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Abstract—In this paper, the temporal correlation of speech
is exploited in front-end feature extraction, client-based error
recovery, and server-based error concealment (EC) for distributed
speech recognition. First, the paper investigates a half frame rate
(HFR) front-end that uses double frame shifting at the client
side. At the server side, each HFR feature vector is duplicated
to construct a full frame rate (FFR) feature sequence. This HFR
front-end gives comparable performance to the FFR front-end but
contains only half the FFR features. Second, different arrange-
ments of the other half of the FFR features creates a set of error
recovery techniques encompassing multiple description coding
and interleaving schemes where interleaving has the advantage of
not introducing a delay when there are no transmission errors.
Third, a subvector-based EC technique is presented where error
detection and concealment is conducted at the subvector level
as opposed to conventional techniques where an entire vector
is replaced even though only a single bit error occurs. The sub-
vector EC is further combined with weighted Viterbi decoding.
Encouraging recognition results are observed for the proposed
techniques. Lastly, to understand the effects of applying various
EC techniques, this paper introduces three approaches consisting
of speech feature, dynamic programming distance, and hidden
Markov model state duration comparison.

Index Terms—Distributed speech recognition (DSR), error con-
cealment (EC), error recovery, low bit-rate, split vector quantiza-
tion (SVQ).

I. INTRODUCTION

AIMED at optimal performance of automatic speech recog-
nition (ASR) over mobile communication networks, an

important research topic within ASR has been to focus on
the issue of distributed speech recognition (DSR) [1]. In the
client–server architecture, a DSR system splits ASR processing
into two parts, the client-based front-end feature extraction and
the server-based back-end recognition, where data transmis-
sion between the two parts may take place via heterogeneous
networks. However, the transmission of data across networks
presents a number of challenges to ASR research, e.g., band-
width limitations and transmission errors. As a consequence,
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considerable efforts have been made ranging from front-end
processing, source coding/decoding, channel coding/decoding,
packetization to error concealment (EC) aimed at maintaining
ASR performance in the distributed environments with adverse
transmission channels [2].

Since the mel-frequency cepstral coefficient (MFCC) features
are extensively used and have proved to be successful for ASR,
MFCCs are used for most DSR front-ends. In general, the goal
of source coding is to compress information aiming at a low
bit-rate. One common class of source coding schemes for DSR
applies split vector quantization (SVQ) [3] for the coding of
ASR features in addition to the recently introduced transform
coding such as the discrete cosine transform to pursue a very low
bit-rate [4], [5]. Source coding can also be applied for achieving
error resistance for example multiple description coding (MDC)
and layer coding, which are also considered as a joint source and
channel coding [2].

Channel coding techniques attempt to protect information
from transmission errors. Linear block codes and a soft decision
decoding are introduced in [6], and Reed–Solomon coding is
applied in [7]. For packetization, a number of interleaving
schemes is investigated in [8] to handle burst-like packet losses.
All these client-based error recovery techniques are able to
recover a large amount of transmission errors, however, at
such cost as additional delay, increased bandwidth, and higher
computational overhead [9].

In this paper, front-end processing, source and channel
coding, and packetization are investigated aimed at low bit-rate
and high error robustness at the same time minimizing ad-
ditional cost. Specifically, a half frame rate (HFR) front-end
with feature duplication is presented and extensively analyzed.
This has the advantages of both low bit-rate and reduced
computations which are opposed to source coding where ad-
ditional computations are required. The effectiveness of the
HFR front-end further motivates the introduction of a set of
client-based error recovery techniques including MDC and
interleaving.

In general, the deficiencies of client-based error recovery
techniques may be avoided by applying EC techniques which
exploit signal redundancy at the server side. Feature domain
EC techniques attempt to generate substitutions for the erro-
neous/lost frames as close to the original as possible to improve
recognition accuracy. The commonly used EC techniques
include substitution [7], repetition [10], interpolation [11],
[12], and splicing [13] where the erroneous frames are simply
dropped. A partial splicing scheme [14] substitutes lost/erro-

1558-7916/$25.00 © 2007 IEEE



1392 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

neous frames partly by a repetition of neighboring frames and
partly by a splicing. Under certain assumptions, the partial
splicing scheme is equivalent to a weighted Viterbi decoding
(WVD).

All the feature domain EC techniques previously referenced
share the common characteristic of conducting EC at the vector
level. A vector—equivalent to a frame—is regarded as the target
unit. However, it is very likely that not all subvectors in an er-
roneous vector are erroneous. To exploit the existing error-free
information embedded in each erroneous vector, this paper pro-
poses a subvector-based EC technique where each subvector is
considered as a supplementary element for error detection and
mitigation. This is achieved by exploiting the temporal correla-
tion present in the speech features to identify and replace incon-
sistent subvectors within erroneous vectors.

Different from feature domain techniques, model domain EC
schemes introduce exponential weighting factors into the cal-
culation of the observation probability by applying WVD such
that contributions made by features or feature vectors with low
reliability are decreased [6], [15], [16]. Weighting factors may
be computed from the bit reliability information given by the
network channel decoder which, however, is not often feasible
[17]. The proposed subvector EC technique potentially retains
or creates unreliable features but automatically generates a relia-
bility measure for each feature during the subvector EC process.
A WVD scheme is therefore introduced and combined with the
subvector EC technique.

The paper is organized as follows. Section II describes the
European Telecommunications Standards Institute (ETSI)-DSR
standard and the motivation for this paper. Sections III and IV
present the HFR front-end and the client-based error recovery
techniques, respectively. The subvector-based EC technique
and its combination with WVD are presented in Section V. Ex-
perimental evaluations and discussions are given in Section VI.
Section VII provides a number of comparative studies. Conclu-
sions are presented in Section VIII.

II. BACKGROUND AND MOTIVATION

Incorporating ASR technology into mobile networks is cur-
rently done in one of three scenarios [3], [6], [18]. In the first,
ASR is conducted in the client only. Such fully client-embedded
ASR has the advantage of not introducing extra distortion to the
speech signal. However, the requirements to the client are high
in terms of computing, memory, and power consumption. This
has inspired the development of high-speed, low-resource ASR
techniques for mobile devices [19]. In the second scenario,
the client transmits the encoded speech to the server where
speech is resynthesized, features are extracted and recognition
is subsequently performed. In this scenario, a low bit-rate
speech coder may cause significant degradations in recogni-
tion performance [20]. The feature set may, however, also be
estimated directly from the coded speech bitstream without
reconstructing the speech [13], [18], [21]. In the third scenario
(the DSR setup), speech features suitable for recognition are
calculated, quantized, and encoded in the client and transmitted
to the server where they are decoded, submitted to a suitable
EC technique, and handled by a recognizer. The DSR scenario
provides a good tradeoff between bit-rate and recognition

Fig. 1. Block diagram for DSR system.

accuracy [6]. A block diagram for a DSR system is illustrated
in Fig. 1. The client includes the following three modules:
front-end feature extraction, SVQ, and channel encoder, while
the server back-end comprises the channel decoder, the SVQ
decoder, and the recognizer.

A. ETSI-DSR Standard

The ETSI-DSR standard defines the feature extraction
front-end processing together with an encoding scheme [10].
The front-end produces a 14-element vector consisting of log
energy ( ) in addition to 13 MFCC coefficients ranging
from to —computed every 10 ms. Feature compression
uses an SVQ algorithm that groups two features (either {
and , } or { and }) into a feature
pair subvector resulting in seven subvectors in one vector. Each
subvector is quantized using its own SVQ codebook. The size
of each codebook is 64 (6 bits) for { and } and 256 (8
bits) for { and }, resulting in a total of 44 bits for each
vector. Before transmission, two quantized frames (vectors)
are grouped together creating a frame pair. A 4-bit cyclic
redundancy check (CRC) is calculated for each frame pair
and appended, resulting in 92 bits for each frame pair. Twelve
frame pairs are combined to form an 1104-bit feature stream.
By adding the overhead bits of a synchronization sequence and
a header, each multiframe is represented by 1152 bits to repre-
sent 240 ms speech, corresponding to a bit-rate of 4800 b/s.

Over error-prone channels, the bitstream received at the
server may have been contaminated by errors. Two methods
are applied to determine if a frame pair is received with errors,
namely a CRC checksum test and a vector consistency test. The
vector consistency test determines whether or not the decoded
features for each of the two consecutive feature vectors in a
frame pair have a minimal continuity. A frame pair is labeled
as erroneous when its CRC is detected as incorrect. The vector
consistency test is applied to the frame pair received before the
one failing the CRC test and to the frame pairs following. The
preceding frame pair is also classified as erroneous if the vector
consistency test then fails. Frame pairs following are classified
as erroneous until one frame pair is received with a correct
CRC and meets the vector consistency requirement.
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TABLE I
ERROR RATES AND BERS OF FRAME PAIR, ONE-FRAME (VECTORS),

AND SUBVECTORS VERSUS GSM EPS

In the ETSI-DSR EC scheme, repetition is applied to replace
erroneous vectors. It is shown in [22] that a poor channel, e.g.,
having 4-dB carrier to interference (C/I) ratio, still severely re-
duces the accuracy of speech recognition using the implemen-
tation of the ETSI-DSR standard.

B. Effect of Transmission Errors

One problem of employing the ETSI-DSR frame pair format
is that two entire vectors in a frame pair will be in error and
substituted even though only a single bit error occurs in the
92-bit frame pair. This has motivated the introduction of a one-
frame-based error protection [23], in which each frame is pro-
tected by its own 4-bit CRC, generating a 48-bit one-frame. The
one-frame scheme causes the overall probability of one frame
in error to be lower at the cost of only a marginal increase in
bit-rate, from 4800 to 5000 b/s.

This concerns the problem of the data block size (measured
in bits) for error detection and concealment. Table I shows error
rates and bit error rates (BER) calculated on the basis of the
Global System for Mobile communication (GSM) error patterns
(EP). The GSM EPs are often used as they are more realistic by
representing a merge of both random and burst-like errors as
opposed to artificially created test data.

Table I shows that error rates of subvectors are significantly
lower than error rates of vectors. Consequently, it may be ad-
vantageous to exploit the existing error-free subvectors in erro-
neous vectors rather than simply neglecting them. Section V fo-
cuses on the detection, extraction, and exploitation of error-free
subvectors on the basis of existing redundancy within speech
features.

C. Temporal Redundancy in Speech Features

Temporal correlation and redundancy exist in the speech fea-
ture stream due to both the overlapping in feature extraction
processing and the speech production process itself. The re-
dundancy makes ASR resistant to random transmission errors
but vulnerable to burst-like errors. In [8], recognition experi-
ments show that the baseline ASR accuracy can be maintained
at a frame loss rate of 50%, provided that the average burst
length is short. Due to the high correlation between consecu-
tive speech frames, the odd and even numbered frames carry al-
most the same information. In [24], it is experimentally shown
that increasing frame shift from 10 ms up to 17.5 ms even gives
higher recognition accuracy and that 22.5-ms frame shift still
gives comparable accuracy to the 10-ms full frame rate (FFR).

This motivates the investigation of HFR front-end and a
number of client-based error recovery techniques for FFR
front-end by arranging the odd and even numbered frames in
different ways as presented in the following two sections.

Fig. 2. Comparison of data used for calculating delta features by FFR and by
HFR-Duplication.

III. HALF FRAME RATE FRONT-END

The commonly used front-end processing computes the
speech features using a 25-ms frame length and a 10-ms frame
shift, resulting in a 15-ms overlap between consecutive frames.
In the HFR front-end a 20-ms frame shift is used resulting in a
5-ms overlap. At the server side and prior to recognition, each
HFR feature vector is duplicated to reconstruct the FFR vector
equivalent (called HFR-duplication), and no modifications are
introduced to the back-end recognizer. This is similar to the
HFR method briefly presented in [25] where, however, linear
interpolation is used to generate the equivalent FFR vector. The
work presented here applies a repetition because of the superior
performance of the repetition scheme shown in Sections VI and
VII. In addition to providing a low bit-rate feature stream for
DSR, the HFR front-end has the advantage of only requiring
half the computational cost in its feature extraction process.
This may be a significant advantage for capacity limited devices
in terms of computing power and battery life. This is opposed
to source coding that also achieves low bit-rate but at the cost
of introducing additional computations.

A. Delta and Delta–Delta Feature Analysis for HFR Front-End

The delta and delta-delta features are calculated at the server
side on the basis of the reconstructed FFR vectors. Therefore,
the effect of the HFR-based reconstruction of the static features
on the delta and delta-delta features is analyzed in the following.
In HTK [26] the delta features are calculated according to

(1)

where ( ) is the th delta feature in frame .
Formula (1) shows that two proceeding and two following static
features are used in the calculation, as illustrated in the first row
of Fig. 2.

When calculating delta features from HFR-Duplication static
features, two cases occur as shown in the second and third row
of Fig. 2. The corresponding delta features for Case 1 and Case
2 are, respectively, calculated as

(2)

and

(3)

The difference between and is

(4)
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Fig. 3. Comparison of static, delta, and delta-delta features obtained from FFR
and HFR-Duplication.

and the difference between and is

(5)

Formulas (4) and (5) show that the differences are approxi-
mately equal to the second-order differentiation and thus have
small values, indicating that the influence on the delta features
from applying frame duplication is marginal. Similar relation-
ships exist between the delta and delta-delta features.

Further, this marginal influence is evidenced by a visual com-
parison of FFR and HFR-Duplication features. Fig. 3 shows data
taken from an utterance for the Danish word “et.” The MFCC

Fig. 4. Waveform and spectrogram of the Danish word “et.”

TABLE II
PERCENT WER ACROSS THE FRONT-ENDS FOR DANISH DIGITS AND CITY

NAMES USING FFR-BASED TRIPHONE MODELS WITHOUT QUANTIZATION

coefficient is especially chosen due to its capacity of em-
phasizing transitions between vowels and consonants. The left
graph shows the feature calculated from FFR data and cor-
responding data for the HFR-Duplication. The middle and the
right graphs show similar analyses for the delta and delta-delta
features.

Fig. 3 shows that all the HFR-Duplication features closely
trace the corresponding FFR features even in the transient re-
gions. Fig. 4 shows the waveform and spectrogram of the word
“et” and that frames 32 and 48 are approximately labeled as a si-
lence/vowel boundary and a vowel/consonant boundary, respec-
tively.

B. HFR Front-End With and Without Feature Duplication

The performance of the HFR front-end is evaluated on the two
databases the Danish SpeechDat (II) [27] and Aurora 2 [28]. The
experiments in this subsection are all conducted without trans-
mission errors. The speech features are standard MFCC with
13 static coefficients and their delta and delta-delta features, re-
sulting in a total of 39 coefficients.

1) Danish SpeechDat (II): The SpeechDat (II) compatible
database DA-FDB 4000 comprises speech from 4000 Danish
speakers collected over the fixed telephone. A part of the
database is used for training 32 Gaussian mixture triphone
models based on the SpeechDat/COST 249 reference recog-
nizer. Two subdatabases have been used as test data namely
the Danish digits (vocabulary size ) and the city names
(vocabulary size ).

The triphone models used in this experiment are all trained
using the FFR features directly and without quantization. The
features for the test data, however, are all calculated on the
basis of quantized data. The results for the Danish digits and
city names tasks for the HFR and FFR front-ends are shown
in Table II. It is seen that the HFR front-end with duplication
achieves results close to the FFR front-end for both tasks. How-
ever, using the HFR features without duplication gives substan-
tially higher word error rate (WER).
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TABLE III
PERCENT WER ACROSS THE FRONT-ENDS FOR TEST SET A USING

FFR-BASED 16-STATE MODELS WITHOUT QUANTIZATION

TABLE IV
PERCENT WER ACROSS THE FRONT-ENDS FOR TEST SET A USING

MATCHED 16-STATE MODELS AFTER QUANTIZATION

2) Aurora 2: The Aurora 2 database is the TI digit data-
base artificially distorted by adding noise and using a simulated
channel distortion. Whole word models are created for all digits
using the HTK recognizer. Each of the whole word digit models
has 16 HMM states with three Gaussian mixtures per state. The
silence model has three HMM states with six Gaussian mixtures
per state. A one state short pause model is tied to the second state
of the silence model.

The word models used in the experiments are trained on clean
speech data. The test data are the clean data from Test Set A.
The models are trained on FFR features without quantization
whereas the test data are quantized. Table III shows the WERs
for Test Set A across three same front-ends as applied in Table II.
Again, the HFR front-end with feature duplication demonstrates
comparable WERs to the FFR although the models are trained
using the FFR features, whereas HFR-NoDuplication gives sig-
nificantly higher WERs.

Table IV shows results for experiments in which matched
training and test models are used. Here, the features are the
same for both training and test and quantization is applied in
their calculation. The results show that the HFR front-end with
feature duplication gives results close to the FFR front-end.
The WER of HFR-NoDuplication is still substantially higher
although both training and test features are matched, demon-
strating that duplication of each HFR feature vector is critical
even when using matched models. An explanation to the ob-
served high WERs for HFR-NoDuplication is that the number
of its feature vectors does not match the number of HMM states.

C. Duplication of Features Versus Number of HMM States

To verify the above explanation, a set of further experiments
are conducted by using HMM models with eight states instead
of 16 states for the Aurora 2 task. Table V shows the results for
eight-state HMM models for the three front-ends.

By comparing the results in Tables IV and V, it is found
that the performance change of FFR and HFR-NoDuplication
goes to two completely different directions when the number of
states is halved. A significant increase in the average WER (from
1.00% to 6.30%) is seen for FFR whereas the average WER
for HFR-NoDuplication decreases substantially (from 10.63%
to 1.40%) with results that are close to the average WER for

TABLE V
PERCENT WER ACROSS THE FRONT-ENDS FOR TEST SET A USING

MATCHED EIGHT-STATE MODELS AFTER QUANTIZATION

FFR using 16-state models (1.00%). However, the performance
of HFR-Duplication is still close to the FFR, indicating a good
reconstruction of the equivalent FFR features. The results under-
line the correlation between the number of states of the back-end
models and the frame rate used in the front-end.

IV. CLIENT-BASED ERROR RECOVERY TECHNIQUES

The HFR front-end offers a low bit-rate and a comparable
performance to the FFR front-end when there are no transmis-
sion errors. This provides an effective alternative to the FFR
front-end if the available bandwidth is restricted. Based on the
HFR front-end concept, an adaptive multiframe rate scheme can
furthermore be implemented in which the DSR system is en-
abled to adaptively switch between HFR and FFR front-ends
based on the quality of the transmission channel [29]. Such
switching between the HFR and FFR front-ends results in a
bandwidth flexible DSR codec, and there is no requirement for
switching back-end HMM models.

However, due to the fact that less redundant information is
available, the HFR features are likely to be more sensitive to
transmission errors. The error robustness of the HFR front-end
can be improved by applying channel coding techniques (such
as Reed–Solomon coding and linear block coding) that delib-
erately add redundancy into the speech source. Since the HFR
front-end achieves a low bit-rate for the source, it allows more
bits for channel coding. This is similar to the adaptive multirate
(AMR) speech codec [30], where more bandwidth is available
for channel coding when the speech source has a low bit-rate.
As opposed to adding redundancy as normally done in typical
channel coding techniques, the FFR front-end can be considered
as a channel coding to the HFR front-end, using half of the FFR
features as redundant information. Since the HFR feature frames
are simply the odd numbered frames in the FFR front-end, the
even numbered frames are redundant information that can be
arranged in different ways in the process of source coding and
packetization.

A. MDC

MDC is an error-resistant source coding technique. The tech-
nique encodes the signal source into substreams (descriptions)
of equal importance in the sense that each description can inde-
pendently reproduce the original signal into some basic quality
[31]. The quality of the reconstructed signal incrementally in-
creases when more descriptions are received. In the FFR front-
end, the odd numbered vectors together with the even-numbered
vectors create two descriptions, and each of them may be trans-
mitted independently, resulting in an MDC coding scheme ex-
ploiting channel diversity. If one description is received without
errors, in this two-description MDC coding, there is principally
no need to wait for, or exploit, the other description.
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Fig. 5. HFR and four different FFR coding schemes. (a) ETSI-DSR FFR-based
frame pair scheme. (b) FFR-based one-frame scheme. (c) HFR scheme. (d) FFR-
based Interleaving12 scheme. (e) FFR-based Interleaving24 scheme.

B. Interleaving

Interleaving techniques counteract the effect of burst errors
normally at the cost of delay. Specifically, interleaving rear-
ranges the ordering of a sequence of frames in order to disperse
burst errors for efficient error recovery and concealment [32],
[8]. At the server, the counterpart de-interleaving restores the
sequence to its original order. A common way to implement
interleaving is to divide symbol sequences into blocks corre-
sponding to a two-dimensional array and to read symbols in by
rows and out by columns.

This paper presents an interleaving scheme that manages the
ordering of odd- and even-numbered frames. Specifically, a
chosen number of odd-numbered frames may be concatenated
and transmitted first and followed by their corresponding
even-numbered frames. The characteristic difference between
conventional interleaving and this special interleaving scheme
is that the latter may offer less or no overall transmission delay
dependent on whether the transmission has caused errors or
not. In the case of no errors, the odd-numbered feature vectors
can be used immediately to reconstruct the equivalent FFR
feature vectors by duplication without causing any delay.

C. Multiframe Structures

Fig. 5(a) and (b) shows that the 24-frame multiframe struc-
tures for the FFR-based ETSI-DSR frame pair scheme [10]
and FFR-based one-frame scheme [23], respectively. The HFR
scheme, however, encompasses only twelve frames in each
multiframe as shown in Fig. 5(c). Each frame is protected by
a 4-bit CRC resulting in a 48-bit frame and 12 frames are
joined and appended with overhead bits resulting in a 624-bit
multiframe, concatenated into a 2600 b/s bit-rate (contrasting
the 4800 b/s for the ETSI-DSR FFR-based scheme). The same
bit-rate of 2600 b/s is obtained without observing degradation in

ASR performance, however, by quantizing FFR-based feature
vectors in [3], [7]. In the decoding at the server side, the CRC
is used as the only error detection method, and no vector con-
sistency test is conducted for the HFR scheme. Fig. 5(d) and (e)
illustrates two FFR-based interleaving schemes designated as
“Interleaving12” and “Interleaving24” grouping a sequence
of 12 vectors and a sequence of 24 vectors into one block,
respectively, and for each block the odd-numbered features
are concatenated and transmitted first and their corresponding
even-numbered features transmitted later.

V. SUBVECTOR-BASED EC AND ITS

COMBINATION WITH WVD

This section presents the detection, extraction, and exploita-
tion of error-free subvectors. Since there is no CRC like coding
applied (or error checking bits allocated) at the subvector level,
error detection at this level can only make use of a subvector
consistency test which relies on the temporal correlation ex-
isting in the speech features.

A. Subvector-Based EC

Given that denotes the frame number and the feature
vector, is formatted as

(6)

where ( ) denotes the th subvector in frame
. Two consecutive frames in a frame pair are represented by

. The consistency test is conducted within the frame
pair so that each subvector from is compared with its
corresponding subvector from to evaluate the con-
sistency of the two subvectors. If any of the two decoded fea-
tures in a feature pair (subvector) does not possess a minimal
continuity, the subvector is classified as inconsistent. Specifi-
cally, subvectors and in a frame pair are classified as
inconsistent if

(7)

where and and and
and are the first and second element, respectively, in
the subvectors and as given in (6); otherwise, they are
consistent. Thresholds and are constants based on
measuring the statistics of error-free speech features.

Assuming there are frames ( frame pairs)
in error to be mitigated, using the notation for the
last error-free frame and for the first following
error-free frame , the ETSI-DSR buffered vectors are

, as illus-
trated in Fig. 6 at the subvector level.

In the above buffering matrix, columns and are the
error-free vectors with erroneous vectors received in be-
tween. The vectors are all identified as
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Fig. 6. ETSI-DSR buffering matrix.

Fig. 7. Example of consistency matrix.

erroneous by the frame error detection methods. In the sub-
vector-based EC, these erroneous vectors are further submitted
to a subvector consistency test which generates a consistency
matrix of dimensions 7 with elements defined as
shown by (8) at the bottom of the page.

The consistency matrix shown in Fig. 7 shows results from a
subvector consistency test applied to data corrupted by the GSM
EP3. On the basis of this consistency matrix, the subvector based
EC is implemented in such a way that all inconsistent subvectors
are replaced by their nearest neighboring consistent subvectors,
whereas the consistent subvectors are kept unchanged [33]. To
exemplify this, consider the first row of the consistency matrix
in Fig. 7. This row contains four zeros located in columns ,

, , and , respectively, indicating that there are
four inconsistent subvectors in vectors , , ,
and in the corresponding buffering matrix, and that each
subvector needs to be substituted by its nearest neighboring sub-
vector. Thereby, subvectors in and will be re-
placed by in , while subvectors in and
will be replaced by in .

B. Combining Subvector EC and WVD

Subvector EC handles subvectors within erroneous vec-
tors in two different ways such that all consistent subvectors
are retained and inconsistent subvectors are substituted with
their nearest neighboring consistent subvectors. This strategy
exploits error-free information embedded in each erroneous
vector, but it is observed that neither the retained consistent
subvectors are necessarily correct (or reliable) nor do the

nearest neighboring substitutions generate the same features
as their original. Consequently, these potentially unreliable
features should not be given the same weight as error-free
(reliable) features in the ASR decoder. This subsection aims at
calculating a reliability measure for each feature and exploiting
the measure using the WVD technique.

1) Weighted Viterbi Decoding: The general vector-based
WVD modifies the observation probability of each feature
vector in the Viterbi decoding by using the reliability of each
vector as an exponential weighting factor [34]. The WVD
uses the following formula to update the likelihood score
accordingly:

(9)

where is the likelihood of the most likely state sequence
at time that ends in state and has generated the observation
(feature vectors) from to , is the transition probability
from state to state , is the probability of emitting ob-
servation when state is entered. The weighting factor
is a normalized reliability coefficient—of value between 0 and
1—that adjusts the contribution of each vector to the overall
likelihood score. The formula shows that choosing the value of

close to one causes the output probability for the partic-
ular vector to contribute almost fully to the likelihood score and
choosing a value of close to zero causes the output proba-
bility to be equal to one and identically contribute to all models,
thereby neutralizing the vector contribution. The vector-based
WVD is applied in [35] where a time varying weighting factor
is used to handle the fact that the longer a burst is, the less ef-
fective the vector repetition technique is.

In combining WVD with the subvector EC, each feature is
given its own weighting factor. Consider an observation vector

where the component
is either one of the MFCC coefficients , or

for , and is not included. The mapping between
and is defined by (6), e.g., and

. In assuming a diagonal covariance matrix,
the overall observation probability is the product of the probabil-
ities of emitting each individual feature. A feature-based VWD
thus computes the likelihood score as follows:

(10)

where is the observation probability of observing fea-
ture when entering state , and is the reliability mea-
sure for feature as given below.

2) Reliability Measure: The reliability of each feature
is calculated during the subvector EC processing. When the two
corresponding subvectors and in a frame pair pass the

or ,
, inconsistent from (7),

, consistent from (7),
(8)
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Fig. 8. Distribution functions of erroneous frames by burst length. “O” covers
burst lengths larger than 8.

consistency test as given in (7), the reliability of each feature
in the subvectors is calculated on the basis of the difference

between two corresponding features. For fea-
tures that do not pass the consistency test, the reliability depends
on both the reliability of the substituting feature and the tem-
poral distance between the substituted feature and the substi-
tuting feature. Specifically, weightings are assigned according
to the following formula:

consistent from (7)
substituted by

(11)

where and are two adjustable parameters, is the temporal
distance between the two features, and is the threshold for
subvector consistency test as used in (7). For error-free vectors,
the weighting factors are all equal to one.

VI. EXPERIMENTAL EVALUATION ON ERROR

ROBUSTNESS AND DISCUSSION

This section evaluates and discusses the performance of the
proposed techniques on error robustness. To enable comparison
with a number of often used techniques, the same database and
the same channel condition are applied in all experiments. The
database applied is Aurora 2 database Test Set A as described
in Section III-B. Acoustic models are trained by using FFR fea-
tures without quantization.

A. Channel Condition and Baseline Techniques

Channel simulation relies on the three GSM EPs as analyzed
in Section II-B since they are widely used—for example—by
the ETSI-DSR Working Group [22]. To investigate the error dis-
tributions of the GSM EPs, they are segmented into frames each
corresponding to 10 ms—the shift used in the FFR feature ex-
traction process. Each frame is then classified as error free or
erroneous depending on if there are any errors in the frame seg-
ment. The resulting distribution functions of erroneous frames
as a function of burst length (that is, the number of consecutive
erroneous frames) are shown in Fig. 8.

Fig. 8 shows that approximately 100%, 96%, and 56% of er-
roneous frames have a burst length of less than or equal to three
(which are not considered as burst-like) for GSM EP1, EP2,
and EP3, respectively. It is noted that EP1 and EP2 essentially

contain random errors only and that EP3 contains both random
and burst-like errors. In channel simulations, both random and
burst-like errors should be considered as they typically occur
in real communication environments. Recognition experiments
in [14] moreover demonstrate that the effect of EP1 and EP2 on
ASR performance is insignificant. Therefore, the characteristics
of the transmission channel in this evaluation are given by EP3.

The compared client-based techniques encompass one-frame
scheme [23] and Reed–Solomon code. Different from [7], the
Reed–Solomon code implemented in this experiment is RS(32,
16) with 8-bit symbols in which 16 information symbols are
encoded into 32 coded symbols. This code has a capability of
correcting eight symbol errors or 16 symbol erasures in the code
word.

The repetition used by the ETSI-DSR standard [10] and
the linear interpolation [11] are chosen as representatives for
conventional server-based EC techniques. The performance of
error-free transmission and the performance without using any
error concealment (NoEC) are provided for comparison. On the
experiments of NoEC, transmission errors remain in the speech
features and are passed onto the ASR decoder. WVD is used in
[6], [16], [35] and shows good performance. In this paper, only
the vector-based WVD in [35] is implemented for comparison.

B. Experimental Results

The HFR front-end evaluation uses feature duplication. The
client side error recovery techniques encompass MDC, Inter-
leaving12 and Interleaving24. For testing the MDC, two de-
scription encodings are transmitted over two uncorrelated EP3
channels.

The tested EC techniques encompass the subvector EC and
its combination with WVD. The threshold values given in the
ETSI-DSR standard for vector consistency test as specified in
Section II-A are directly used in the experiments for the sub-
vector consistency test as introduced in Section V. The param-
eters of calculating the reliability in (11) for the combination
of subvector EC and WVD are chosen to be and

. The results are shown in Table VI and commented
in the following.

First, the HFR front-end with feature duplication (HFR-Du-
plicat) significantly outperforms the ETSI-DSR FFR-based
scheme. This is due to the fact that when compared to the 92-bit
frame pair, the frame package size in HFR is 48 bits resulting
in lower frame error rate for the same channel condition. When
the one-frame FFR-based scheme, with a 48-bit frame package
size is used, the performance is much better than both the
HFR and the ETSI-DSR standard. The WVD (combined with
ETSI-DSR repetition EC) demonstrates a better performance
than ETSI-DSR indicating the effectiveness of the WVD and
a slightly worse performance than the HFR-Duplication again
due to the frame pair scheme. Linear interpolation is worse
than repetition (ETSI-DSR) as also observed in [14]. The worst
performance given by NoEC emphasizes the importance of
applying EC schemes in general.

Second, the subvector EC gives substantially better results
than both the ETSI-DSR and the WVD scheme. The subvector
EC is even better than the one-frame scheme and the RS(32,
16) coding scheme verifying the effectiveness of the subvector
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TABLE VI
PERCENT WER AND BIT-RATE (kb/s) FOR SOME SCHEMES FOR EP3 FOR TEST SET A. THE PROPOSED TECHNIQUES ARE HIGHLIGHTED BY BOLD FONT

TABLE VII
PERCENT WER ACROSS DIFFERENT � SETTINGS WITH A FIXED

� = 0:4 FOR THE GSM EP3 FOR AURORA 2 TEST SET A

TABLE VIII
PERCENT WER ACROSS DIFFERENT � SETTINGS WITH A FIXED

� = 0:45 FOR THE GSM EP3 FOR AAURORA 2 TEST SET A

EC technique. It should be noted that the RS(32, 16) scheme
gives a performance close to the one-frame scheme but this
scheme is demanding with regard to bandwidth and computa-
tions. The subvector EC technique has the advantages of neither
introducing increased complexity nor resource requirement. A
further performance gain is obtained by employing the combi-
nation of subvector EC and WVD.

Finally, the interleaving and MDC schemes perform remark-
ably well. One advantage of applying the special interleaving
schemes is that delays are introduced only if there are trans-
mission errors. MDC renders results close to that of error-free
transmission.

C. Reliability Measure Parameters and

This subsection investigates the relationship between perfor-
mance and the parameters and used in calculating the re-
liability in (11). Table VI shows that the choice of
and gives significantly better performance than the
ETSI-DSR standard. The effects on WER of varying the values
of the two parameters are presented in Tables VII and VIII. The
results show that a setting of the two parameters and around
their optimum values only has a minor influence on the resulting
WER.

D. Consistency Test Thresholds

The effect of the settings of the threshold values [i.e.,
and in (7), which are the same as in (11)] on perfor-
mance is investigated in this subsection. It is noted that two sets
of thresholds are applied in this paper. The first set is used in the
vector consistency test as an additional test to the CRC checking
according to the ETSI-DSR standard, and the second set in the
subvector consistency test. In the experiments conducted above,
the two sets of thresholds are given the same values as provided
by the ETSI-DSR standard.

In the experiments in this subsection, the first set of thresh-
olds is kept as given in the ETSI-DSR standard, whereas the
second set of thresholds is varied across a range. This is done
by multiplying the ETSI-DSR standard values with a scaling
factor as given in Table IX, showing the WER across the

TABLE IX
PERCENT WER ACROSS DIFFERENT THRESHOLD SETTINGS

FOR SUBVECTOR EC AND ITS COMBINATION WITH WVD
FOR THE GSM EP3 FOR AURORA 2 TEST SET A

range. With the setting , the subvector EC gives the
same WER as the ETSI-DSR standard as shown in Table VI,
and the performance of the combination of subvector EC and
WVD is close to the WER obtained by applying vector-based
WVD (4.78%). These results are in correspondence since neg-
ative threshold values result in all subvectors being replaced by
its nearest neighboring error-free ones, i.e., equivalent to the
ETSI-DSR repetition scheme. The results also show that for

, where only almost identical subvectors are classified
as consistent, the subvector-based EC still gives 34.0% relative
improvement as compared to the ETSI-DSR standard, and the
combined method gives 39.7% relative improvement as com-
pared to the vector-based WVD. A possible explanation for this
improvement is that keeping the almost identical features un-
changed may be better than using substitutions. For ,
with only a small number of subvectors detected as inconsistent
and, thus, the majority of erroneous subvectors may remain in
the speech feature stream, improvements are still observed for
both methods. This result together with the worst performance
for NoEC, shown in Table VI, suggests that transmission errors
harm the recognition performance the most as they are causing
feature values largely different from their original. The lowest
WER is achieved for showing 61.2% relative improve-
ment compared to the ETSI-DSR standard for the subvector EC
and 57.9% relative improvement compared to the vector-based
WVD for the combination. The results indicate that varying the
scaling factor around the default setting only has a minor in-
fluence on the resulting WER.

VII. COMPARATIVE STUDY

Comparative studies are conducted to explain the variation in
WER as observed for the tested EC techniques encompassing
repetition, interpolation, and subvector EC. This involves direct
visual inspections of MFCC features, comparison of dynamic
programming (DP) distances and comparison of hidden Markov
model (HMM) state durations [36]. The database applied is the
Danish digits database as described in Section III-B. For sim-
plicity, the experiments in this section use randomly distributed
errors with a BER value of 2%.

A. Visual Inspection of MFCC Features

The error-free MFCC features are visually compared with the
features corrupted by transmission errors and reconstructed by
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Fig. 9. Coefficient c . (a) MFCC, rMFCC, and iMFCC. (b) MFCC and
sMFCC.

either repetition (rMFCC), interpolation (iMFCC), or subvector
(sMFCC) concealment. The test utterance is the Danish word
“et” also used in the experiments presented in Figs. 3 and 4. The
MFCC coefficient is especially chosen to show transitions.
The impacts of applying the three EC techniques on the static,
the delta (velocity), and the delta-delta (acceleration) features
are shown in Figs. 9–11, respectively.

Fig. 9(a) shows that the rMFCC feature tracks the error-free
MFCC feature closer than the iMFCC feature indicating a better
reconstruction. Fig. 9(b) shows that the sMFCC feature tracks
the MFCC feature closest. Figs. 10(a) and 11(a) show that the
delta-rMFCC and delta-delta-rMFCC features track the corre-
sponding error-free features closer than the delta-iMFCC and
delta-delta-iMFCC features. The explanation may be that the in-
terpolation technique reconstructs each frame by interpolating
along a straight line of iMFCC features as shown in Fig. 9(a).
This results in segments of constant delta-iMFCC and zero-
valued delta-delta-iMFCC segments which cause less available
information for the Viterbi decoding. In applying the repeti-
tion technique, a fast change in feature value is observed in the
middle of erroneous frames. Figs. 10(b) and 11(b) show that
delta-sMFCC and delta-delta-sMFCC features track the corre-
sponding error-free features closest. Figs. 9(a), 10(a), and 11(a)
reveal that the MFCC and the rMFCC feature curves appear to
display similar shapes even though there are some shifts along

Fig. 10. Coefficient delta-c . (a) Delta-MFCC, delta-rMFCC, and
delta-iMFCC. (b) Delta-MFCC and delta-sMFCC.

the time axis as compared to the iMFCC feature curves. How-
ever, the DP embedded in the Viterbi algorithm makes this shift
relatively irrelevant, which is demonstrated in the discussion on
DP distances in the next subsection.

In general, it seems that the rapid changes often appearing in
MFCC coefficients do not justify the introduction of the linear
interpolation scheme. Rapid changes often occur in segments
spanning over phoneme boundaries (for example, in Fig. 4
around frame 48).

B. Comparison of DP Distances

It is expected that the interpolation technique must result
in smaller Euclidean distance values between corresponding
MFCC and iMFCC features than between MFCC and rMFFC
features—when averaged over an entire utterance. The conclu-
sions on average Euclidean distances are, however, not directly
comparable to Viterbi-based matching which is in essence a
DP approach. In the following experiment, Euclidean distances
are analyzed in connection with time normalized DP distances
between error-free features and features derived by repetition,
interpolation, and subvector concealment by using the sym-
metric dynamic time warping (DTW) according to [37]. As an
example, the Euclidean and DP distances between the error-free
MFCC and the corresponding MFCC generated by the
three EC techniques for the word “et” are shown in Fig. 12. The
results show that the rMFCC feature has smaller DP distance
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TABLE X
NUMBER OF UTTERENCES FOR WHICH iMFCC c OR rMFCC c OR sMFCC c HAS THE SMALLEST

OR SECOND SMALLEST EUCLIDEAN OR DP DISTANCE (OUT OF 328 UTTERNACES)

Fig. 11. Coefficient delta-delta-c . (a) Delta-delta-MFCC, delta-delta-rMFCC,
and delta-delta-iMFCC. (b) Delta-delta-MFCC and delta- delta-sMFCC.

Fig. 12. Euclidean and DP distances between c of MFCC and MFCC gener-
ated by three EC techniques for word “et.”

to the original MFCC feature than the iMFCC feature though
the opposite is observed for the Euclidean distance. Moreover,
the results show that the distances between original MFCC and
sMFCC are always the smallest.

The experiment is enlarged to encompass a large number of
utterances. The experiment compares the Euclidean as well as

TABLE XI
AVERAGE STATE DURATIONS OVER ELEVEN TEST UTTERANCES FOR

ERROR-FREE MFCC, rMFCC, iMFCC, AND sMFCC

DP distances of iMFCC , rMFCC , and sMFCC to the
error-free MFCC for 328 test utterances. The numbers of ut-
terances having the smallest or second smallest Euclidean or
DP distance are counted and shown in Table X. The results
show that sMFCC features always have the smallest distances to
error-free features for both measures as compared to distances
for iMFCC and rMFCC features. The results also show that for
the majority of utterances, iMFCC has smaller Euclidean dis-
tance to the original MFCC than rMFCC , whereas the
number of utterances for which iMFCC has smaller DP dis-
tance is less than the number for rMFCC. This indicates that rep-
etition performs better in terms of DP distance although worse
in terms of Euclidean distance.

C. Comparison of HMM State Durations

To study the Viterbi decoding process, a set of experiments
are conducted where the HMM state duration (counted as the
number of frames) is tracked during decoding. The experiment
applies strict left-to-right HMM models. The normalized du-
ration is calculated as the number of speech frames of each
utterance—nonspeech frames excluded—divided by the total
number of states of the models that the utterance matches.

The average state durations over eleven test utterances
(one for each digit including two variants for digit “one”) for
error-free MFCC, rMFCC, iMFCC and sMFCC are shown in
Table XI. Two facts are observed from these data. First, inter-
polation gives the smallest average state duration indicating
that features calculated by interpolation result in faster state
transition, whereas features reconstructed by repetition result
in longer average state occupancies. As seen in Section VII-A,
interpolation generates artefact features and may therefore
mislead the Viterbi search. Second, the average state duration
for features calculated by subvector EC is very close to the one
for error-free features, justifying that the subvector EC is better
for reconstructing erroneous features.

VIII. CONCLUSION

This paper presented a set of techniques for DSR by ex-
ploiting the temporal correlation present in the speech features.
First, an HFR front-end processing with feature duplication
was described. The HFR front-end achieves low bit-rate with
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reduced computational cost as opposed to source coding
techniques. Moreover, it was demonstrated that the effect of
static feature duplication on the delta and delta-delta features
is marginal, that feature duplication is essential for obtaining
comparable performance to the FFR front-end, and that the
frame rate should match the number of HMM states. Second,
this paper presented a number of client-based error recovery
techniques including MDC and interleaving. An innovative
aspect of these techniques is that half of the FFR features are
considered as the source information and the other half as
redundant information which can be arranged in different ways.
The proposed interleaving techniques do not introduce any
transmission delay when there are no transmission errors. The
third contribution of this paper is proposing a subvector-based
EC technique and its combination with WVD, adding only
marginal extra complexity and resource requirements to the
back-end.

The general results on error robustness are very encouraging.
The HFR front-end with feature duplication, subvector EC com-
bined with WVD, Interleaving24 and the MDC technique show
31.9%, 69.4%, 74.0%, and 84.5% improvement on error ro-
bustness over the ETSI-DSR standard, respectively. Except for
the subvector EC, all techniques can be equally applied in cir-
cuit-switched and packet-switched networks.

Finally, this paper presented three comparison methods en-
compassing MFCC feature, DP distance, and HMM state dura-
tion comparison. These approaches provide useful insight into
the behavior of a number of EC techniques.
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