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Abstract 

The introduction of ubiquitous computing and networking has 
fostered automatic speech recognition (ASR) systems of a 
distributed nature. The major challenge in deploying ubiquitous 
ASR is that the operating environments may change rapidly 
leaving the ASR system very vulnerable. This paper deals with 
the concept of making ASR systems context-aware with the aim 
of improving robustness against varying conditions such as 
dynamic network constraints and environmental noise. To fully 
benefit from a variety of networks with different characteristics, 
a number of distributed speech recognition (DSR) schemes are 
presented each of which is applicable to a specific network 
context. To increase ASR system robustness in varying 
environmental noise context, a multiple-model framework for 
noise-robust ASR is presented where multiple HMM model sets 
are trained, one for each noise type and each specific signal-to-
noise ratio (SNR) that characterise the noise context. 
Experimental results show that the performance of ASR is 
largely improved by exploiting the context information.  
 

1. Introduction 

The trend in recent years computing is that networking is 
becoming pervasive and devices are shrinking in size and 
becoming common in use, which together pave the way to a 
ubiquitous computing environment. This is both an opportunity 
and a challenge for the development of services of today. The 
opportunity is that services and systems can have higher 
complexity, consume more computing resources, and access to 
more information than ever before. The challenge, however, is 
that the operating environments in ubiquitous computing 
generally change rapidly making a static system unsuitable. 
Therefore there is a high demand for systems to adapt to the 
ever changing environment – the context. Context-awareness is 
forecasted to play a paramount role in the success of future 
services. 

This transfer in computing will have a significant impact on 
the present ASR research, demanding also for a paradigm shift 
to take place. On the one hand, the advent of ubiquitous 
networking has promoted the development of ASR systems of a 
distributed nature which again facilitate ubiquitous ASR. The 
benefits offered by networked solutions such as DSR have been 
widely accepted. On the other hand, it is a challenge to deploy 
ubiquitous ASR in the varying contexts.  

More generally, the deployment of ASR technology of 
today is restricted because of the variability in environmental 
noise, in channel induced noise and in speaker-related 
variations. In context-aware systems, however, some of these 
robustness problems can potentially be reduced. This may for 

example include improving system robustness by regularly 
monitoring and utilising environmental information such as 
noise, and eliminating speaker-to-speaker variability of speech 
by introducing the concept of a personalised recogniser, as 
envisioned by Furui [1].  

At least three categories of context are foreseen for 
consideration: 1) the computing context such as network and 
terminal capabilities; 2) the user context such as the user’s 
profile and location; 3) the physical context such as noise 
characteristics [2].  

This paper reviews the concept of context-awareness as 
incorporated into ASR systems. Then two aspects in particular 
are introduced. The first is on network awareness where a 
number of DSR schemes are presented each of which is 
applicable to one specific network context. The second is on 
environmental noise awareness in which an ASR system based 
on noise type- and SNR classification is introduced.  

2. Context and context-awareness 

Though context is lexically defined as “the circumstances in 
which an event occurs” it gives rise to a number of different 
interpretations within ubiquitous computing. One way of 
defining context is to list examples often encountered. For 
example, Schilit et al. define context as the dynamically 
changing environment including computing environment, user 
environment and physical environment [2]. This definition is 
intuitive and instructive but is still insufficient in its capability 
to generalise. Instead, Dey and Abowd define context as “any 
information that can be used to characterise the situation of an 
entity, where an entity can be a person, a place, or a physical or 
computational object” [3]. 

The use of context is becoming increasingly important yet is 
still a challenging problem. A system is context-aware if it is 
enabled to collect, understand and utilise context information 
e.g. by adapting its behaviour to the current context. Adaptation 
is the key element of context-awareness.  

As context is information that users do not explicitly 
provide, it is critical to automatically collect context knowledge 
[4] and ubiquitous networking significantly facilitates this 
collection. A noticeable development in this area is the 
introduction of sensor networks which capture the information 
of surroundings and enable services to act upon the revealed 
information [5].  

3. Context-aware ASR systems  

In traditional computer systems an input-output architecture is 
adopted where only explicit input and output are considered. 
Lieberman and Selker extend the architecture by including 
context as an - implicit - input and output to and from the 
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system [6]. In ASR systems, the input and output are the speech 
signal and the recognised words, respectively. In making this 
system context-aware, a number of additional sources such as 
speaker-related information, acoustic environments, computing 
resources and the history need be taken into account as context 
knowledge, as shown in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Architecture of a context-aware ASR system. 
 
Robustness against the highly varying contexts has been the 

primary challenges in ASR technology over the last decades. 
The variations are extremely complex both in dimension and in 
range, making universal methodologies unrealistic so a 
paradigm shift is needed with the aim of designing systems 
sensitive to the contexts. An interesting work along this route is 
the prototype system developed by Rose et al. [7], where both 
acoustic and language models can be adapted to the device, 
user, and acoustic environment on the basis of the continually 
updated “configuration server”. 

In the following three categories of contexts are discussed 
and investigated in terms of their relevance to ASR systems. 

3.1. Computing context 

The computing context is mainly concerned with network 
connectivity, communication bandwidth and cost, device 
capacity and so on. Broadly speaking it encompasses the 
terminal-context and the network-context. 

In the years to come it is expected that a growing variety of 
communication environments will emerge, and as a 
consequence specific research efforts have to focus on network 
context management with the aim of collecting, maintaining and 
disseminating context information [8]. Access to such context 
information is of importance for the continued development of 
e.g. DSR. 

3.2. User context 

In the domain of user context, personalisation is a key concept 
and is receiving increased emphasis. Personalisation of ASR 
can be reached by a number of ways such as training and 
adapting both acoustic models and language models for a 
specific user. Furthermore, the profile of the user, her or his 
devices and even service tasks can be stored in a centralised 
“personal ASR” server.  

Instead of expanding speech databases with an increasing 
number of speakers, Shi and Chang use massive amounts of 
speaker-specific training data recorded in one’s daily life with 
the aim of training the personalised acoustic models. This 
strategy has shown a substantial improvement in ASR 
performance as compared to speaker-independent system with 
speaker adaptation applied [9].  

3.3. Physical context 

Environmental noise is a key element of physical context 
particularly for ASR as the strong variability of acoustic noise 
may dramatically degrade the ASR performance. To collect 
noise information, a number of specially designed sensors may 
be either deployed in mobile devices or embedded in the 
environment as part of sensor networks that may provide 
contextual information to devices on the basis of their locations 
[2]. To exploit the noise context, Akbacak and Hansen 
introduce an environmental sniffing framework to improve ASR 
robustness [10].  

4. Network and acoustic variations to ASR 

Aimed at optimal performance of ASR over mobile and IP 
networks, an important research topic within ASR has been to 
focus on the issue of DSR [13]-[15], [18]. In the client-server 
architecture, the DSR system splits ASR processing into the 
client based front-end feature extraction and the server based 
back-end recognition, where data transmission between the two 
parts may take place via heterogeneous networks. However, the 
transmission of data across networks presents a number of 
challenges to speech technology, for example bandwidth 
limitations and transmission errors.  

Additional to the network degradations, the speech signal is 
also corrupted by both transducer distortion and additive noise. 
Fig. 2 illustrates the architectural model including the 
degradations caused by both transmission errors and acoustic 
noise. How to handle these degradations in the context-aware 
framework is the focus of the following two sections. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Model of ASR degradations. 

5. Network awareness 

As the range of communication environments becomes larger 
and larger, it is meaningful for networked systems – like DSR – 
to be responsive to the network context. Given the availability 
of context-aware networks in which relevant context 
information is established centrally for services, this section 
introduces a set of DSR schemes each of which matches a 
specific network context characterised by bandwidth, delay and 
type of networks .  

5.1. DSR schemes 

5.1.1. Half frame-rate 

Both in low bandwidth networks and in high traffic situations, 
there is a need to have a bit-rate as low as possible (as in speech 
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coding) while still maintaining acceptable recognition 
performance. Motivated by the redundancies observed in full 
frame-rate (FFR) features caused by both the overlapping in the 
feature extraction process and the speech production process 
itself, a half frame-rate (HFR) front-end is presented for DSR. 
At the client-side, the HFR is implemented simply by using the 
double frame shifting compared to FFR and therefore half the 
bit rate is achieved. At the server-side, each HFR feature vector 
is repeated once to construct an estimate of the FFR features 
and thus no modifications are needed in the recognition back-
end. It is experimentally justified on small and medium 
vocabulary tasks that the performance attained by HFR is 
almost equal to FFR; however, repetition of each HFR feature 
vector is critical for the HFR front-end to maintain the 
performance [11]. In addition to its low bit-rate, the HFR front-
end only requires half the computational cost of the FFR, which 
is a significant reduction for resource-limited hand-held devices. 

5.1.2. Multiple description coding (MDC) 

In the HFR front-end the extracted feature vectors simply 
correspond to the odd-numbered feature vectors of the FFR 
feature vectors. Together with the even-numbered feature 
vectors, two descriptions of the speech signal are generated and 
each of them can independently be transmitted, resulting in a 
MDC coding scheme. Unlike most conventional coders, MDC 
encodes a source into two or more sub-streams (descriptions) 
that each can be delivered on separate channels with the aim of 
exploiting channel diversity and thus improving robustness 
against transmission errors [12].  

5.1.3. Interleaving 

Interleaving techniques have been broadly applied in 
communication systems to counteract the effect of burst errors, 
but at the cost of transmission delay. In interleaving, the 
ordering of a sequence of code symbols is rearranged with the 
aim of spreading the burst errors over multiple code words for 
efficient error concealment (EC). At the server, the counterpart 
de-interleaving restores the rearranged sequence to its original 
order. Interleaving has shown good performance for DSR [13]. 
In this paper, interleaving is implemented by re-ordering the 
odd-numbered and the even-numbered feature vectors. 

5.1.4. Sub-vector error concealment 

Conventional EC algorithms share the common characteristic of 
conducting EC at the vector level. In circuit-switched networks, 
however, transmission errors mainly occur at the bit level, 
which results in the fact that within erroneous vectors a 
substantial number of sub-vectors are often error-free. 
Evidently, the vector-level strategy fails to exploit error-free 
fractions left within erroneous vectors. In sub-vector based EC 
[14], the detected erroneous vectors are submitted to a further 
analysis where each sub-vector is analysed individually. This is 
conducted on the basis of a data consistency test applied to each 
erroneous vector with the aim of identifying inconsistent sub-
vectors and resulting in a consistency matrix. On the basis of 
the consistency matrix each inconsistent sub-vector is replaced 
by its nearest neighbouring consistent sub-vector whereas 
consistent sub-vectors are kept untouched. This technique has 
shown to be suitable for DSR encoded by split vector 

quantization (SVQ) and for circuit-switched network 
transmission. 

5.2. Experimental settings 

The Aurora 2 database [15] has been selected. The database is 
the TI digit database artificially distorted by adding noise and 
using a simulated channel distortion. Whole-word models are 
trained for all digits using the HTK recogniser. Each of the digit 
whole word models has 16 HMM states with three Gaussian 
mixtures per state. The silence model has three HMM states 
with six Gaussian mixtures per state. A one-state short pause 
model is tied to the second state of the silence model. To 
simulate transmission errors, the widely used GSM EP3 (error 
pattern) is chosen for this evaluation [14].  

5.3. Experimental results and discussion 

The HFR is implemented by using a frame shift of 20 ms. In 
applying MDC, the two description encodings are transmitted 
over two uncorrelated channels which both are simulated by 
EP3. Two interleaving schemes are applied: Interleaving12 in 
which a sequence of 12 vectors is grouped into one block and 
Interleaving24 where a sequence of 24 vectors is grouped. 
Interleaving is implemented simply by reading odd-numbered 
features first and even-numbered features second from the 
blocks. As a result, Interleaving12 and Interleaving24 have 50 
ms (or 5 vectors) and 110ms maximum delay, respectively. 
Repetition (used in Aurora baseline), linear interpolation and 
sub-vector EC are also evaluated.  

Table 1 shows the performance resulting from applying the 
different DSR schemes on the clean data from Test Set A. It is 
observed that the performance of the MDC scheme approaches 
that of the error-free channel. The restriction of deploying MDC 
is the requirement of available independent multiple channels. 
The interleaving schemes achieve good performance, however 
at the expense of an added delay. Sub-vector EC gives good 
performance with the requirement of errors occurring at the bit 
level. HFR performs better than the Aurora baseline with only 
half the bit rate. 

Future networks will be dynamic and heterogeneous in 
nature and each type of network has its own characteristics. To 
adapt to the changing network environment, different DSR 
schemes are needed and the DSR scheme should be chosen on 
the basis of the network context.  

Table 1: Averaged word error rate (WER) for the DSR schemes 
for clean data from Test Set A imposed by EP3 

 WER (%)  WER (%)

Repetition (baseline) 6.70 Interleaving12 2.43 
Interpolation 7.35 Interleaving24 1.74 
Half frame rate 4.56 MDC 1.04 
Sub-vector 2.65 Error-free 0.95 

6. Environmental noise awareness 

6.1. A multiple-model framework 

Dynamically changing noise conditions (e.g. type and SNR) and 
mismatch between training and test environments often cause 
significant degradations in ASR performance. To handle this, 
Lippmann et al. propose a multi-style training (MTR) where 



acoustic models are trained using a speech corpus corrupted by 
noises expected to appear in the user environment. An 
alternative way of handling such mismatches is to segregate the 
noise into a number of noise types and for each type to train a 
set of HMM models [10]. A further improvement to this 
approach is to expand the noise characteristics by dividing each 
noise type according to its SNR, resulting in a SNR and Noise 
Classification based Multiple-Model Framework (SNC-MMF) 
[16]. By introducing such sub-division, environmental noise 
context can now be parameterised on the basis of noise type and 
SNR.  

In SNC-MMF, different HMM model sets are built for each 
combination of SNR and noise type. The efficiency of the ASR 
decoding is maintained by selecting only one model set 
according to the estimation of noise type and SNR. It has been 
experimentally justified that with only three model sets for each 
known noise type, significant improvement is obtained for the 
known noise types as compared to the MTR method while the 
performance for the unknown noise type is lower, due to the 
training-test mismatch. However, the well known Jacobian 
(JAC) adaptation method may be used to reduce the mismatch 
in the model domain [17]. Since the SNR mismatch is alleviated 
in the SNC-MMF, a modification of the JAC has shown 
advantageous and introduced by using zero noise-level 
difference Jacobian (Z-JAC). Here only the difference in noise-
type is handled while the noise level is kept untouched and the 
modification involves setting the difference of the noise energy 
component to zero.  

Since MTR models are generally robust against unknown 
noise due to its enclosure of information from a variety of noise 
environments, model interpolation is presented to interpolate the 
selected SNR and noise specific models with the MTR ones. 

6.2. Experimental results and discussion 

Evaluation is also conducted on the Aurora 2 database as 
described in Section 5.2. In the three test sets, the four noise 
types in Set A are treated as the known noise type, the four in 
Set B are the unknown noise type and Set C includes one known 
and one unknown noise type in addition to convolutional noise. 
For each of the four known noise types, noise data and clean 
speech training data are artificially merged with SNR values 
close to 5dB, 10dB and 20dB, generating data for the training 
of three HMM model sets. A simple voice activity detection 
based SNR estimator and a cepstral GMM based noise 
classifier are used. Table 2 shows that the basic SNC-MMF 
modelling gives significant improvement over MTR modelling 
for Set A but lower performance for Set B. The combination of 
the model interpolation and Z-JAC in SNC-MMF gives the best 
performance showing a relative WER reduction of 24.5%. 

Table 2: WER (%) for different test sets and relative 
improvement (%) compared to MTR 

 Set A Set B Set C Average Improv. 

MTR 12.18 13.73 16.22 13.61 -- 
SNC-MMF 8.15 16.99 13.56 12.77 6.2 

Interp. +Z-JAC 8.05 11.41 12.45 10.28 24.5 

7. Conclusions 

The paper reviews research in context-awareness applied in the 
ASR domain. Attention is particularly paid to network 

awareness and environmental noise awareness. On network 
awareness, a number of DSR schemes are presented each of 
which is applicable to one specific network context. The 
selection of schemes to be practically deployed is dependent on 
the network characteristics and the system requirements. On 
environmental noise awareness, noise type- and SNR 
classification based ASR framework is presented. In this paper 
it has been experimentally justified that it is feasible to exploit 
context information to improve the robustness of ASR systems. 
Future work will include speaker context-awareness by 
applying the concept of multiple model framework and model 
adaptation to deal with speaker-related variations such as 
different age, gender and dialect.  
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