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This paper presents a method that combines variable frame length and rate analysis for
speech recognition in noisy environments, together with an investigation of the effect of
different frame lengths on speech recognition performance. The method adopts frame
selection using an a posteriori signal-to-noise (SNR) ratio weighted energy distance and
increases the length of the selected frames, according to the number of non-selected pre-
ceding frames. It assigns a higher frame rate and a normal frame length to a rapidly chang-
ing and high SNR region of a speech signal, and a lower frame rate and an increased frame
length to a steady or low SNR region. The speech recognition results show that the pro-
posed variable frame rate and length method outperforms fixed frame rate and length
analysis, as well as standalone variable frame rate analysis in terms of noise-robustness.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Speech signal analysis is generally performed over short-time frames with a fixed length (FFL) and a fixed frame rate
(FFR), based on the assumption that speech signals are non-stationary and, exhibit quasi-stationary behavior in short dura-
tions. This fixed frame rate and length (FFRL) analysis is not optimal, since some parts of the signals (e.g. vowels) are station-
ary over a longer duration compared to others (e.g. consonants and transient speech) that have shorter durations.
Consequently, variable frame rate (VFR) and variable frame length (VFL) analysis methods have been proposed for speaker
recognition and speech recognition [1,2].

Variable frame rate analysis selects frames according to the signal characteristics. Initially, speech feature vectors
(frames) are first extracted at a fixed frame rate and then the decision for the retaining frames is based on distance measures
and thresholds [3–5]. The Euclidean distance between the last retained feature vector and the current vector is calculated as
the distance measure in [3]. The current frame is discarded if the measure is smaller than the predefined threshold, aimed at
reducing the computational load.

Recent research in VFR analysis moves towards finding optimal representation of a speech signal to improve performance
in noisy environments. This requires frame analysis in steps smaller than the standard 10 ms, while the average frame rate
largely remains unchanged. In [4], an effective VFR method was proposed, that uses a 25 ms frame length with a 2.5 ms
frame shift for calculating Mel-frequency cepstral coefficients (MFCCs) and, conducts frame selection based on an energy
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weighted cepstral distance. The method significantly improves the recognition accuracy in noisy environments at the cost of
degraded performance for clean speech. In [5], an entropy measure instead of a cepstral distance is used, resulting in recog-
nition performance improvement and higher complexity. To provide a fine resolution for rapidly changing events, these
methods examine speech signals at much shorter intervals (i.e. 2.5 ms) compared to the normal frame shift of 10 ms. The
algorithms extract features such as MFCCs and entropy at a high frame rate for frame selection, which is computationally
expensive. An effective energy based frame selection method was proposed in [6] and it uses delta logarithmic energy as
the criterion for determining the size of the frame shift, on the basis of a sample-by-sample search. Evidently, energy based
search is more computationally efficient. Speech segments are accounted in speech recognition not only on their character-
istics (measured by MFCCs, energy and so on), but also on their reliability. Therefore, a low-complexity VFR method, based
on the a posteriori signal-to-noise ratio (SNR) weighted energy distance was proposed in [2].

While VFR analysis has been used for improving the noise-robustness of speech recognition – a primary challenge in the
field, to the best of our knowledge, VFL analysis has rarely been exploited in dealing with this problem. One exception is a
pseudo pitch synchronous analysis method that uses variable frame size and/or frame offset to align frames to natural pitch
cycles [7]. Three pitch synchronization methods are presented: depitch, syncpitch and padpitch. On Aurora 2 database, using
multi-condition training, all these methods perform worse than the baseline (without pitch synchronization processing) for
clean, 20 dB, 15 dB and 10 dB conditions. Depitch is worse than the baseline on all conditions, syncpitch only performs better
than the baseline for �5 dB, and padpitch performs better for �5 dB, 0 dB and equally for 5 dB.

For general speech recognition, rather than focusing on noise-robustness, a speaking rate normalization technique that
adjusts both the frame rate and frame size (i.e. VFRL) is implemented on a state-of-the-art speech recognition architecture
and evaluated on the GALE broadcast transcription tasks [8]. By warping the step size and the window size in the front-end
according the speaking rate, the technique shows consistent improvement on all systems and gives the lowest decoding
error rates of the corresponding test sets. Instead of using fixed-length frames, a segment-based recognizer represents the
observation space as a graph, in which each arc corresponds to a hypothesized variable-length segment [9].

The a posteriori SNR weighted energy distance based VFR method proposed in [2] has shown to be able to assign more
frames to fast changing events and less frames to steady or low SNR regions, even for very low SNR signals, thus significantly
improving noise-robustness. The method can be combined with VFL analysis through a natural way of determining frame
length: Extend the frame length when less frames are selected. Specifically, the lengths of the selected frames are extended
when their preceding frames are not selected, for which motivations and details are presented in Section 2. As a result, the
frame length is kept as normal in the fast changing regions, whereas it is increased in the steady or low SNR regions. The
proposed VFRL method is applied to speech recognition in noisy environments.

As the VFRL method operates in the time domain in the sense that it decides which frame to retain, it has a good potential
to be combined with other robustness methods which in general operate in the feature or model domain, to reduce the
mismatch between the training and test speech signals. Feature based methods include feature enhancement, distribution
normalization and noise robust feature extraction. Feature enhancement attempts to remove the noise from the signal, such
as in spectral subtraction (SS) [10], non-local means de-noising [11] and vector Taylor series (VTS) [12]. Distribution normal-
ization reduces the distribution mismatches between training and test speech, for example in cepstral mean and variance
normalization (CMVN) [13]. Noise robust features include improved MFCCs [14], and the newly proposed features called
power-normalized cepstral coefficients [15]. Acoustic modelling approach called deep neural networks [16] has recently
attracted a significant amount of attention in the field of noise robust speech recognition. In this work, the VFRL analysis
is combined with minimum statistics noise estimation based SS [10,17].

The remainder of this paper is organized as follows: Section 2 presents the proposed variable frame rate and length
algorithm. The experimental results and discussions are given in Section 3. Section 4 investigates the effect of frame length
on speech recognition performance. Finally, Section 5 concludes this work.
2. Variable frame rate and length algorithm

This section presents an a posteriori SNR weighted energy distance based VFRL method and, shows the illustrative results
of frame selection and length determination.
2.1. Motivations

In general, VFRL analysis methods determine one of the frame analysis parameters (length or rate) first, and then use it as
the basis for calculating the other in a relatively straightforward way.

Aiming at improved modelling of transition segments for speech recognition [18] presents a method where the frame
shift is increased during stationary regions, while frame shift and frame length are decreased for non-stationary regions. Spe-
cifically, it uses MFCC based measures to determine local non-stationary, and then doubles the frame rate at transition
regions and halves the frame size. In [19], if a transient frame is detected, the frame is segmented into two – each having
the half of a normal frame length, which has shown improved recognition accuracy on TIMIT database. Ref. [8] presents a
technique that adjusts both the frame rate and frame length according to the detected speaking rate, achieving impressive
speech recognition performance. A pseudo pitch synchronous analysis method uses variable frame size and/or frame offset
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to align frames to natural pitch cycles for speech and speaker recognition [7]. In [1], for speaker verification, fixed frame rate
and length analysis is applied first, and then the frame length is iteratively expanded until the spectral kurtosis of the merged
frame is less than the maximum value of the spectral kurtosis of two consecutive frames. After obtaining the frame length,
the frame shift is simply set to half of the frame length.

Variable frame rate and length analysis methods commonly assign higher frame rates and smaller frame lengths to fast
changing regions, and lower frame rates and larger frame lengths to steady regions. In this work, the frame length is
expanded (to a maximal frame length, 32 ms unless otherwise stated) until the accumulative a posteriori SNR weighted
distance is larger than a threshold and at the same time a new frame is selected.

The motivations are: (1) the first-order difference in frame-to-frame energy provides greater discrimination than the
components of MFCCs other than c0 [20]; (2) speech segments, besides their characteristics, are accounted also on their reli-
ability e.g., measured by SNR; (3) the a posteriori SNR for noise-only segments will be theoretically equal to 0 dB, so that it
acts as a soft voice activity detection; (4) both energy and a posteriori SNR are easy to estimate, resulting in a low complexity;
(5) the accumulative distance measure provides a natural way for expanding the frame length to better represent the
time–frequency characteristics of the segment, as larger frame lengths are assigned to steady regions; (6) the accumulative
distance uses multiple frames, rather than only two frames, for the frame rate and size determination. Details about the
variable frame rate analysis are available in [2].
2.2. The VFRL analysis algorithm

The flowchart of the VFRL algorithm is shown in Fig. 1. It operates iteratively from the beginning to the end of a speech file
as follows:

Step 1. Load the first frame into a superframe and set the accumulative a posteriori SNR weighted energy distance A(0) = 0.
Step 2. Load the next frame and merge it with the superframe (i.e. expand the superframe to include the samples of the
frame shift). If the length of the superframe is greater than the predefined maximal length, remove the samples from the
beginning of the superframe to match the maximal length.
Step 3. Calculate the a posteriori SNR weighted energy distance of the two consecutive frames:
DðtÞ ¼ j log EðtÞ � log Eðt � 1Þj � SNRpostðtÞ ð1Þ
where E(t) is the energy of frame t, and SNRpost(t) is the a posteriori SNR value of the frame that is defined as the logarithmic
ratio of the energy of noisy speech E(t) to the energy of noise Enoise(t). Logarithmic energy distance is used due to its power for
discrimination and SNR is used to take into account the reliability of speech segments. In addition, the computational com-
plexity of this measure is much lower than some other calculations such as MFCC distance or entropy.

Step 4. Update the accumulative a posteriori SNR weighted energy distance:
AðtÞ ¼ Aðt � 1Þ þ DðtÞ ð2Þ
The accumulative distance is used instead of the distance between only two frames in order to take into account more frames
for frame selection decision.

Step 5. Compare the accumulative distance with a threshold T(t) (to be described below).
If A(t) < T(t), check whether there are more frame(s) to be dealt with. If yes, go to Step 2; if no, the process terminates.

Otherwise, output the superframe (since maximal frame length control is done in Step 2 when each new frame is loaded,
there is no need to do it again here). If the current frame is not the last one, load the next frame into a superframe, set
the accumulative a posteriori SNR weighted energy distance A(0) = 0, and go to Step 3; otherwise, the process terminates.

The threshold T(t) for frame selection is computed as:
TðtÞ ¼ DðtÞ � f ðlog EnoiseðtÞÞ ð3Þ
where DðtÞ is the average weighted distance over a certain period, which can be calculated over one utterance for simplicity.
In practice, DðtÞ is calculated over preceding frames. The function f(log Enoise(t)) is a sigmoid function of log Enoise(t) to allow a
smaller threshold and thus a higher frame rate for clean speech. The sigmoid function is defined by the following equation:
f ðlog EnoiseðtÞÞ ¼ aþ b
1þ e�2ðlog EnoiseðtÞ�cÞ ð4Þ
where a = 9.0, b = 2.5, c = 13. The constant c = 13 is chosen so that the turning point of the sigmoid function is at an a pos-
teriori SNR value of between 15 dB and 20 dB. The motivation is to select more frames for clean speech and relatively less for
noisy speech (as more frames for noisy speech can result in high insertion errors).

In this work, for the VFRL algorithm, unless otherwise stated, the frame shift is 1 ms and the initial and maximal frame
lengths are 25 ms and 32 ms, respectively.



Fig. 1. Flowchart of the proposed VFRL method.
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2.3. Frame selection and length determination results

Fig. 2 depicts the results of the a posteriori SNR weighted energy distance based VFRL for (a) clean speech and (b) 5 dB
noisy speech, where the panels of each sub-figure show the spectrogram (the first panel), the selected frames and their
lengths (the second panel, with the dashed line showing the initial length of 25 ms), the D(t) in Eq. (1) (the third panel),
and A(t) in Eq. (2) (the fourth panel, with the dashed line showing T(t) in Eq. (3)), respectively. From Fig. 2(a) it can be
observed that more frames with normal or slightly greater than normal frame lengths are selected in regions with rapidly



Fig. 2. Frame selection and frame length determination results: (a) for clean speech: spectrogram (the first panel) and the selected frames and their length
(the second panel, with the dashed line showing the initial length of 25 ms), D(t) in Eq. (1) (the third panel) and A(t) in Eq. (2) (the fourth panel, with the
dashed line showing T(t) in Eq. (3)); (b) for 5 dB noisy speech with the same order of panels as in (a), respectively. In (a) there are a few strikes (large values)
for D(t) and A(t) that have been cut off to better show the details.
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changing characteristics for the clean speech signal. In steady regions, fewer frames with increased frame lengths are
selected. In silence regions, almost no frames are selected. From Fig. 2(b) it can be observed that more frames with normal
or slightly greater than normal frame lengths are selected in fast changing and high SNR regions for noisy signals. Fewer or
no frames with maximal frame length are selected in non-speech regions. These results are desirable for VFRL analysis.

3. Speech recognition experiments and discussions

This section evaluates the proposed method through a number of experiments. Further we combine it with spectral-
domain method and present experimental results.

3.1. Database and experimental setups

Experiments in this work were conducted with the Aurora 2 database [21], which is the TI digits database artificially dis-
torted by adding noise and using a simulated channel distortion. The sampling rate is 8 kHz. Whole word models were cre-
ated for all digits using the HTK recognizer [22] and trained on clean speech data. For testing, Test Set A was used. The four
noise types in Test Set A are ‘‘subway,’’ ‘‘babble,’’ ‘‘car,’’ and ‘‘exhibition’’ and the testing conditions include Clean, 20 dB,
15 dB, 10 dB, 5 dB and 0 dB. Each noise type and condition has 1001 test utterances, which gives 24,024 utterances in total
for testing.

Throughout this work, MFCCs are used as the speech features for recognition. The features include 12 MFCCs (without c0),
logarithmic energy, and their corresponding velocity and acceleration components.

The FFRL baseline method is the ETSI Distributed Speech Recognition (DSR) Standard [23] with a frame length of 25 ms
and a frame rate of 100 Hz.

3.2. Comparison with other methods

Table 1 compares the word error rate (WER) for FFRL, SNR-LogE-VFR and SNR-LogE-VFRL for various noise types and SNR
values.

It can be noticed that for all noise types, SNR-LogE-VFRL outperforms SNR-LogE-VFR that again outperforms FFRL. SNR-
LogE-VFRL significantly outperforms SNR-LogE-VFR for 0 dB, 5 dB and 10 dB. For 15 dB and 20 dB, SNR-LogE-VFR marginally
outperforms SNR-LogE-VFRL on average, but not for all noise types. For clean speech, FFRL outperforms the others. In prac-
tice, the VFRL analysis can be switched off for clean speech and therefore the recognition performance will be the same as
Table 1
Percent WER across the methods.

FFRL baseline (ETSI standard) SNR-LogE-VFR SNR-LogE-VFRL

Noisy speech Average 38.7 28.7 25.8

Subway Average 30.5 28.4 26.6
20 dB 2.9 5.2 4.7
15 dB 6.5 10.1 8.5
10 dB 21.3 20.2 17.0
5 dB 47.8 38.3 34.8
0 dB 74.0 67.9 67.9

Babble Average 50.1 27.8 26.0
20 dB 9.8 3.8 4.9
15 dB 26.2 7.3 9.0
10 dB 50.6 18.2 17.1
5 dB 73.2 40.0 34.1
0 dB 90.7 69.8 64.9

Car Average 39.4 29.2 24.9
20 dB 2.6 4.1 5.3
15 dB 10.0 7.9 8.9
10 dB 33.0 18.5 15.8
5 dB 65.9 40.9 32.3
0 dB 85.5 74.6 62.3

Exhibition Average 34.6 29.6 25.8
20 dB 3.6 4.2 5.1
15 dB 8.0 9.8 9.1
10 dB 24.3 19.9 16.2
5 dB 55.2 41.0 33.3
0 dB 81.9 73.3 65.1

Clean speech Average 1.0 1.4 1.7
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that of FFRL, at the cost of an increased system complexity. Figs. 3 and 4 further show the performance trends for these meth-
ods. The proposed method constantly demonstrates the superior performance across the SNR values and noise types.

Further experiments were conducted to investigate the behavior of VFRL through the analysis of recognition error types.
Table 2 shows the number of correctly recognized words, the number of recognition errors in different types and the WER
results for speech corrupted by car noise at 10 dB, which was chosen as an example. It should be noted that the improvement
comes from all types of recognition errors and from the correctly recognized words.

The recognition results for a number of methods are presented in Table 3. Additionally the table includes the results of
FFRL with a frame length of 32 ms as a reference. Cep-VFR refers to the energy weighted cepstral distance based VFR [4]. Cep-
VFR + VAD is the combination of the Cep-VFR method with voice activity detection and the results for this method are cited
from [5]. LogE-VFR is the energy-based VFR presented in [6] and the results are cited from this reference as well. The SNR-
LogE-VFR is the a posteriori SNR weighted energy distance based VFR [2]. Finally SNR-LogE-VFRL is the proposed VFRL
method.
Fig. 3. Average WER performance of different methods across different noise types (as also given in Table 1).

Fig. 4. Average WER performance of different methods across different SNR values (as also given in Table 1).

Table 2
Number of correctly recognized words, number of errors for different recognition error types and percent WER (car noise
at 10 dB, in total 3353 words).

Correct Deletion Substitution Insertion WER (%)

FFRL baseline 2739 154 460 492 33.0
SNR-LogE-VFR 2760 167 426 28 18.5
SNR-LogE-VFRL 2837 129 387 13 15.8

Table 3
Percent WER across the methods (for noisy speech, the WER is averaged over 0–20 dB and four noise conditions). The results for Cep-VFR + VAD are cited from
[5] and the results for LogE-VFR are cited from [6].

FFRL baseline
(ETSI)

FFRL
32 ms

Cep-VFR Cep-VFR + VAD LogE-VFR SNR-LogE-VFR SNR-LogE-VFRL MSNE-SS SNR-LogE-VFRL
+ MSNE-SS

Noisy speech 38.7 36.8 29.5 30.0 31.4 28.7 25.8 33.7 20.2
Clean speech 1.0 1.0 3.5 1.4 1.1 1.4 1.7 1.5 1.3



Table 4
Percent WER for VFRL with different parameter settings (for noisy speech, the WER is averaged over
0–20 dB and four noise conditions).

Noisy speech Clean speech

FFRL baseline 38.7 1.0
(a0 = 9.0, b0 = 2.5) 25.8 1.7
(a0 + 0.5, b0) 26.6 1.8
(a0 - 0.5, b0) 25.8 1.7
(a0, b0 + 0.5) 25.6 1.7
(a0, b0 - 0.5) 26.0 1.7
(a0 - 1, b0 + 1) 25.4 2.0
(a0 + 1, b0 - 1) 27.2 1.8
(c0 - 1 = 12) 25.7 1.7
(c0 + 1 = 14) 25.9 1.7
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It is noticed that all VFR methods outperform the baseline FFRL in noisy conditions. SNR-LogE-VFR has both lower com-
plexity and better recognition performance compared to the other VFR methods. SNR-LogE-VFRL further introduces 2.9%
absolute improvement in WER over SNR-LogE-VFR for noisy speech. As compared with the FFRL baseline, the improvement
is very significant with a WER reduction from 38.7% to 25.8%. The performance on clean speech decreases moderately, which
is a common cost for applying noise-robust methods.

It should be noted that in the implementation of VFRL, the noise energy value is first calculated as an average from the
frames at the beginning of an utterance and is then replaced when a frame appears to have a lower energy. This implemen-
tation improves noise estimation especially when there are non-representative noise samples in the beginning, and it boosts
the VFR method performance up from 28.7% to 28.3% for noisy speech and introduces no difference for clean speech.

SNR-LogE-VFRL is applied in combination with multi-condition training and compared with SNR-LogE-VFR and FFRL. The
WER results of Test Set A for SNR-LogE-VFRL, SNR-LogE-VFR and FFRL are 16.2%, 15.2% and 12.2%, respectively. These results
show that VFRL and VFR methods do not work well with multi-condition training, which is consistent with the findings in [6]
(LogE-VFR) and [7] (pseudo pitch synchronous analysis).
3.3. Parameter settings

Regarding the threshold setting for frame selection, a number of parameters are used. Experiments have been conducted
to investigate how much the performance varies according to the change of parameters. The experimental results are shown
in Table 4. It can be noted that changing the parameters in a number of ways, does not result in dramatic changes in the
performance.
3.4. VFRL in combination with spectral-domain method

VFRL analysis relies on some distance measures for frame selection. These measures, however, can be largely affected by
noises that corrupt the speech signal. If the noisy speech signal is first de-noised by a speech enhancement method and
thereafter analyzed by the VFRL method, it is expected that applying the speech enhancement method will both enhance
the speech signal and improve the frame selection. The speech enhancement method adopted in this work, is the minimum
statistics noise estimation (MSNE) based SS [10,17]. MSNE assumes that speech cannot occupy a frequency bin all the time
and thus treats the minimum value of each frequency bin in the power spectral density domain, within a long-enough win-
dow as the noise estimate of the current frame. The WERs for the MSNE-SS are 33.7% for noisy speech and 1.5% for clean
speech. The combination of the VFRL and the SS achieves a performance of 20.2% and 1.3% for noisy speech and clean speech
respectively, in comparison with the performance of 25.8% and 1.7% obtained by VFRL alone. This significant improvement in
recognition performance indicates the VFRL method and the enhancement method compensates each other very well. This
verifies that the enhancement improves the frame selection while at the same time de-noising the speech. These results are
included in Table 3 for ease of comparison.
4. Analysis of the effect of frame length

An interesting and important question is how the different frame lengths have impact on the performance of speech rec-
ognition. In general, frame length for speech analysis is determined so that it is short enough to keep unchanged the speech
properties of interest roughly within the frame and long enough to be able to estimate the desired parameters [24]. In [25], it
is shown that longer speech segments can be recognized more accurately from noise compared to shorter ones in the context
of speaker recognition. In this section, we evaluate how it influences speech recognition performance.
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4.1. The effect of the frame length range of VFRL

In order to investigate how the maximal frame length influences the performance of the VFRL method, we conducted a
number of experiments with the initial/minimal frame length being 25 ms as previously used and the maximal length
varying from 32 ms to 64 ms (32 ms is the default maximal length and has been used for all previous experiments for
the VFRL). Speech recognition results presented in Columns 3–6 of Table 5 show that 32 ms maximal length gives the best
performance in almost all conditions. It can be noticed that the performances of 35 ms VFRL and 37.5 ms VFRL are worse
than that of 32 ms VFRL, but they are still better than that of SNR-LogE-VFR for noisy speech (28.7% WER as shown in
Table 1).

Furthermore, the performances for VFLR with a smaller initial frame of 20 ms and different maximal frame lengths (25 ms
and 32 ms) were investigated. It can be seen that smaller initial frame lengths perform worse than 25 ms frame length due to
the decreased resolution for the low frequencies. These results can well be explained by the fact that formant patterns are
best exhibited when the frames are of a certain length around 25–30 ms.
4.2. The effect of the frame length of FFRL

We further investigate the effect of different frame lengths on FFRL based speech recognition. A number of experi-
ments were conducted, with the frame shift fixed at 10 ms and the different fixed frame length ranging from 25 ms
to 64 ms. Speech recognition results are presented in Table 6. The results show that increasing the frame length (up
to 37.5 ms) improves speech recognition performance in noisy environments, while the performance for clean speech
is maintained. The 32 ms FFRL outperforms the 25 ms FFRL for almost all conditions while equally performing for clean
one. This indicates that longer speech segments in noisy environments can be more accurately recognized than short
ones. The performance for 64 ms is slightly worse than others, which is reasonable as 64 ms is apparently too large
frame length.

Note that FFRL gives the same WERs for clean speech regardless of the frame length while VFRL generates different WERs
when different maximal frame lengths are used. The main reason for the different behaviors between the VFRL and FFRL as
shown in Tables 5 and 6 is because FFRL has the frame length fixed (even though the lengths are different for different set-
tings), but VFRL has the frame lengths varying within a range (e.g. 25–32 ms, 25–35 ms). What is more important for VFRL is
the range, not only the maximal length. This is further justified by the same performance of VFRL on clean speech given by
25–32 ms and 20–25 ms as shown in Table 5.
Table 5
Percent WER for VFRL with different ranges of frame length.

Range of frame length 25–32 ms 25–35 ms 25–37.5 ms 25–64 ms 20–25 ms 20–32 ms

Noisy speech Average 25.8 26.8 27.5 37.2 27.1 28.4

Subway Average 26.6 28.0 28.7 37.8 27.9 29.2
20 dB 4.7 6.4 6.2 14.1 5.6 7.9
15 dB 8.5 9.3 10.5 19.9 9.5 12.0
10 dB 17.0 18.3 19.2 29.9 17.1 20.6
5 dB 34.8 36.7 38.6 51.1 37.6 38.3
0 dB 67.9 69.4 69.1 74.8 69.6 67.0

Babble Average 26.0 27.0 27.7 37.0 26.5 29.4
20 dB 4.9 5.3 5.7 11.6 4.9 7.6
15 dB 9.0 9.9 10.1 16.9 8.8 11.8
10 dB 17.1 18.0 18.9 29.2 17.0 21.1
5 dB 34.1 35.4 36.6 51.0 35.8 38.1
0 dB 64.9 66.3 67.3 76.2 66.0 68.4

Car Average 24.9 26.2 26.7 37.3 26.6 27.2
20 dB 5.3 6.3 7.0 12.8 5.0 7.4
15 dB 8.9 9.9 10.3 18.2 8.8 11.3
10 dB 15.8 16.8 17.5 29.2 17.0 18.7
5 dB 32.3 32.6 32.7 50.6 34.9 33.7
0 dB 62.3 65.6 65.8 75.5 67.0 65.1

Exhibition Average 25.8 25.9 27.5 36.8 27.3 27.7
20 dB 5.1 5.8 6.2 11.8 5.4 6.8
15 dB 9.1 8.8 9.5 17.7 9.2 11.0
10 dB 16.2 15.8 17.0 28.0 17.1 18.1
5 dB 33.3 33.9 34.8 50.9 36.4 36.3
0 dB 65.1 65.5 65.9 75.4 68.5 65.5

Clean speech Average 1.7 1.9 2.1 4.7 1.7 2.1



Table 6
Percent WER for FFRL with different frame lengths.

25 ms 32 ms 35 ms 37.5 ms 64 ms

Noisy speech Average 38.7 36.8 36.3 37.0 39.6

Subway Average 30.5 28.4 28.5 30.4 34.6
20 dB 2.9 3.1 3.1 2.9 3.4
15 dB 6.5 6.2 6.6 6.8 9.4
10 dB 21.3 18.6 18.8 20.8 27.5
5 dB 47.8 42.8 43.1 46.9 54.7
0 dB 74.0 71.5 71.0 74.3 78.0

Babble Average 50.1 47.4 45.8 46.0 46.0
20 dB 9.8 7.6 7.7 7.6 7.3
15 dB 26.2 22.2 21.9 22.1 21.7
10 dB 50.6 47.4 45.5 46.1 44.9
5 dB 73.2 72.1 69.1 69.0 68.0
0 dB 90.7 87.9 85.0 86.0 88.3

Car Average 39.4 37.8 37.6 37.7 41.0
20 dB 2.6 2.5 2.5 2.6 2.7
15 dB 10.0 7.7 7.3 7.9 10.4
10 dB 33.0 28.9 28.1 28.5 34.0
5 dB 65.9 63.1 62.5 62.3 69.6
0 dB 85.5 86.8 87.7 87.2 88.2

Exhibition Average 34.6 33.5 33.3 33.8 37.0
20 dB 3.6 3.3 3.2 3.3 3.3
15 dB 8.0 7.3 7.2 7.1 9.3
10 dB 24.3 21.0 21.9 21.5 28.1
5 dB 55.2 53.4 51.8 53.6 59.5
0 dB 81.9 82.3 83.5 83.8 84.7

Clean speech Average 1.0 1.0 1.0 1.0 1.0
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5. Conclusions

This paper has shown that the proposed variable frame length and rate method, using accumulative a posteriori SNR
weighted energy distance, is able to assign more frames with normal lengths to fast changing events and, fewer frames with
larger frame lengths to steady regions. The variable frame rate analysis targets at finding the right time resolution at the sig-
nal level while the variable frame length analysis targets at the right time–frequency resolution at the frame level for noisy
speech. Speech recognition experiments verify that the proposed variable frame rate and length method improves speech
recognition performance in noisy environments. The method was combined with the minimum statistics noise estimation
based spectral subtraction method and good recognition performance was achieved. The effect of frame lengths on speech
recognition was investigated to explain the behavior of the proposed variable frame length and rate method. It was found
that setting the right range which frame length can vary between is as important as setting the maximal length that is
allowed.

Future work is focused on applying the variable frame rate and length method to speaker identification and verification
task.
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