
applications like voice transmission, the source
and the sink of the communication channel are
the voice and the human ears, respectively. In the
context of DSR, however, the source is the speech
features and the sink the ASR-decoder. Therefore,
EC may be conducted during the recognition
decoding process as well, which is unique for
DSR. Specifically, the ASR-decoder may be mod-
ified to handle degradations introduced by trans-
mission errors, termed as ASR-decoder EC.

6.1. Insertion-based techniques

Insertion-based EC techniques refer to a class
of simple techniques that reconstruct lost packets
without taking the signal characteristics into con-
sideration (Perkins et al., 1998). An erroneous
frame is substituted by inserting silence, noise, an
estimated value (for example a mean value over
training data), or a repetition of a neighbouring
frame.

In applying splicing a number of consecutive
erroneous frames are simply dropped. A side effect
of employing splicing is a decrease in the Viterbi
decoding time caused by the shorter feature stream
(Kim and Cox, 2001). Boulis et al. (2002) reported

that the mean-value substitution (estimated over
all training data) outperforms splicing and silence
substitution.

The ETSI-DSR standard applies a repetition
where the first half of a series of erroneous frames
is replaced with a copy of the last correct frame
before the error and the second half with a copy
of the first correct frame following the error.

In the partial splicing scheme presented in (Tan
et al., 2003b) erroneous frames are partly substi-
tuted by a repetition of neighbouring frames and
partly by a splicing. It can be shown that partial
splicing under certain assumptions is equivalent
to a weighted Viterbi decoding algorithm.

On the basis of error detection at the sub-vector
level as presented in Section 4.2, the sub-vector EC
(Tan et al., 2004) is considered as a repetition EC
at the sub-vector level.

6.2. Interpolation-based techniques

Interpolation accounts for the changing charac-
teristics of the signal and particularly exploits the
temporal correlation that is present in the speech
feature stream to aid the reconstruction of speech
features.

The most commonly used interpolation tech-
nique is applying a polynomial interpolation as
an estimate of the erroneous frames (Milner and
Semnani, 2000). For DSR applications, repetition
has been experimentally justified to perform better
than linear interpolation (Pearce, 2004; Peinado
et al., 2003; Tan et al., 2003b). Tan et al. (2004b)
further conduct a comparative study with the
aim of revealing the causes of this, which justifies
a difference existing between traditional signal-
reconstruction and feature-reconstruction for
ASR. James and Milner (2004) propose to use
cubic interpolation instead of linear interpolation
which shows better performance than both repeti-
tion and linear interpolation.

6.3. Statistical-based techniques

Neither insertion- nor interpolation-based tech-
niques use a priori information about the speech
features though the mean-value substitution
replaces lost packets by the mean estimated over
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all training data. A number of recently developed
techniques deploy the statistical knowledge about
speech source by introducing such knowledge into
the concealment process.

Statistical-based techniques use a priori knowl-
edge of the full data to estimate the missing data
(Ramakrishana, 2000). In particular, the maxi-
mum a posteriori (MAP) estimation is a technique
that estimates the missing data with the aim of
maximising their likelihood conditioned on the ob-
served data and the distribution of the full data.
On the basis of the MAP technique, James et al.
(2004) reconstruct lost speech vectors by employ-
ing both the correctly received vectors and the sta-
tistical information such as mean and variance
calculated from a set of training utterances
(assuming a Gaussian distribution). The method
outperforms cubic interpolation in particular when
the packet loss rate is high. MAP estimation,
however, is in general computationally expensive
due to its need of inversing large covariance
matrices.

In (Gomez et al., 2003), a data-source model
mitigation technique is presented for DSR over
lossy packet channels. The technique models the
data-source through transition probabilities from
a sequence of quantized sub-vectors to another se-
quence. For example, in the first order data-source
model, a set of comprehensive tables containing
every combination of two split VQ indices are built
for forward estimation and for backward estima-
tion, respectively. Tables for forward estimation
are constructed by searching each index in the
training database and averaging the sequences of
indices following it while tables for backward esti-
mation by searching each index in the training
database and averaging the sequences of indices
previous to it. Sequences in lost packets are recon-
structed by means of the trained data-source
model and the received sequences preceeding and
following the lost packets. Performance improve-
ment has been observed particularly for high
packet loss rate as compared to repetition EC.
Similarly, Lee et al. (2004) proposed an N-gram
model approach for packet loss concealment in a
VolIP application. This work showed that trigram
predictive models consistently outperform the rep-
etition-based method in terms of distortion. Both

of the above referenced techniques have low com-
putational cost but high memory requirements.

The MAP estimation has a high computational
complexity whilst the memory requirements of the
data-source technique are high. Gomez et al.
(2004) combine the data-source model technique
and the MAP estimation technique to offer a
trade-off between memory and computational re-
sources requirement.

6.4. Soft-feature decoding based techniques

In wireless communications, a number of studies
exploit the information about the reliability of the
received bits. Specific channels and channel
coding/decoding algorithms are often specified so
that soft-decision of channel decoding is applicable
(Bernard, 2002; Haeb-Umbach and Ion, 2004;
Peinado et al., 2003; Potamianos and Weerackody,
2001). The reliability information is used either for
feature-reconstruction or in combination with
weighted Viterbi decoding that takes this
information into account during the ASR-decoding
process.

A minimum mean square error (MMSE)
estimation and hidden Markov model (HMM)
based EC are proposed in (Peinado et al., 2001,
2003, 2005). Applied for EC in speech coding
(Fingscheidt and Vary, 2001), MMSE estimation
models the speech source as a Markov process to
exploit the correlation between consecutive
frames. Peinado et al. (2003) first deploy MMSE
based on soft-feature decoding. Secondly signifi-
cant improvement is further obtained by consider-
ing previously received vectors for the estimation
of the current feature vector, resulting in the
HMM model based EC.

6.5. ASR-decoder based techniques

Speech features are, after transmission over net-
works, subject to being missing or unreliable. In
addition to reconstruction of these features, the
ASR-decoder can provide complementary means
to handle the detriment in speech features by inte-
grating the reliability of the channel-decoded
features into the recognition process. Two well-
known noise-robustness techniques match this
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purpose: namely marginalisation used in missing
data theory (Cooke et al., 2001) and soft-decoding
(weighted Viterbi decoding when HMM is applied)
(Yomaetal., 1998). As compared with ASR in noisy
environments, where identifying the reliabilities of
spectral features is difficult, the advantages in this
context are that missing features or the reliability
of each feature is known from the channel
decoding (Potamianos and Weerackody, 2001)
and that the information is available in the cepstral
domain.

In (Endo et al., 2003), missing data theory is
applied such that erroneous features generate
constant contributions to the Viterbi decoding
with the aim of neutralising these features. James
et al. (2004a) show that missing data technique is
superior to a number of feature-reconstruction
methods. Although both marginalisation and
splicing do not utilise unreliable features, margin-
alisation reserves the time information—since
HMM state transitions are possible in the intervals
of unreliable features—so that much better perfor-
mance is obtained (Bernard, 2002).

In weighted Viterbi decoding, exponential
weighting factors are introduced into the calcula-
tion of the likelihood based on the probability of
the speech observations such that contributions
made by observation probabilities are decreased
or neutralised if the features are estimated from
erroneous frames.

The weighting factor may be computed from
either the reliability measure of the received
bits—when available—or from an estimation
value when the hard-decision channel coding is
applied. The first method requires the evaluation
of the reliability of the decoding feature from
soft-decision channel coding i.e. assuming a
known bit probability (Bernard and Alwan,
2002; Weerackody et al., 2002). The second meth-
od is applicable to a wider range of channels
including channels characterised by packet loss
so that the range of channel conditions are ex-
tended from wireless to IP-based (Bernard and
Alwan, 2002). Cardenal-Lopez et al. (2004) com-
pare constant weighting factor with time varying
weighting factor to cope with the fact that the
longer the burst is the less effective is the repetition
technique.

6.6. Discussion of server-based techniques

The following may be concluded on the five
classes of server-based EC techniques reviewed in
this section. One of the advantages of server-based
EC is that there is no requirement for modifying
the client-side of DSR, signifying the compatibility
with the existing ETSI-DSR standards. Insertion-
and interpolation-based techniques are traditional
techniques widely used in many applications such
as audio and video transmission. Among them,
repetition EC has shown good performance with
low complexity. The statistical-based techniques
take advantage of a priori knowledge of speech
features and show slightly better performance than
repetition, however, at the expense of either high
computational cost or high memory requirement.
Soft-feature decoding based techniques achieve
highest performance but generally at a high com-
putational cost. Finally ASR-decoder based tech-
niques are unique for DSR and can be applied in
combination with other EC. Detailed performance
comparisons and discussions are presented in the
next section.

7. Performance evaluation

In the literature, various techniques have been
developed but evaluated on the basis of a number
of different speech databases and different channel
simulations. This makes the comparison of these
techniques difficult. In this evaluation, the same
database and the same channel condition are used
in order to effectively compare the performance of
some of the techniques outlined above.

7.1. Experimental settings

The Aurora 2 database (Pearce and Hirsch,
2000) has been selected for this purpose. The data-
base is the TI digit database artificially distorted
by adding noise and using a simulated channel dis-
tortion. Whole-word models are created for all
digits using the HTK recogniser. Each of the digit
whole word models has 16 HMM states with three
Gaussian mixtures per state. The silence model has
three HMM states with six Gaussian mixtures per
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state. A one-state short pause model is tied to the
second state of the silence model. The word mod-
els used in the experiments are trained on clean
speech, no acoustic noise is added to the test data
and transmission errors are the only cause of
the decrease in the server-side recognition
performance.

The three GSM EPs are commonly used for the
error-robustness evaluation of speech coding
algorithms and DSR schemes. As EP1 and EP2
generally do not cause noticeable performance
degradation (Tan et al., 2003a), EP3 is specifically
chosen for this evaluation. It should be noticed
that the experiments conducted here are using this
error pattern for circuit switched GSM channels.
In case of packet switched channels such as the
GSM GPRS (General Packet Radio Service), the
lower levels of the protocol stack allow for retrans-
mission and transmission errors will occur as
packet loss and at a lower rate.

7.2. Experimental results and discussions

A number of techniques are tested ranging from
client-based to server-based techniques. The tested
client-based techniques include Reed-Solomon
based FEC, interleaving, MDC and the one-frame
scheme presented in Section 4.1, which all are used
in combination with repetition EC. The imple-
mented Reed-Solomon code is RS(32,16) with 8-
bit symbols where 16 information symbols are
encoded into 32 coded symbols, indicating a capa-
bility of correcting 8 symbol errors or 16 symbol
erasures in the code word. Two interleaving
schemes are applied: Interleavingl2 in which a se-
quence of 12 vectors is grouped into one block and
Interleaving24 where a sequence of 24 vectors is
grouped. Interleaving is implemented simply by
reading odd-numbered features first and even-
numbered features second from the blocks. As a
result, Interleavingl2 has 5 vectors or 50 ms (with
a 10 ms frame shift) maximum delay and Inter-
leaving24 has 110 ms maximum delay. In applying
MDC, two descriptions are generated namely the
odd-numbered and the even-numbered. Each
description is encoded into 2600 bps comprising
2200 bps speech data, 200 bps head information
and 200bps CRC information. The two

description encodings are transmitted over two
uncorrelated channels which both are simulated
by EP3.

The evaluated feature-reconstruction tech-
niques encompass repetition (Aurora baseline),
linear interpolation, splicing and sub-vector EC.
The scheme without CRC error detection (No
CRC) is also evaluated. In this case, transmission
errors remain in the speech features and are passed
through to the ASR-decoder. The result from er-
ror-free transmission is shown as well. The results
for statistical-based techniques are cited from
(Peinado et al., 2003) in which H-FBMMSE and
H-MAP represent forward—backward MMSE with
hard decisions and MAP with hard decisions,
respectively. The detailed WER results for Test
Set A are shown in Fig. 6.

A more detailed comparison is presented in
Table 1 in terms of WER, bandwidth requirement
and computational complexity. It is observed that
the performance in applying MDC approaches the
error-free channel, but at the additional require-
ment of multiple channels. H-FBMMSE and H-
MAP both provide very low WER values but at
the cost of very high computational complexity,
indicating that they may not be applicable for
real-time applications without the reduction of
computation. The interleaving schemes achieve
good performance, however at the expense of add-
ing delay. As compared to the above techniques,
sub-vector EC gives lower performance but it nei-
ther introduce extra complexity nor resource
requirement. The one-frame scheme shows supe-
rior performance to the Aurora frame-pair scheme
with the introduction of a marginal increase in
bandwidth. RS(32,16) gives a performance close
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Fig. 6. WER (%) across the error-robustness techniques for
EP3 for Test Set A.
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Table 1
Performance comparison of some error-robustness techniques
for EP3 for Test Set A

WER Bit-rate Complexity Compatibility

(%)  (bps) with ETSI-
DSR standards
Splicing 24.00 4800  Low Yes
No CRC 8.88 4600  Low No
Linear 7.35 4800  Low Yes
interpolation
Repetition 6.70 4800  Low Yes
(Aurora)
Marginalisation — 4800 Low Yes
Weighted — 4800 Low Yes
Viterbi
RS(32,16) 3.45 9600  High No
One-frame 3.41 5000 Low No
Sub-vector 2.65 4800 Low Yes
Interleavingl2 243 4800 Low No
H-MAP 1.91 4800  High Yes
Interleaving24 1.74 4800  Low No
H-FBMMSE 1.34 4800  High Yes
MDC 1.04 5200 Low No
Error-free 0.95 4800 - -

to the one-frame scheme but requiring more band-
width and higher computation. It is noticed that
Reed-Solomon based FEC aims at correcting
errors whilst the one-frame scheme just increases
the capability of detecting errors. This justifies that
for DSR applications, channel coding should focus
on error detection rather than error correction as
also observed in (Bernard and Alwan, 2002).

With regard to the ASR-decoder EC, Endo et al.
(2003) show that marginalisation offers superior
performance to linear interpolation. Bernard
(2002) demonstrates that repetition is superior to
marginalisation for random packet loss conditions
while marginalisation may outperform repetition
when the average burst lengths are large. Repetition
in combination with weighted Viterbi gives better
performance than both repetition alone and
marginalisation for all conditions. In accordance
with these references only, marginalisation and a
weighted Viterbi technique are included and ranked
in Table 1 for performance comparisons.

The experiments show that linear interpolation
gives lower ASR performance than repetition as
discussed in Section 6.2. In the case of No CRC,
no compensation (i.e. EC) is conducted so that

erroneous features are fed directly to the ASR-
decoder, resulting in reduced ASR performance.
Splicing as described in Section 6.1—which is
equivalent to no compensation when packet losses
occur—gives the lowest performance and therefore
is not an applicable technique. It should be noted
that the client-based techniques including Reed-
Solomon, one-frame, No CRC, interleaving and
MDC are not compatible with the existing
ETSI-DSR standards while all other techniques
compared in Table 1 are server-based and there-
fore can be used at the server side without requir-
ing modifications of the standards.

It is generally verified by the experiments that
ASR performance can be improved by introducing
a number of error recovery and concealment tech-
niques. Depending on the techniques that are
applied, for transmission over severe error-prone
channels—as demonstrated by applying EP3—
the degradation in recognition performance is still
a matter of concern as compared to the baseline
performance with no transmission errors. The fol-
lowing section focuses on the design of a potential
method by which it is possible to modify the pro-
cessing of the recogniser to further raise the overall
performance of the ASR system.

8. Recogniser adaptation to transmission quality

The techniques as reviewed in the preceeding
sections are designed with the goal of maintaining
maximal ASR performance. This section presents
research on adaptation of the server-side recogn-
iser to the highly varying quality of the network in
order to further optimise the overall performance.

One example of such optimisation is the intro-
duction of frame-error-rate (FER) based out-of-
vocabulary (OOV) detection (Tan et al., 2003a).
The method is based on the observation that trans-
mission errors influence the acoustic likelihood
and thus affect the optimal threshold setting for
discrimination between in-vocabulary words and
OOV words.

In this section experiments are based on the
basic ETSI-DSR standard. The selected database
used for both training and testing is the Danish
SpeechDat 2 database DA-FDB 4000 which
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covers speech from 4000 Danish speakers collected
over the fixed network. A part of the database is
used for the training of tri-phone models and
one filler model, each having three HMM states,
and each state having a mixture of 32 Gaussians.
The independent test data consist of isolated Dan-
ish digits (11 words including two different
pronunciations of the Danish digit ‘1’) used as
in-vocabulary words and city names (449 words)
used as OOV words. The recogniser applied is
the HTK-based SpeechDat/COST249 reference
recogniser (Lindberg et al., 2000). The baseline
WER (no transmission errors) for the Danish dig-
its is 0.2%.

8.1. Effect of errors on likelihood ratio
distribution

OOV detection is a statistical hypothesis testing
problem in which a decision algorithm accepts or
rejects the hypothesis (e.g. Rahim et al., 1997; Lle-
ida and Rose, 2000). Given a speech signal obser-
vation sequence O, the algorithm tests the null
hypothesis H, against the alternative hypothesis
H,. H, represents one of the in-vocabulary words
and H, represents OOV words modelled by one fil-
ler model. A likelihood ratio LR(O) based on the
null and alternative hypotheses is used to detect
OOV words. The test rejects the Hy hypothesis if

p(OlH,)
LR(0O) D(O[H)) <T 4)
where T is the threshold of the test. p(O|H,) and
p(O|H)) are the probabilities of the Hy and the
H; hypotheses, respectively.

Transmission errors may, however adversely af-
fect the likelihood ratios of both the in-vocabulary
words and OOV words. Fig. 7 shows the probabil-
ity density functions (PDFs) of the log-likelihood
ratios of the in-vocabulary words and OOV words
from the experiments for error-free channel and
channel with 2% BER value.

The figure shows that the occurrence of trans-
mission errors changes the PDFs of the log-likeli-
hood ratios in two ways. Firstly, the standard
deviations of the distributions are increased for
increasing BER values. This has the effect of weak-
ening the discrimination between in-vocabulary
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Fig. 7. PDFs of the log-likelihood ratios for in-vocabulary and
OOV words.

and OOV words. Secondly, the shifting in the
mean value of the distributions affects the optimal
threshold setting for OOV detection. A fixed
threshold setting—as normally used in the context
of error-free transmission—may therefore fail to
maintain the balance of the false rejection and
false acceptance rates.

8.2. FER-dependent threshold for OOV detection

A potential way of maintaining the balance is to
adjust the threshold in accordance with the FER
that is a measure of the instantaneous transmission
error rate. The FER is calculated on the basis of
the CRC information in the data stream. This
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results in a FER-dependent threshold that opti-
mises the OOV detection.

The threshold is modelled as a fourth-order
polynomial function of the FER. The FER values
are calculated from the BER values according to
Eq. (1). To estimate the coefficients of the polyno-
mial, five experiments (with BER values ranging
from 0.1% to 2%) were conducted using a develop-
ment database consisting of 282 digit utterances
and 249 city names utterances. The thresholds
for each of these experiments are chosen with the
specifically chosen optimisation target of
maintaining the false rejection rate approximately
constant across a range of BER values.

The test data for the experiments described
below are the remaining 200 digits and 200 city
names utterances from the same database. During
test, the FER is estimated by using the CRC error
detection and then used for adjusting the threshold
of the OOV detection based on the fourth-order
polynomial function.

Fig. 8 shows that the OOV detection algorithm
using FER-dependent threshold approximately
maintains the false rejection rate of in-vocabulary
words within the range from 4% to 6% whereas the
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false rejection rate using a fixed threshold is highly
varying in the range from 4.5% to 20%. The exper-
iments were targeted at a false rejection rate of 5%.

By maintaining an almost constant false rejec-
tion rate, the false acceptance rate increases as
shown in Fig. 9. In general, however threshold set-
ting in general is a trade-off between false rejection
and false acceptance and therefore design criteria
(such as equal error rate requirements) could be
the basis for the FER-dependent OOV detection.

The experimental results shown above justify
that it is feasible to adapt the behaviour of the
back-end recogniser and that it is possible to further
improve the overall ASR performance according to
the varying quality of the network in question.

9. Conclusion

In this paper, the developments and trends of
incorporating ASR technology into wireless net-
works have been reviewed. Emphasis has been
placed on robustness techniques against transmis-
sion errors enforced by error-prone communica-
tion channels. Three classes of techniques have
been presented in detail namely error detection,
client-based error recovery and server-based error
concealment. Error detection can be accomplished
either by adding redundancy at the client-side or
by exploiting the redundancy inherent in the signal
itself purely at the server side. It has been pointed
out that it is important to identify the proper size
of a data block for error detection and the follow-
ing concealment.

For transmission over severely error-prone
channels, deployment of client-based error recov-
ery techniques is of importance in order to achieve
high ASR performance. The deployment of client-
based techniques will distinguish DSR systems
from one another, e.g. by not being compatible
with the existing ETSI-DSR standards. Based on
the work conducted in this paper the following
comments apply:

e Although FEC protection is essential to e.g. the
head information in a DSR stream, FEC such
as Reed-Solomon code is not effective for
protecting speech features as the overhead
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introduced by FEC is superfluous for error-free
channels and not useful for channels with burst
errors.

e Since the ASR-decoder can tolerate a certain
amount of distortions in the speech features,
especially if these are caused by independent
errors, it is a significant advantage to convert
burst errors into independent (random) errors.
This makes the deployment of interleaving tech-
niques attractive, although at the expense of
inherent delay.

e Another technique being able to circumvent
burst errors is MDC. When multiple channels
are available, MDC is highly recommended
due to its excellent performance.

As pointed out in this review, it is not possible
to recover from all transmission errors on the basis
of deploying client-based techniques only. Server-
based EC techniques are therefore employed for
handling the remaining errors. On the basis of
the experiences learned from the experiments, the
following overall comments are presented for
server-based EC techniques:

e For circuit-switched channels where errors
occur at the bit level, error-free information is
potentially available within the erroneous
frames (vectors) for the EC process, and it is
therefore strongly recommended to exploit the
remaining error-free information within the
erroneous vectors. The sub-vector base EC
scheme and the MMSE estimation are examples
of such techniques where the experiments have
shown superior performance to conventional
techniques.

o Statistical-based techniques that utilise a priori
information about the speech signal show
improved performance although at the expense
of large memory requirement and/or high com-
putational complexity.

e In addition to feature-reconstruction tech-
niques, ASR-decoder based EC techniques are
unique for DSR and provide good performance.

e The applicability of server-based EC is depen-
dent on the trade-off between the achieved per-
formance and the computational complexity.
Some of these techniques may not be practical

for real-time applications because of their inher-
ent processing delay and computational cost.
For future research, combinations of these tech-
niques are relevant to pursue.

In general, each technique has its own strengths
and weaknesses, so the selection of techniques to
be deployed is dependent on the expected channel
characteristics and the system requirements.

In addition to robustness techniques, the intro-
duction of adaptation schemes may be worthwhile
to exploit due to the dynamic nature of network
transmission. Adaptation may be implemented in
two ways. Firstly, the schemes chosen for source
coding/decoding, channel coding/decoding and
EC may be adaptive in order to optimise the
trade-off between the required network and com-
putational resources and the achieved perfor-
mance. Secondly, the recogniser and spoken
language modules can be made adjustable to the
quality of network to obtain optimal overall per-
formance. Preliminary experiments have verified
this adaptation concept for OOV detection task.
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