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Abstract 
 
This paper presents a comparative study of different error 
concealment (EC) techniques in the context of distributed speech 
recognition (DSR) that exploits repetition, interpolation or 
subvector concealment to counteract transmission errors.  

A number of experiments are conducted and the results 
demonstrate that repetition is as good as, or even better than, 
linear interpolation whereas the subvector concealment shows 
the best performance in terms of recognition accuracy. Further 
experiments and analyses are conducted with the purpose of 
uncovering the reasons for the different characteristics of the EC 
techniques: speech features are inspected, time normalised 
distances as well as hidden Markov model (HMM) state 
durations are compared for different EC techniques.  

 
 

1. Introduction 
 
Transmission across wireless networks may cause errors that 
severely degrade the accuracy of automatic speech recognition 
(ASR). The degradation introduced by transmission errors can, 
however, be partly alleviated by introducing various EC 
techniques.  

Two classes of EC techniques exist within DSR where the 
client is always at the sender side and the server at the receiver 
side, namely client based EC and server based EC. Although 
client based techniques e.g. retransmission and forward error 
control (FEC) can result in recovering a large amount of 
transmission errors, generally the disadvantages are additional 
delay, increased bandwidth and higher computational overhead 
[1]. In server based EC techniques the redundancy in the 
transmitted signal is exploited. This may be used on its own or in 
combination with a client based technique. When used in 
combination, the purpose is to handle the remaining errors, 
which a pure client based technique fails to recover. In this 
paper only server based EC techniques are considered. 

Server based EC can be conducted either in the feature-
domain or in the model-domain. Feature-domain EC generally 
employs one of the following techniques: splicing, substitution 
(with silence, noise or source-data), repetition or interpolation 
[2]-[5]. Partial splicing and subvector concealment are recently 
proposed in [6] and [7], respectively. 

In the model-domain, the effect of transmission errors can 
be mitigated by integration based EC techniques. Both [8] and 
[9] integrate the reliability of the channel-decoded features into 
the recognition process where the Viterbi decoding algorithms 
are modified such that contributions made by observation 
probabilities associated with features estimated from erroneous 
features are decreased. In [10], a theory of missing features has 

been applied to error-robust ASR where erroneous features 
generate constant contributions to the Viterbi decoding with the 
aim of neutralising these features. In general, model-domain EC 
techniques have a requirement of modification in the recogniser.  

This paper focuses on feature-domain EC techniques only, 
gives a survey of these and presents a number of experiments 
and analyses of their individual merits. The feature-domain EC 
techniques focused on in this paper are repetition, interpolation 
and subvector concealment. 

  

2. Feature-domain EC techniques 
 
The general purpose of feature-domain EC techniques is to 
generate substitutions for the erroneous features as close to the 
original ones as possible with the goal of improving the overall 
recognition accuracy of the system.  
 
2.1. Insertion based techniques 

In each of the insertion based EC techniques an erroneous frame 
is substituted by inserting a 'fill-in' frame [1]. Each 'fill-in' frame 
may equate silence, noise, an estimated value (for example a 
mean value over training data), or a repetition of a neighbouring 
frame. 

In [2] two 'fill-in' principles, namely zeros (silence) and 
the mean-value frame over all training data, and a splicing are 
applied. The mean-value substitution is reported to outperform 
the zero-substitution and splicing. 

In splicing a number of consecutive erroneous frames are 
dropped. An obvious side effect of employing splicing is a 
decrease in the Viterbi decoding time caused by a shorter feature 
stream [3].  

The ETSI-DSR standard [4] applies a repetition that 
replaces the first half of a series of erroneous frames with a copy 
of the last correct frame before the error and the second half 
with a copy of the first correct frame following the error. 

Partial splicing presented in [6] substitutes erroneous 
frames partly by a repetition of neighbouring frames and partly 
by a splicing. It can be shown that under certain assumptions the 
partial splicing is equivalent to a modified Viterbi decoding 
algorithm. 

 

2.2. Interpolation based technique 

Interpolation exploits the temporal correlation being present in 
the speech feature stream, originating from both the overlapping 
in the feature estimation procedure itself and from the speech 
production process.  

The most commonly used interpolation technique is applying 

a linear interpolation as an estimate of the erroneous frames [5]. 

In [2] interpolation has achieved better results than splicing, 

silence substitution and mean-value insertion. 



2.3. Subvector concealment 

It is observed that the conventional EC techniques discussed 
above conduct concealment at the full vector – in this paper 
equivalent to frame - level only: A vector is the unit selected for 
error detection, and if erroneous then followed by a full 
substitution. This is the common characteristic of vector level 
EC algorithms no matter whether splicing, substitution, 
repetition or interpolation is applied. The vector level EC 
strategy, however, fails to exploit the error free fractions left 
within erroneous vectors.  

Prior to further discussion, let us first introduce the ETSI-

DSR standard [4]. In the standard, the front-end produces a 14-

element vector consisting of log energy (logE) and 13 mel-

frequency cepstral coefficients (MFCC) ranging from c0 to c12. 

Each feature vector is compressed using split vector quantization 

(SVQ). The SVQ algorithm groups two features (either {ci and 

ci+1, i=1, 3...11} or {c0 and logE}) into a feature-pair subvector 

resulting in seven subvectors in one vector. Each subvector is 

quantized using its own SVQ codebook.  

Two quantized vectors are grouped together and protected 

by a cyclic redundancy check (CRC) creating a frame-pair. 

Frame-pairs further form a bitstream for transmission. 

At the server side two calculations determine whether or not 
a frame-pair is received with errors, namely a CRC test and a 
data consistency test. In the EC processing, a repetition scheme 
is applied to replace erroneous vectors. 

It is, however, highly likely that not all subvectors in an 
erroneous vector are corrupted by errors. It is noticed that the 
error rates of the subvectors are significantly lower than full 
vectors for the same bit error rate (BER) values [7]. The 
exploitation of the potential error-free information embedded in 
each erroneous vector – rather than simply substituting them – 
leads to a subvector-level EC scheme in which each subvector is 
selected as the basis for supplementary error detection and 
mitigation. 

Since there is no CRC coding applied at the subvector level, 
error detection at this level can only make use of a data 
consistency test.  

Given that n denotes the frame number and V the feature 
vector, each vector is formatted as  

Tnnnnnn Ecccc ]log,,...,[ 01221=V  

      Tnnnnnn Eccccc ]]log,[],,]...[,[[ 0121121=  

      TTnTnTn ]]...[][,][[ 610 SSS=                                  (1) 

where Sj
n (j=0,1…6) denotes the j’th subvector in frame n. 

The consistency test is conducted across consecutive frame-

pair vectors [ 1, +nn VV ] such that each subvector Sj
n from nV is 

compared with its corresponding subvector Sj
n+1 from 1+nV . If 

any of the two decoded features in a feature-pair subvector does 
not possess a minimal continuity, the subvector is classified as 
inconsistent. Specifically both subvectors Sj

n and Sj
n+1 in a 

frame-pair are classified as inconsistent if 
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where d(x,y)=|x-y| and Sj
n(0) and Sj

n+1(0) and Sj
n(1) and Sj

n+1(1) 
are the first and second element, respectively, in the feature-pair 
subvectors Sj

n and Sj
n+1 as given in (1); otherwise, they are 

classified as consistent. The thresholds Tj(0) and Tj(1) are 
constants given on the basis of measuring the statistics of error 
free speech features.  

The data consistency test generates a consistency matrix that 
discriminates between consistent and inconsistent subvectors. 
Only inconsistent subvectors are replaced by their nearest 
neighbouring consistent subvectors whereas the consistent 
subvectors are kept unchanged. Details are presented in [7]. 

 

3. Recognition experiments  
 
To investigate the behaviour of the different EC techniques, 
recognition experiments are conducted for two recognition tasks, 
namely: Danish digits recognition and city names recognition.  

The recogniser applied in the experiments is the 
SpeechDat/COST 249 reference recogniser [11]. A fully 
automatic, language-independent training procedure is used for 
building a phonetic recogniser based on the HTK toolkit and the 
SpeechDat (II) compatible database DA-FDB 4000. This 
database covers speech from 4000 Danish speakers collected 
over the fixed network (FDB). A part of the DA-FDB 4000 
database is used for the training of 32 Gaussian mixture triphone 
models. The independent test data - isolated digits and city 
names - are from the same database. 

The experimental setting for testing the repetition 
technique is as defined in the ETSI-DSR standard [4]. However, 
modifications are introduced to enable the testing of the 
interpolation and subvector concealment. The threshold values 
given in the ETSI-DSR standard for the data consistency test are 
used for subvector concealment when conducting the subvector 
consistency test as given in (2). 

The realistic GSM error patterns (EP) are used as they 
include a merging of both random errors and burst-like errors. 
These EPs are commonly used for testing speech codecs and 
DSR EC techniques. The three EPs are EP1, EP2 and EP3 
corresponding to carrier-to-interference (C/I) ratios of 10 dB, 
7dB and 4dB, respectively. 

 
3.1. Recognition results 

The baseline word error rate (WER) (no transmission errors) for 
Danish digits and city names are 0.2% and 20.7%, respectively. 

Figure 1 (a) and (b) provide the experimental results from 
the Danish digits and city names, respectively.  
 
 
 
 
 
 
 
 
 

(a)                                                (b) 

Figure 1: The %WER for three EC techniques tested on three 
GSM EPs for (a) Danish digits and (b) city names  

The results show that repetition is slightly better than 
interpolation whereas the subvector concealment gives the best 
results. More comparisons and recognition results are available 
in [6] and [7]. 
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4. Comparative study  
 
In this section a comparative study is conducted with the aim of 
revealing possible causes for the different WERs observed for 
the different EC techniques. The study involves comparison of 
the MFCC features, the dynamic programming (DP) distances as 
well as the HMM state durations.  

In all experiments used for the study transmission errors of 
a random BER value of 2% is used.  
 
4.1. MFCC features 

The original error-free MFCC features are directly compared 
with the features corrupted with errors but concealed either by 
repetition (rMFCC), by interpolation (iMFCC) or by subvector 
concealment (sMFCC). The test utterance is word “et”. The 
coefficient c0 is taken as an example due to its ability of 
emphasising transitions between vowels and consonants.  

The effects of the three techniques on the MFCC, the ∆ 
and the ∆-∆ coefficients are exemplified in Figure 2-5, 
respectively.   

 
 

 

 

 

 

 

 

 

 

 
Figure 2: MFCC, rMFCC and iMFCC c0 for word “et” 
 

From Figure 2 it is observed that the rMFCC-curve traces 
the MFCC-curve better than the iMFCC-curve indicating a 
better reconstruction of erroneous frame values by employing a 
repetition technique. The sMFCC-curve, however, traces the 
MFCC-curve best, as shown in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: MFCC and sMFCC c0 for word “et” 
 

From Figures 4 and 5 it is seen that the ∆-rMFCC and ∆-
∆-rMFCC features trace the corresponding error-free features 
better than the ∆-iMFCC and ∆-∆-iMFCC features. This may be 
explained as follows. As frames are reconstructed by an 
interpolation technique into a straight line of iMFCC features 
shown in Figure 2, this results in a constant value segment in the 

∆-iMFCC and consequently in a zero value segment in the 
corresponding ∆-∆-iMFCC thus causing less information 
available for the Viterbi decoding. In contrast, when applying 
repetition, a fast change is introduced in the middle of erroneous 
frames.  

 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 4: ∆-MFCC, ∆-rMFCC and ∆-iMFCC c0 for word “et” 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: ∆-∆-MFCC, ∆-∆-rMFCC and ∆-∆-iMFCC c0 for 
word “et” 

 
In Figure 2, 4 and 5, the MFCC and the rMFCC feature 

curves seem to display similar shapes even though there are 
some displacements along the time axis as compared to the 
iMFCC feature. However, the DP embedded in the Viterbi 
algorithm makes this displacement relatively irrelevant, which is 
evident from the discussion of DP distances in Section 4.2. 

The above observations are found in other cepstral 
coefficients and on other utterances as well.  

In general, it seems that the rapid changes often appearing 
in MFCC coefficients do not justify the introduction of linear 
interpolation, especially in segments spanning over phoneme 
boundaries (in Figure 2, frame 48 approximately corresponds to 
a vowel/consonant boundary). 
 
4.2. DP distances 

Theoretically, interpolation must result in a smaller 
Euclidean distance between MFCC and iMFCC than repetition 
when averaged over a full signal. That is why there has been a 
common/general expectation that interpolation must perform 
better than repetition in terms of recognition accuracy. 

However, average distance is not analogue with the Viterbi 
based matching. Therefore, instead of Euclidean distance, time-
normalized DP distances were computed by the symmetric 
dynamic time warping (DTW) between error-free features and 
features derived by repetition, interpolation and subvector 
concealment according to [12].  



The Euclidean and DP distances between c0 of MFCC and 
MFCC generated by different EC techniques for word “et” are 
shown in Figure 6. 

The results show that the rMFCC feature has smaller DP 
distances to the original MFCC than the iMFCC feature though 
larger Euclidean distances. The distances between MFCC and 
sMFCC are always the smallest.  

 
 
 

 
 
 
 
 
 

Figure 6: The Euclidean and DP distances between c0 of MFCC 
and MFCC generated by different EC techniques for word “et”. 

The experiments are extended to a number of utterances. 
Results show that, over 328 testing utterances, 295 iMFCC 
features have smaller Euclidean distances to the original MFCC 
than rMFCC features whereas only 33 rMFCC features have 
smaller Euclidean distances than iMFCC features. However, 
features having smaller DP distances to the original MFCC for 
iMFCC and for rMFCC are 146 and 182, respectively, 
indicating that repetition performs better in terms of DP 
distance. sMFCC features always have the smallest for both 
distances. 

   
4.3. HMM state durations 

For the purpose of studying the decoding process itself, a 
set of speech recognition experiments are conducted in which the 
Viterbi decoding keeps track of the HMM state alignment. Each 
state-duration (number of frames) is tracked and counted during 
recognition. The duration corresponding to the part of an 
utterance recognised as speech is summed up and divided by the 
total number of states of the speech part in the testing.  

The average state-durations over eleven test utterances 
(one for each digit including two variants for one digit) for error-
free features, for features calculated by repetition, by 
interpolation and by subvector concealment are 5.253, 4.023, 
3.736 and 5.345 frames, respectively. From this, two facts are 
observed. 

First, it shows that interpolation gives the smallest average 
state-duration indicating that features calculated by interpolation 
result in faster transition from one HMM state to the following 
state whereas features reconstructed by repetition result in a 
Viterbi search in which each state-duration is longer. This may 
be explained from the fact that  interpolation, in contrast to 
repetition, potentially generates artefact-features that do not 
exist in the training data, and therefore ‘mislead’ the search in 
the decoding process.  

Second, the average state-duration for features calculated 
by subvector concealment is very close to the one for error-free 
features. In addition, close analyses of detailed experimental 
data also show that both start and end frame of the recognised 
speech part are close to each other for error-free features and for 
features calculated by subvector concealment. This justifies that 
subvector concealment provides a good reconstruction of 
erroneous features. 

5. Conclusions 
 

In this paper, three different EC techniques have been compared. 
It has been experimentally verified that the simple repetition 
technique - measured by its influence on WER - in general is as 
good as or even better than linear interpolation. Subvector 
concealment is the best performing technique of the three.  

The MFCC features have been directly compared and it is 
observed that the repetition generated features, and their 
derivatives, trace the original features better than those obtained 
by interpolation. Again the subvector concealment generated 
features exhibit superior tracing ability.  

Further experiments are the comparison of Euclidean and 
DP distances. It is observed that interpolation generally gives 
smaller Euclidean distance but larger DP distance as compared 
to repetition. The subvector concealment achieves the smallest 
for both distances.  

Finally, from measurements of HMM state durations, it is 
observed that interpolation results in faster state transitions in 
the decoding compared to repetition. This is explained from the 
fact that interpolation potentially introduces artefact features that 
do not exist in the training data. The subvector concealment 
gives almost the same average state-duration as observed for 
error-free features. 
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