
A Posteriori SNR Weighted Energy Based Variable Frame Rate Analysis for 
Speech Recognition 

Zheng-Hua Tan and Børge Lindberg 

Multimedia Information and Signal Processing (MISP), Department of Electronic Systems, 
Aalborg University, Denmark 

Niels Jernes Vej 12, 9220, Aalborg, Denmark 
{zt, bli}@es.aau.dk 

 

Abstract 
This paper presents a variable frame rate (VFR) analysis 
method that uses an a posteriori signal-to-noise ratio (SNR) 
weighted energy distance for frame selection. The novelty of 
the method consists in the use of energy distance (instead of 
cepstral distance) to make it computationally efficient and the 
use of SNR weighting to emphasize the reliable regions in 
speech signals. The VFR method is applied to speech 
recognition in two scenarios. First, it is used for improving 
speech recognition performance in noisy environments. 
Secondly, the method is used for source coding in distributed 
speech recognition where the target bit rate is met by 
adjusting the frame rate, yielding a scalable coding scheme. 
Prior to recognition in the server, frames are repeated so that 
the original frame rate is restored. Very encouraging results 
are obtained for both noise robustness and source coding. 
Index Terms: speech recognition, speech analysis, variable 
frame rate, noise robustness, source coding 

1. Introduction 
Placed in between input signals and the recognition decoder, 
the front-end of an automatic speech recognition (ASR) 
system commonly processes the input signals frame-by-frame 
at a fixed rate. This processing is based on the two 
assumptions: that speech signals exhibit quasi-stationary 
behavior in a short time, and that acoustic models such as 
hidden Markov models (HMMs) are capable of absorbing the 
dynamics of variable information rate. However, the two 
assumptions hold only to some extent as discussed below.  

First, an input signal often consists of non-speech parts 
and speech parts that again consist of steady regions and 
rapidly changing events. Speech sounds like plosives or 
speech attributes like transitions can last a very short period, 
indicating that the use of a fixed frame rate (e.g. at 100 Hz) is 
insufficient to provide a fine representation for these events. 
On the other hand, steady regions like vowels can last a 
relatively long period without significant changes in the 
spectrum. Over-sampling the spectrum may generate 
unnecessary frames which can increase insertion errors and 
computational load. For the non-speech parts the best is no 
samples at all. Clearly, the fixed frame rate analysis is 
unsatisfactory [1].  

     Secondly, HMMs are known to poorly model the 
variability of sound durations. The variable-duration problem 
is particularly severe in spontaneous speech, which motivates 
research interests in duration normalization [2] and speaking-
rate dependent decoding [3]. This weakness of HMMs has 
been demonstrated in [4] as well, yet from a different angle, 
where it is shown that a mismatch between the frame rate and 

the number of HMM states may introduce a considerable 
degradation in recognition performance.  

Variable frame rate (VFR) analysis is capable of largely 
releasing the two assumptions discussed above by providing a 
fine resolution for rapidly changing events and by 
normalizing the sound durations. This, however, requires 
examining the speech signal at a higher rate than 100 Hz, as 
done in [5]. When the cepstral distance measure that has been 
widely used in VFR analysis for frame selection is applied, 
the procedure of extracting cepstral features at a high rate and 
then discarding the majority of these is waste of computing 
resources and thus limits the possible high time resolution and 
the usage of the VFR analysis. However, note that the first-
order difference in frame-to-frame energy provides greater 
discrimination than components of Mel-frequency cepstral 
coefficients (MFCCs) other than c0 [6] and that the 
effectiveness of the energy based criterion has been 
demonstrated in [7]. Evidently, energy based search is much 
more computationally efficient and thus enables a finer 
granularity in search.  

Moreover, speech segments are accounted in ASR not 
only on their characteristics, but also on their reliability. The 
later is important in particular for speech recognition in noisy 
environments and is pursued in missing data theory and 
weighted Viterbi decoding methods where low signal-to-noise 
ratio (SNR) features are either neutralized or less weighted in 
the ASR decoding process. The SNR information should be 
exploited for frame selection as well. All these considerations 
lead us to propose the a posteriori SNR weighted energy 
based selection criterion for VFR.  

The paper is organized as follows. First, existing methods 
and motivations are presented in Section 2. The a posteriori 
SNR weighted energy based VFR is detailed in Section 3. 
Sections 4 and 5 apply the VFR method to robust speech 
recognition and to distributed speech recognition (DSR) for 
data compression, respectively. Finally, we conclude the 
paper in Section 6. 

2. Existing methods and motivations 
Variable frame rate analysis has a broad spectrum of 
applications, ranging from computational reduction in the 
early days, through improved acoustic modeling and noise 
robustness, to prolonged speech recognition in singing voice 
or in spontaneous speech. For these applications, various 
techniques have been developed. Mostly, VFR analysis 
extracts speech feature vectors – equivalent to frames – at a 
fixed-frame-rate first and then uses a certain criterion to retain 
or omit frames. The frame selection is done by calculating 
some distance (or similarity) measure and comparing it with a 
threshold.  
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In [8], the distance measure is computed as the Euclidean 
distance between the last retained feature vector and the 
current vector. The decision criterion is to discard the current 
frame if the measure is smaller than a defined threshold. In 
[9], it is based on the norm of the first derivative cepstrum 
vector. The current frame is discarded if the norm is smaller 
than a threshold. In this way, neighboring frames of the 
current frame, rather than only two frames as in [8], are used 
in the decision making. Due to the reduced number of feature 
vectors, computation time for decoding is saved.  

Lately, there has been a growing interest in applying VFR 
to deal with additive noise in the time domain [5], [7], [10]. In 
[5], Zhu and Alwan proposed an effective VFR method that 
uses a 25 ms frame length and a 2.5 ms frame shift for 
calculating MFCCs and conducts frame selection as follows. 
First, the energy weighted Euclidean distance of adjacent 
MFCC vectors is calculated as 

 )/)(log)((log)1,()( βtEtEttDtD −⋅−=           (1) 
where )1,( −ttD  is the Euclidean distance between frame t 
and frame t-1, )(log tE  is the logarithmic energy of frame t 

and )(log tE  is the mean of )(log tE  over a certain period, 
for example, an utterance. β  was set to be 1.5 both in [5] and 
in this work. Based on the distance, the threshold is then 
computed as  

)(tDT ⋅= α                                                      (2) 

where )(tD  is the mean of the weighted distance )(tD  over a 
period, and α  is a factor that determines the average frame 
rate. α  was set to be 6.8 in [5]. Finally, a frame is selected if 
the distance ∑= )()( tDtA  accumulated since last-selected-
frame is greater than the threshold T.  

A thorough comparison of the VFR methods referred 
above was conducted in [11] and the one in [5] was found to 
outperform the others for both frame selection and speech 
recognition, but it did not show improvement in recognition 
accuracy over an FFR analysis on a general database. 

A few observations are obtained from analyzing the 
existing methods. First, it is noted from Eq. 1 that )(tD  is not 
guaranteed to be a non-negative value. For clean speech, due 
to the significant difference in energy between silence and 
speech regions, the weights will be negative for a silence 
region and the resulting negative values will accumulate and 
thus influence the frame selection for the speech right after 
the silence region. This is likely to be the reason why it 
performs well for low SNR speech, but shows no 
improvement on a general database.  

Next, the procedure of extracting cepstral features at a 
high rate and then discarding the majority of these is waste of 
computing resources. The entropy-based VFR analysis 
proposed in [10] introduces even higher computational cost 
though with improved recognition accuracy. Given that 
energy provides a good discrimination, energy based search 
can potentially enable a determination of frame shift without 
pre-computing feature vectors at a fixed rate.  

Finally, speech segments are accounted in ASR not only 
on their characteristics, but also on their reliability. SNR is a 
good measure for reliability and thus can be exploited for 
frame selection.  

All these considerations lead us to propose the a 
posteriori SNR weighted energy selection criterion for VFR.  

3. A posteriori SNR weighted energy based 
VFR 

The proposed method conducts frame selection on the basis 
of an accumulative, a posteriori SNR weighted energy 
distance. A posteriori SNR is defined as the logarithmic ratio 
of the energy of noisy speech to the energy of noise; in 
contrast, a priori SNR is the logarithmic ratio of the energy of 
speech to the energy of noise. Calculating a posteriori SNR is 
rather straightforward, while calculating a priori SNR 
requires estimating the energy of clean speech which is a 
challenging task in itself.   

3.1. The proposed VFR method 

The algorithm of the method is as follows: 
1. Compute the a posteriori SNR weighted energy distance 

of two consecutive frames as  
)(|)1(log)(log|)( tSNRtEtEtD post⋅−−=      (3) 

where )(log tE  is the logarithmic energy of frame t, and 
)(tSNRpost  is the estimated a posteriori SNR value of 

frame t by using a 1 ms frame shift and a 25 ms frame 
length.  

2. Compute the threshold T  for frame selection as  
)(log)( noiseEftDT ⋅=                                  (4) 

where )(tD  is the average weighted distance over a 
certain period and )(log noiseEf  is a sigmoid function of 

noiseElog  to allow a smaller threshold and thus a higher 
frame rate for clean speech. The sigmoid function is 

defined as )13(log21
5.20.9)(log −−+

+=
noiseEnoise e

Ef  where 

the constant of 13 is chosen so that the turning point of 
the sigmoid function is at a posteriori SNR of between 15 
and 20 dB. The choice of sigmoid parameters and their 
influence on ASR performance are detailed in [17].  

3. Update the accumulative distance: )()( tDtA =+  on a 
frame-by-frame basis and compare it against the threshold 
T : If TtA >)( , the current frame is selected and )(tA  is 
reset to zero; otherwise, the current frame is discarded. If 
the current frame is not the last one, the search continues, 
that is, go back to step 1.  
The use of a posteriori SNR, rather than a priori SNR, 

avoids the problem of assigning zero or negative weights to 
frames with dBSNRprio 0≤  and subsequently discarding 
them due to their non-positive weights. As such, the a 
posteriori SNR weight for noise-only frames will be 
theoretically equal to 0 dB, which serves as an implicit, soft 
VAD; negative a posteriori SNR values may still appear in 
practice and are then set to zero to prevent negative weights. 
In this work noiseE  for calculating )(tSNRpost  and noiseElog  

for calculating T  are both simply estimated by averaging the 
first 10 frames of an utterance which are considered noise 
only. The average weighted distance )(tD  is calculated over 

one utterance; in practice, )(tD  calculated over preceding 
segments can be used and it is then updated frame-by-frame 
based on a forgetting factor.  

As only the logarithmic energy and the a posteriori SNR 
value are calculated for each frame, the VFR method has a 
very low complexity as compared with the existing methods 
described.  
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3.2. Frame selection 

The comparison study in [11] showed that the VFR method in 
[5] outperformed a few other methods for both frame 
selection and speech recognition. Figure 1(a) illustrates a 
comparison between the proposed method and the method in 
[5] in terms of frame selection for the clean speech of the 
English digit “five”. The five panels in Fig. 1(a), sequentially, 
illustrate the waveform, the spectrogram, the frames selected 
by the referenced method with 0.5=α , the frames selected 
by the proposed one and the phoneme annotation. Figure 1(b) 
shows the same comparison for 0 dB speech. In this work, it 
has been experimentally found that 0.5=α , rather than 

8.6=α , gives the best recognition results. 

 

(a) 

 

(b) 

Fig. 1. Frame selection for the English digit “five”: (a) For 
clean speech: waveform (the 1st panel), spectrogram (the 2nd 
panel), frames selected by the referenced method [5] with 

0.5=α  (the 3rd panel), frames selected by the proposed 
method (the 4th panel), phoneme annotation (the 5th panel); 
(b) for 0 dB speech with the same order of panels as in (a).    

Figure 1(a) shows that the proposed VFR assigns a higher 
frame rate to fast changing events such as consonants, lower 
frame rate to steady regions like vowels and no frames to 
silence, which exactly represents the objective of applying 
VFR analysis. In contrast, the referenced method also 
performs well but with one weakness namely eliminating the 
first part of speech following a silence due to the negative 
weights resulting from β/)(log)(log tEtE − . Figure 1(b) 
shows that the proposed VFR method realizes an implicit 
VAD very well even for a 0 dB signal as there is only one 
frame output for the silence part, while the referenced method 
results in almost evenly distributed frames.  

4. Noise robust speech recognition 
The proposed VFR method is applied to noise robust speech 
recognition. Experiments are conducted on the Aurora 2 
database [12], which is the TI digits database artificially 
distorted by adding noise and using a simulated channel 
distortion. Whole word models are created for all digits using 
the HTK recognizer. Each of the whole word digit models has 
16 HMM states with three Gaussian mixtures per state. The 
silence model has three HMM states with six Gaussian 
mixtures per state. A one state short pause model is tied to the 
second state of the silence model.  

The word models used in the experiments are trained on 
clean speech data. The test data is Test Set A including clean 
speech and noisy speech corrupted by four noise types: 
“Subway”, “Babble”, “Car”, and “Exhibition” with SNR 
ranging from 0 to 20 dB. The speech features are 12 MFCC 
coefficients, logarithmic energy as well as their 
corresponding velocity and acceleration components. 

4.1.  Experimental results 

The word error rate (WER) results for a number of methods 
are presented in Table 1. The fixed frame rate (FFR) baseline 
uses a fixed 10 ms frame shift. VFR ( 0.5=α ) is the VFR in 
[5]. The referenced method does not give an acceptable 
performance for clean speech. The reason is that the energy 
weight β/)(log)(log tEtE −  results in no frames output for 
the first part of speech right after the silence which is often a 
short-duration consonant, as exemplified in Fig. 1(a).  

The energy based VFR (LogE-VFR) [7] also gives a good 
performance on noisy speech, though worse than that of [5]. 
The proposed method (SNR-LogE-VFR) is superior to the 
cited methods and has lower complexity.   

 
Table 1. Percent WER across the methods for Test Set 
A. The results for LogE-VFR are cited from [7]. 

0 ~ 20 dB Methods Subway Babble Car Exhibit. Average Clean

FFR  30.5 50.1 39.4 34.6 38.7 1.0 
VFR 
( 0.5=α ) 28.9 29.0 28.9 31.1 29.5 3.5 

LogE-VFR N/A N/A N/A N/A 31.4 1.1 
SNR-
LogE-VFR 28.3  27.8 29.2 29.6 28.7 1.4 

4.2. Combination with spectral subtraction  

Variable frame rate analysis relies on distance measures for 
frame selection; however, these measures can be largely 
affected by noises that corrupt the speech. On the other hand, 
as the VFR method operates in the time domain, it has a good 
potential to be combined with other methods, e.g. spectral 
subtraction. The idea of the following experiment is to first 
use spectral subtraction to de-noise the speech and then apply 
a VFR analysis. 

Table 2 shows the results of combining the VFR with the 
minimum statistics noise estimation (MSNE) [13] based 
spectral subtraction (SS). The constant of 13 in the sigmoid 
function is optimized to be 10 due to the use of SS. It is 
observed that the combination achieves a 17.1% absolute 
WER reduction over the FFR baseline. Interestingly, the 
improvement of the combined method is greater than the 
summation of the gains obtained by applying the two methods 
individually. This justifies the dual contributions of spectral 
subtraction when combined with the VFR method, i.e. 
improving frame selection and enhancing speech.  

 
Table 2. Percent WER for SS and its combination with 
the VFR for Test Set A. 

0 ~ 20 dB Methods Subway Babble Car Exhibit. Average Clean

MSNE-SS 31.9 43.0 25.6 34.1 33.7 1.5 
MSNE-SS 
+SNR-
LogE-VFR 

19.7  26.4 18.6 21.7 21.6 1.3 
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5. Source coding in DSR 
Distributed speech recognition employs the client-server 
architecture by placing the front-end in the client and the 
computation-intensive back-end in the server. This 
architecture relieves the burden of computation, memory and 
energy consumption from mobile devices. One issue induced 
by the distributed solution is the requirement of data 
compression. 

The VFR method aims at a high time resolution for fast 
changing events and a low time resolution for steady regions. 
The same philosophy is applied in source coding as well. 
Frame allocation in the feature extraction process optimized 
over a certain period in the VFR analysis is likely of benefit 
to the source coding which follows right after the feature 
extraction.  

An efficient compression method in DSR is the two-
dimensional Discrete Cosine Transform (2D-DCT) based 
code [14]. More recently, the group of pictures concept (GoP) 
from video coding was applied to DSR to achieve a variable-
bit-rate interframe compression scheme [15]. The results for 
these methods are cited and presented in Table 3. The ETSI-
DSR standard, however, uses a split vector quantization for 
data compression without exploiting interframe information 
[16].   

In this work, we use the VFR method for data 
compression where the target bit rate is simply realized by 
choosing a proper frame rate. For comparison purpose, we 
optimized the SNR-LogE-VFR, by constraining the range of 
the frame selection search, to give a comparable performance 
on clean speech to the ETSI-DSR baseline. After applying 
split vector quantization, this gives a DSR front-end with a bit 
rate of approximately 3.5 kbps (SNR-LogE-VFR-DSR) and 
its recognition results are shown in Table 3. A bit rate of 
approximately 1.5 kbps is implemented as well and to restore 
the original frame rate for the match between the frame rate 
and the applied HMMs, frame repetition is applied in the 
server. The mismatch can as well be removed by using a 
smaller number of HMM states, at the expense of additional 
acoustic model sets. Experimental results in Table 3 show that 
the VFR based source coding is significantly superior to the 
2D-DCT method and the GoP one.  
 
Table 3. Percent WER across the data compression 
methods for Test Set A. The results for 2D-DCT and 
GOP are cited from [14] and [15], respectively.  

0 ~ 20 dB 
Methods 

kbps 
(pay 
load) 

Subwa
y Babble Car Exhibit. 

Aver- 
age 

Clea
n 

ETSI-DSR 4.40 32.3 50.4 40.6 36.1 39.8 1.0 
2D-DCT 1.45 N/A N/A N/A N/A 40.5 1.6 

2.57  N/A N/A N/A N/A N/A 2.5 
GOP 

1.27  N/A N/A N/A N/A N/A 2.6 
SNR-LogE-
VFR-DSR 3.50 34.0 31.6 34.8 34.6 33.7 1.0 

SNR-LogE-
VFR-DSR 1.50 34.3 30.9 33.0 33.0 32.8 1.2 

6. Conclusions  
This paper has presented a new variable frame rate analysis 
method that relies on the accumulative, a posteriori SNR 

weighted energy distance for frame selection. In terms of 
frame selection, the method is able to assign a higher frame 
rate to fast changing events such as consonants, a lower frame 
rate to steady regions like vowels and no frames to silence, 
even for very low SNR signals. The method was then applied 
to noise-robust speech recognition and was further combined 
with a spectral-domain method. Encouraging results were 
obtained. The VFR was moreover applied to distributed 
speech recognition for source coding, resulting in an efficient, 
scalable coding scheme. The advantage of the proposed 
method lies in its low complexity and improved performance.  
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