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 
Abstract—Frame based speech processing inherently assumes a stationary behavior of speech signals in a short period of time. Over 

a long time, the characteristics of the signals can change significantly and frames are not equally important, underscoring the need for 

frame selection. In this paper, we present a low-complexity and effective frame selection approach based on a posteriori signal-to-noise 

ratio (SNR) weighted energy distance: The use of an energy distance, instead of e.g. a standard cepstral distance, makes the approach 

computationally efficient and enables fine granularity search, and the use of a posteriori SNR weighting emphasizes the reliable regions 

in noisy speech signals. It is experimentally found that the approach is able to assign a higher frame rate to fast changing events such 

as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even for very low SNR signals. The resulting 

variable frame rate analysis method is applied to three speech processing tasks that are essential to natural interaction with intelligent 

environments. First, it is used for improving speech recognition performance in noisy environments. Secondly, the method is used for 

scalable source coding schemes in distributed speech recognition where the target bit rate is met by adjusting the frame rate. Thirdly, 

it is applied to voice activity detection. Very encouraging results are obtained for all three speech processing tasks.  

 

Index Terms—Distributed speech recognition, frame selection, noise-robust speech recognition, variable frame rate, voice activity 

detection 
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I. INTRODUCTION 

HE DESIRE is strong for natural interaction with our environments pervaded with devices, automobiles, robots and smart 

houses filled with technology and intelligence. Naturalness implies freedom from constraint, formality or awkwardness. 

Speech is apparently the most natural means for human beings to communicate and speech interaction with intelligent 

environments is enabled by automatic speech recognition (ASR). With recent advances, the state-of-the-art ASR technology is 

maturing for many applications, especially in controlled conditions. When placed in less controlled conditions, such as 

intelligent environments, several extra dimensions are to be considered. 

First, devices in intelligent environments are generally characterized as having restricted resources and being interconnected. 

Consequently, the complexity of an algorithm becomes a decisive factor for its deployment. ASR systems are therefore 

optimized towards low-resource implementations or alternatively, a distributed architecture is adopted by distributed speech 

recognition (DSR) to make use of powerful servers [1].  

Secondly, acoustic noises are ubiquitous in intelligent environments and dramatically degrade the ASR performance. 

Although sophisticated robustness algorithms have been developed, they may not be economically viable as compared to the 

cost associated with the performance degradation caused by the noises [2]. 

Thirdly, there are often no buttons within reach to support a push-and-talk mode or it is too cumbersome to use in such 

environments. Voice activity detection (VAD) is therefore necessary for natural speech interaction. As VAD is required to run 

constantly, low complexity is favored especially for low-resource devices.  

This paper addresses these challenges by investigating the process of frame selection. Being a continuous time series, a speech 

signal is generally analyzed at short intervals, typically on the order of 10–30 ms, and with a frame length of 20–30 ms, 

corresponding to a few pitch-periods, to reflect the physiological constraints of speech production. This yields a series of frames 

each representing 20–30 ms of speech [3]. As a convention, a fixed frame rate (FFR) is deployed disregarding the signal is non-

speech or speech, or is a steady region or a rapidly changing event. In most speech applications, however, there is no sense in 

selecting any frames for the non-speech parts. In DSR, to save bandwidth and computation and to be robust against transmission 

errors (by allocating more bandwidth for fast changing regions), no data should be sent to the remote server during silence and 

less data (frames) should be sent in steady regions than in fast changing ones.  

Further, speech sounds like plosives or speech attributes like transitions can last a very short period of time, making an FFR 

analysis insufficient to provide a fine representation for these events, as experimentally verified in [4]. On the other hand, sounds 

like vowels can last a relatively long period without significant changes in characteristics and over-sampling them may generate 

T 
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unnecessary frames that can increase the computational load and, even worse, increase the number of insertion errors in ASR in 

noisy environments [5].  

Although FFR analysis assumes that speech signals exhibit quasi-stationary behavior in a short interval, no evidence supports 

that a fixed-rate processing is applied in the human auditory system. Clearly, the FFR analysis is not optimal [6]. 

As a different approach, variable frame rate (VFR) analysis aims at selecting frames according to the signal characteristics. 

This is realized by first extracting speech feature vectors (frames) at an FFR and then determining which frames to retain. The 

decision on frame selection relies on some distance measures and thresholds [4], [5], [7] – [9].  

A Euclidean distance between the last retained feature vector and the current vector is calculated as the distance measure in 

[7]. The current frame is discarded if the measure is smaller than a predefined threshold. This approach uses only two frames for 

frame selection. To make use of neighboring frames of the current frame, the norm of the first derivative cepstrum vector is 

calculated as the distance measure in [5]. Again, a threshold based decision criterion is applied. Due to the reduced number of 

frames, VFR analysis saves the computation time of ASR decoding, which was one of the incentives of deploying VFR in early 

days. Recent research in VFR moves towards finding optimal representation of a speech signal to improve performance in e.g. 

noise robustness, and this requires searching frames in steps smaller than the standard 10 ms while the average frame rate largely 

remains the same [4], [9], [10]. 

The speed of singing voice changes rapidly and voices are often significantly prolonged, which can deteriorate the 

performance of an ordinary ASR system. A method for prolonged sound detection and elimination in singing voice recognition 

is presented in [8]. When the information change measure of a predefined number of successive frames is below a threshold, the 

group of frames is identified as a prolonged sound and consequently the following frames are omitted as long as the measure 

remains below the threshold. This has shown to significantly increase lyrics recognition accuracy.   

VFR has demonstrated its capability in dealing with additive noise as well. In [4], Zhu and Alwan proposed an effective VFR 

method that uses a 25 ms frame length and a 2.5 ms frame shift for calculating Mel-frequency cepstral coefficients (MFCCs) and 

conducts frame selection based on an energy weighted cepstral distance. The method has shown good performance in ASR noise 

robustness. In [9], an entropy measure instead of a cepstral distance is used, resulting in an improvement in recognition 

performance as well as a higher complexity. To provide a fine resolution for rapidly changing events, these methods examine 

speech signals at much shorter intervals (i.e. 2.5 ms) than the normal frame shift of 10 ms. The procedure of extracting features 

such as MFCCs and entropy in a short interval and then discarding these, or the majority thereof, is computationally inefficient. 

It also limits the possibility of pursuing an even finer search granularity. 

On the other hand, note that the first-order difference in frame-to-frame energy provides greater discrimination than the 

components of MFCCs other than c0 [11]. Evidently, energy based search is much more computationally efficient and can 
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potentially enable a determination of frame shift without pre-computing cepstral feature vectors at a high and fixed rate.  

In addition, speech segments are accounted in ASR not only on their characteristics, but also on their reliability. The latter is 

important in particular for ASR in noisy environments and is pursued in missing data theory [12] and weighted Viterbi decoding 

[13] methods where low signal-to-noise ratio (SNR) features are either neutralized or less weighted in the ASR decoding 

process. Research in [14] shows that splicing frames has the same effect as weighted Viterbi decoding under a certain 

assumption. It is therefore expected that VFR can benefit from SNR information e.g. selecting less frames for low SNR parts of 

a speech signal.  

Inspired by these observations, the paper presents a low-complexity VFR method based on the measurement of a posteriori 

SNR weighted energy. To sum up, the motivations are multifold: 1) the difference in frame-to-frame energy provides a great 

discrimination for speech signals, 2) speech segments, besides their characteristics, are accounted also on their reliability e.g. 

measured by SNR, 3) the a posteriori SNR for noise-only segments will be theoretically equal to 0 dB, being ideal for VAD, and 

4) both energy and a posteriori SNR are easy to estimate, resulting in a low complexity.   

VFR has a broad spectrum of applications, ranging from computational reduction in the early days, through improved acoustic 

modeling and noise robustness, to prolonged speech recognition in singing voice or in spontaneous speech. In addition to noise 

robust ASR, the present work applies the proposed VFR method to two new applications: source coding in DSR and VAD.  

The paper is organized as follows. The a posteriori SNR weighted energy based VFR method is presented in Section II. 

Frame selection and distance measurement experiments are conducted in Section III. Sections IV, V and VI apply the VFR 

method to noisy speech recognition for robustness, to DSR for source coding and to VAD for accuracy, respectively. Section 

VII concludes the paper. 

 

II. A POSTERIORI SNR WEIGHTED ENERGY BASED VFR 

The a posteriori SNR weighted energy based VFR method, as detailed in this section, conducts frame selection on the basis of 

an accumulative a posteriori SNR weighted energy distance. Since the involved calculations have a low complexity, a 1 ms 

frame shift and a 25 ms frame length are used to provide a fine granularity search. 

A. A Posteriori SNR versus A Priori SNR 

A posteriori SNR is defined as the logarithmic ratio of the energy of noisy speech to the energy of noise: 

)(

)(
log)(

tE

tE
tSNR

noise
post                                                                                                                                    (1) 

where )(tE  is the energy of noisy speech of frame t, and )(tEnoise  is the energy of noise of frame t.  
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In contrast, a priori SNR is the logarithmic ratio of the energy of clean speech to the energy of noise 

)(

)(
log)(

tE

tE
tSNR

noise

speech
prio                                                                                                                               (2) 

where )(tEspeech  is the energy of clean speech of frame t. 

Calculating a posteriori SNR is much more straightforward than calculating a priori SNR as the latter requires estimating the 

energy of clean speech which is a challenging task in itself. 

B. The VFR Method 

The frame selection is conducted through the following steps: 

1.   Compute the a posteriori SNR weighted energy distance of two consecutive frames as  

)(|)1(log)(log|)( tSNRtEtEtD post                                                                                                       (3) 

where )(log tE  is the logarithmic energy of frame t, and )(tSNRpost  is the a posteriori SNR value of frame t.  

2.   Compute the threshold T  for frame selection as  

))((log)()( tEftDtT noise                                                                                                                          (4) 

where )(tD  is the average weighted distance over a certain period (in this work, it is calculated over one utterance for 

simplicity; in practice, )(tD  calculated over preceding segments can be used and it is then updated on a frame-by-frame 

basis). The function ))((log tEf noise  is a sigmoid function of )(log tEnoise  to allow a smaller threshold and thus a higher 

frame rate for clean speech. The sigmoid function is defined as 
)13)((log21

))((log 


tEnoise noisee
tEf

  where 0.9  

and 5.2  (unless stated otherwise). The constant of 13 is chosen so that the turning point of the sigmoid function is 

at an a posteriori SNR value of between 15 and 20 dB.  

3.   Update the accumulative distance: )()( tDtA   on a frame-by-frame basis and compare it against the threshold )(tT : 

If )()( tTtA  , the current frame is selected and )(tA  is reset to zero; otherwise, the current frame is discarded. The 

search continues, that is, go back to step 1.  

C. Discussion  

In this work, )(tEnoise  for calculating )(tSNRpost  in (1) and for calculating )(tT  in (4) are both simply estimated by averaging 

the first 10 frames of an utterance. The first 10 frames correspond to 34 ms speech signal, as the frame shift is 1 ms, and they are 

considered noise only.  
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The parameters of the sigmoid function in (4) are set as 0.9  and 5.2  to generate approximate 100 Hz frame rate in 

the final output. The 100 Hz frame rate is chosen due to the required match between the front-end frame rate and the number of 

states of the back-end hidden Markov models (HMMs), and a mismatch can result in a significant degradation in recognition 

accuracy as found in [15]. 

A number of variations of the algorithm will be presented and evaluated in Section IV and they include the use of a frame 

shift of 2.5 ms instead of 1 ms and the abandoning of the sigmoid function in (4).  

The complexity of the method is relatively low since only the logarithmic energy and the a posteriori SNR value are 

calculated for each frame. The use of a posteriori SNR, rather than a priori SNR, avoids the problem of assigning zero or 

negative weights to frames with dBtSNRprio 0)(   and subsequently discarding them due to their non-positive weights. As such, 

the a posteriori SNR weight for noise-only frames will be theoretically equal to 0 dB, making it ideal for VAD; in practice, 

however, negative a posteriori SNR values may still appear and are then set to zero to prevent negative weights.  

 

III. DATABASE AND FRAME SELECTION EXPERIMENTS 

A. Database  

Experiments in this paper are conducted on the Aurora 2 database [16], which is the TI digits database artificially distorted by 

adding noise and using a simulated channel distortion. Whole word models are created for all digits using the HTK recognizer 

[17]. Each of the whole word digit models has 16 HMM states with three Gaussian mixtures per state. The silence model has 

three HMM states with six Gaussian mixtures per state. A one state short pause model is tied to the second state of the silence 

model.  

The word models used in the experiments are trained on clean speech data. The three test sets include clean speech and noisy 

speech corrupted by different types of noise with SNR values ranging from 0 to 20 dB. The four noise types in Test Set A are 

“subway”, “babble”, “car” and “exhibition” while the four types of noise in Test Set B are “restaurant”, “station”, “airport” and 

“street”. Test Set C includes convolutional noise. The speech features are 12 MFCC coefficients, logarithmic energy as well as 

their corresponding velocity and acceleration components. 

B. Frame Selection  

A thorough comparison of several VFR methods was conducted in [18] and the energy weighted cepstral distance based VFR 

in [4] was found to outperform the others for both frame selection and speech recognition accuracy and therefore chosen as a 

baseline in this work. None of the compared methods, however, showed improvement over an FFR analysis in speech 
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recognition accuracy on a general database. 

Figure 1(a) illustrates a comparison between the proposed method and the method in [4] in terms of frame selection for the 

clean speech of the English digit “five”. The six panels in Fig. 1(a), sequentially, illustrate the waveform, the wideband 

spectrogram, the phoneme annotation generated by a tri-phone based HTK recognizer, the frames produced by a 100 Hz FFR 

analysis, the frames selected by the referenced method and the frames selected by the proposed one. Figure 1(b) shows the same 

comparison for 0 dB speech. To achieve maximum fairness against the reference method, in this work, the parameters for the 

referenced method are experimentally optimized for the Aurora 2 database. 

Figure 1(a) shows that the proposed VFR assigns a higher frame rate to fast changing events such as consonants, lower frame 

rate to steady regions like vowels and no frames to silence, which exactly represents the objective of applying VFR analysis. In 

contrast, the referenced method also performs well but with one weakness namely eliminating the first part of speech following a 

silence in the clean speech signal. A close analysis of the referenced method reveals that its energy weight is calculated as the 

difference between the logarithmic energy of the frame under consideration and the mean of logarithmic energy over the whole 

utterance. Consequently, for clean speech, due to the significant difference in energy between silence and speech regions, the 

weights will be negative for a silence region and this results in negative distance values as exemplified in Fig. 2(a). The negative 

distance values will accumulate and thus influence the frame selection for the speech segment right after the silence region, e.g. 

in Fig 1.(a) where there is no frame selected for the short consonant ‘f’. This is likely to be the reason why it performs well for 

low SNR speech, but shows no improvement on a general database.  

Figure 1(b) shows that the proposed VFR method realizes an implicit VAD very well even for a 0 dB signal as there is only 

one frame output for the silence part, while the referenced method results in almost evenly distributed frames. 
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Fig. 1. Frame selection for the English digit “five”: (a) For clean speech: waveform (the 1st panel), spectrogram (the 2nd panel), phoneme annotation (the 3rd 

panel), the frames produced by a 100 Hz FFR analysis (the 4th panel), the frames selected by the referenced method [4] (the 5th panel), and the frames selected 

by the proposed method (the 6th panel); (b) for 0 dB speech with the same order of panels as in (a).    

 

Figure 2(a) illustrates the energy weighted Euclidean MFCC distance used by the referenced method and the proposed a 

posteriori SNR weighted energy distance for the clean speech of the English digit “five”. Figure 2(b) shows the same 

comparison for 0 dB speech. The results verify that due to the weighting of the a posteriori SNR, the distance )(tD  as given in 

(3) is close to zero in the silence region for both clean and noisy speech.  

 
 

 
 

                                                    (a) 
 
 

 

 
 
                                                         (b) 
 
Fig. 2. Distance measurement for the English digit “five”: (a) For clean speech: spectrogram (the 1st panel), phoneme annotation (the 2nd panel), the energy 

weighted Euclidean MFCC distance used by the referenced method (the 3rd panel), and the proposed a posteriori SNR weighted energy distance (the 4th panel); 

(b) for 0 dB speech with the same order of panels as in (a).  
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In the following sections, the VFR method is applied to noise robust ASR and two new applications namely DSR and VAD. 

 

IV. NOISE ROBUST SPEECH RECOGNITION  

Poor robustness is considered the primary barrier to the widespread adoption of ASR technology. Noise robustness is 

therefore a key metric in measuring ASR performance, especially in intelligent environments with large acoustic variations.  

In general, robustness methods aim at reducing the mismatches between the training and test speech signals through feature-

domain or model-domain methods. Feature based methods include feature enhancement, distribution normalization and noise 

robust feature extraction. Feature enhancement attempts to remove the noise from the signal, such as in spectral subtraction (SS) 

[19] and in Vector Taylor Series (VTS) [20]. Distribution normalization reduces the distribution mismatches between training 

and test speech, for example in cepstral mean subtraction (CMS) [21] and in cepstral mean and variance normalization (CMVN) 

[22]. Noise robust features include improved MFCCs e.g. root-cepstrum [23].  

Note that noise robustness techniques are generally applied either in the feature domain, in the model domain or in both of 

them. On the other hand, VFR analysis works in the time domain in the sense that it determines which time frame to retain and 

more importantly, it has shown good performance in noise robustness. This attribute gives it a great potential to be combined 

with other methods, such as complementary spectral- and cepstral-domain enhancement methods, to achieve a truly cumulative 

improvement.  

A. VFR Combined with Spectral- and Cepstral-Domain Methods  

VFR analysis relies on some distance measures for frame selection. These measures, however, can be largely affected by 

noises that corrupt the speech signal. If the noisy speech signal is first de-noised by a speech enhancement method as e.g. SS and 

thereafter analyzed by the VFR method, it is expected that applying the speech enhancement method will both enhance the 

speech signal and improve the frame selection.  

The speech enhancement method applied in this work is the minimum statistics noise estimation (MSNE) [24] based SS. 

MSNE assumes that speech cannot occupy a frequency bin all the time and thus treats the minimum value of each frequency bin 

in the power spectral density domain within a long-enough window as the noise estimate of the current frame. This method gets 

rid of the VAD and is capable of tracking noise changes even within speech segments. 

The joint time- and spectral-domain method is further combined with the method which consists of Mean subtraction, 

Variance normalization and Auto-regression moving-average based filtering (MVA) in the cepstral domain [25]. Here, the MVA 

processing is applied to the static MFCC features only.  
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B. Experimental Results 

ASR experiments were conducted on the Aurora 2 database introduced in Subsection III.A. The word error rate (WER) results 

for a number of methods are presented in Table I. In the table, Cep-VFR refers to the energy weighted cepstral distance based 

VFR with parameters optimized for this task. The Cep-VFR method unfortunately does not give an acceptable performance for 

clean speech. The reason is that the potential negative distance results in no frames output for the first part of speech right after 

the silence which is often a short-duration consonant, as exemplified in Figs. 1(a) and 2(a). 

 

TABLE I 

PERCENT WER ACROSS THE METHODS FOR TEST SET A. THE RESULTS FOR CEP-VFR + VAD ARE CITED FROM [9], THE RESULTS FOR LOGE-VFR ARE CITED 

FROM [10] AND THE RESULTS FOR MVA ARE CITED FROM [25]. 

 

Methods 
0 ~ 20 dB 
(Average) 

Clean 

FFR baseline 38.7 1.0 
Cep-VFR  29.5 3.5 
Cep-VFR + VAD 30.0 1.4 
LogE-VFR 31.4 1.1 
SNR-LogE-VFR 28.7 1.4 
MSNE-SS 33.7 1.5 
MSNE-SS +SNR-LogE-VFR  21.6 1.3 
MVA 24.8 1.0 
MSNE-SS + MVA+ SNR-LogE-VFR 19.0 1.4 

 
The low performance of Cep-VFR on clean speech can be improved by combining it with a VAD to remove the silence from 

the speech signal. The results for the Cep-VFR method combined with VAD (Cep-VFR+VAD) presented in Table I are cited 

from [9] and they show that Cep-VFR+VAD gives a good performance for both clean and noisy speech.  

An energy based VFR (LogE-VFR) is presented in [10] that uses a delta logarithmic energy as the criterion for determining 

the size of the frame shift on the basis of a sample-by-sample search. The results of LogE-VFR, cited from [10] and included in 

Table I, show LogE-VFR obtains a performance on clean speech comparable to that of the FFR baseline as well as  a good 

performance on noisy speech although worse than both Cep-VFR and Cep-VFR+VAD.  

Finally the proposed method (SNR-LogE-VFR) demonstrates the best performance for noisy speech and a good performance 

for clean speech. As compared with Cep-VFR+VAD, it has a substantially lower complexity and no support from VAD (need 

for a rough estimation of )(tEnoise  but no explicit need for a VAD).  

Table I also shows the results for the MSNE based spectral subtraction (MSNE-SS) and its combination with the a posteriori 

SNR weighted energy based VFR. It is observed that the combination of the proposed SNR-LogE-VFR and MSNE-SS achieves 

a 17.1% absolute WER reduction on noisy speech as compared with the FFR baseline. Interestingly, the improvement of the 

combined method is greater than the summation of the gains obtained by applying the two methods individually (10.0% for 
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SNR-LogE-VFR and 5% for MSNE-SS) – it is often the opposite way when combining two methods. This justifies the dual 

contributions of speech enhancement when combined with the VFR method, i.e. improving frame selection and enhancing 

speech.  

The last part of Table I gives the results for MVA and for the combination of SNR-LogE-VFR, MSNE-SS and MVA. The 

performance for the MVA is cited from [25]. The results show that the combination with MVA further improves the 

performance and suggest that the VFR method is orthogonal to other methods. The method is expected to benefit from 

combination with other advanced methods as well, especially model based noise-robustness methods. 

 

C. Parameters for Frame Selection Threshold 

This subsection investigates the effect of the settings of parameters for calculating frame selection threshold, i.e.,   and  in 

the function 
)13)((log21

))((log 


tEnoise noisee
tEf

  in (4). The default setting is 0.9  and 5.2 . In the experiments here, 

the two parameters are varied across a range, which are shown together with their corresponding WER results in Table II.  

 

TABLE II 

PERCENT WER ACROSS DIFFERENT PARAMETER SETTINGS FOR TEST SET A.  

 

Methods 
0 ~ 20 dB 
(Average) 

Clean 

( 0.90  , 5.20  ) 28.7 1.4 

( 5.00  , 0 ) 28.8 1.4 

( 5.00  , 0 ) 28.9 1.4 

( 0 , 5.00  ) 28.7 1.4 

( 0 , 5.00  ) 28.9 1.4 

( 10  , 10  ) 28.5 1.4 

( 20  , 20  ) 28.2 1.5 

( 10  , 10  ) 29.4 1.5 

( 5.20  , 05.20  ) 30.9 1.7 

 
In the first set of experiments, either   or   is increased or is decreased by 0.5 as compared with the default settings. Table 

II shows the resulting changes in WER are negligible. In the second set of experiments, if   is increased,   is then decreased 

by the same amount, vice versa. Decreasing   while increasing   means further reducing the frame rate for noisy speech. 

Table II shows that increasing   from 2.5 to 4.5 gives even better overall performance. On the other hand, decreasing   while 

increasing   means the difference in frame rate between clean and noisy speech is reduced as compared with the default 

setting, in which moderate performance degradation is observed (note that the changes in parameters are quite large). With the 
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setting ( 5.20  , 05.20  ), the threshold is equal to )())((log)()( tDtEftDtT noise  , corresponding to no use of the 

sigmoid function. This gives the same frame rate for both clean and noisy speech. Overall, the results indicate that varying the 

parameters around the default setting only has a minor influence on the resulting WER.  

The default frame shift value is set to 1 ms in Section II. A different frame shift value can be used which requires different   

and   as well due to the requirement of approximate 100 Hz frame rate. When the frame shift is set to 2.5 ms,   and   are set 

as 2.6 and 1.2, respectively. With these settings, the average WER for 0~20 dB noise speech is 28.5% and the WER for clean 

speech is 1.6%. It is observed that WER for clean speech increases slightly as compared to the case of 1 ms frame shift. With 

varying values of   and  , trends similar to that of Table II are observed.  

D. Analysis of Recognition Error Types 

Experiments are conducted to investigate the behavior of VFR through the analysis of recognition error types. In the 

experiments, only the “Babble Noise” subset of Test Set A is used which consists of 3308 words.  

Table III shows the analysis for clean speech for the FFR baseline, Cep-VFR, the a posteriori SNR weighted energy based 

VFR, the MSNE based SS and the combination of SNR-LogE-VFR with MSNE-SS and MVA methods. It is common that noise 

robustness algorithms increase the WER for clean speech and as shown in Table III, this is the case for the VFR methods as 

well. The number of insertion errors, however, still decreases after applying the VFR methods.  

 

TABLE III 

NUMBER OF CORRECT WORDS (H), DELETIONS (D), SUBSTITUTIONS (S) AND INSERTIONS (I) ON CLEAN SPEECH (A SUBSET OF TEST SET A WITH 3308 WORDS IN 

TOTAL). 

 

Methods H D S I % WER 
FFR Baseline 3285 10 13 10 1.0 
Cep-VFR  3180 45 83 3 4.0 
SNR-LogE-VFR 3263 11 34 7 1.6 
MSNE-SS 3273 14 21 15 1.5 
MSNE-SS+SNR-LogE-VFR 3265 12 31 4 1.4 
MSNE-SS + MVA+ 
SNR-LogE-VFR 

3260 14 34 5 1.6 

 
Table IV shows the same analysis for 10 dB datasets corrupted by “Babble Noise”, respectively. It is interesting to note: 1) the 

number of correctly recognized words steadily increases after applying VFR, MSNE-SS and MVA, 2) the number of 

substitutions steadily decreases after applying VFR, MSNE-SS and MVA, 3) the number of insertions decreases very 

substantially applying VFR and MVA, and 4) the number of deletions increases slightly after applying VFR and MVA. It is 

clear that the most significant performance improvement comes from the reduction of insertion errors. The same trends are 

observed for 0 dB dataset.  
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TABLE IV 

NUMBER OF CORRECT WORDS (H), DELETIONS (D), SUBSTITUTIONS (S) AND INSERTIONS (I) ON 10 DB SPEECH CORRUPTED BY “BABBLE NOISE” (A SUBSET OF 

TEST SET A WITH 3308 WORDS IN TOTAL). 

 

Methods H D S I % WER 
FFR Baseline 2700 102 506 1065 50.6 
Cep-VFR  2952 79 277 294 19.6 
SNR-LogE-VFR 2772 138 398 65 18.2 
MSNE-SS 2885 78 345 828 37.8 
MSNE-SS+SNR-LogE-VFR 2917 103 288 100 14.8 
MSNE-SS + MVA+ 
SNR-LogE-VFR 

2965 169 174 14 10.8 

 
To achieve maximum absolute performance, noise robust features that are compatible with standard MFCCs can be evaluated 

and a nice overview is provided in [26]. Among others, subspace based approaches such as linear discriminative analysis [27] 

are of particular interest.  

 

V. SOURCE CODING IN DSR 

To take advantage of the resources available over networks, DSR employs the client-server architecture and submits the 

computation-intensive ASR decoding task to a powerful server [1]. Specifically, speech features estimated for ASR are 

compressed and transmitted through networks to a server. In the server the features are decoded and used for recognition. This 

architecture relieves the burden of computation, memory and energy consumption from low-resource devices. As a side effect, 

the distributed solution requires data compression. 

As shown in previous sections, the VFR method aims at a high time resolution for fast changing events and a low time 

resolution for steady regions. The same philosophy is applied as well in data compression in DSR (and Voice-over-IP). Frame 

selection in the feature extraction process optimized over a certain period in the VFR analysis is likely of benefit to the data 

compression which follows right after the feature extraction.  

This motivates us to use the VFR method for data compression. The target bit rate for DSR is simply realized by choosing a 

proper frame rate. For the purpose of comparison, we optimize the SNR-LogE-VFR, by constraining the range of the frame 

selection search, to give a comparable performance on clean speech to the ETSI-DSR FFR baseline. After applying split vector 

quantization, this gives a DSR front-end with a bit rate of approximately 3.5 kbps (SNR-LogE-VFR-DSR) and its recognition 

results are shown in Table V.  

A bit rate of approximately 1.5 kbps is implemented as well and to restore the original frame rate for the match between the 
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frame rate and the applied HMMs, frame repetition is applied in the server. The work in [15] shows that there is a strong 

correlation between the number of states of the back-end HMM models and the frame rate used in the front-end  and a mismatch 

between the two introduces a significant increase in ASR WER. The mismatch can as well be removed by using a smaller 

number of HMM states, at the expense of additional acoustic model sets.  

An efficient compression method in DSR is the two-dimensional Discrete Cosine Transform (2D-DCT) based code [28]. 

More recently, the group of pictures concept (GoP) from video coding was applied to DSR to achieve a variable-bit-rate 

interframe compression scheme [29]. The results for these methods (2D-DCT and GoP) are cited and presented in Table V. 

Since there may exist mismatches in training/testing between the various simulation systems in the references, the comparisons 

are indicative only.  

Note that the ETSI-DSR standard uses a split vector quantization for data compression without exploiting interframe 

information [36].   

Experimental results in Table V show that the VFR based data compression is significantly superior to the 2D-DCT method 

and the GoP one.  

 

TABLE V 

PERCENT WER ACROSS THE DATA COMPRESSION METHODS FOR TEST SET A. THE RESULTS FOR 2D-DCT AND GOP ARE CITED FROM [28] AND [29], 

RESPECTIVELY.  

 

Methods 
kbps 

(payload) 
0 ~ 20 dB 
(Average) 

Clean 

ETSI-DSR 4.40 39.8 1.0 
2D-DCT 1.45 40.5 1.6 
GOP 2.57 N/A 2.5 
GOP 1.27 N/A 2.6 
SNR-LogE-VFR-DSR 3.50 33.7 1.0 
SNR-LogE-VFR-DSR 1.50 32.8 1.2 

 

VI. VOICE ACTIVITY DETECTION 

Widely used in real-world speech systems, voice activity detection attempts to detect the presence or absence of speech in a 

segment of an acoustic signal [30]. The detected non-speech segments can subsequently be abandoned to improve the overall 

performance of these systems. For instance, DSR makes use of a VAD to avoid unnecessary processing and transmission of 

silence regions and thus save on computational resources and on network bandwidth. As another example, speech recognition 

systems can take advantage of a VAD to reduce recognition error rates as demonstrated by the combination of the energy 

weighted cepstral distance based VFR and a VAD [9].  

In general, voice activity detection is realized in two key steps: First, some features are calculated from a segment of the 
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acoustic signal; secondly, a classifier is applied to the features to categorize the segment as speech or non-speech.  

Speech features used for VAD include both classical ones, e.g. energy and zero crossing rate, and more sophisticated ones, 

e.g. entropy [31] and Mel-filter bank outputs [32] that have recently been proposed. In terms of classification, techniques such as 

support vector machines [33], Gaussian mixture models [34] and decision trees [35] have been used. The simplest technique is a 

threshold based approach in which the decision is made by comparing the calculated value(s) against certain threshold(s). 

Two different VAD algorithms are used by the ETSI advanced front-end for different purposes [36]. The first one is energy 

based and is used for noise estimation, while the second marks each 10 ms frame in an utterance as speech/non-speech so that 

the information can be used for frame dropping at the server recognizer. Only the second algorithm is further analyzed in this 

paper. It has two stages: a frame-by-frame stage consisting of three measures (whole spectrum, spectral sub-region and spectral 

variance) and a decision stage analyzing the pattern of buffered measurements for making the VAD decision.  

Voice-over-IP standards include VAD algorithms as well. The G.729 VAD algorithm uses the following features: full- and 

low-band frame energy, a set of line spectral frequencies and the frame zero-crossing rate [37]. The G.723.1 VAD algorithm 

compares the energy of the inverse filtered signal with a threshold [38].  

It is a unsolved problem to develop VAD methods that are accurate in both clean and noisy environments. Further, accuracy, 

latency and complexity are considered key metrics for measuring and comparing VAD methods. Complexity is important since a 

VAD applies to various applications which often involve low-resource devices.  

The ETSI advanced front-end VAD performs very well in noisy environments, but very poor in noiseless conditions. A 

comparison in [39] also shows that the advanced front-end VAD is primarily suitable for stationary noise environments. The 

Mel-filter bank outputs based VAD [32] is highly accurate for clean speech, but its performance in noisy environments is worse 

than the advanced front-end VAD in terms of frame error rate. Both are significantly superior to the G.729 and G.723.1 VAD 

algorithms. 

As shown in Section III.B, the a posteriori SNR weighted energy based VFR method is able to assign a higher frame rate to 

fast changing events such as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even for very 

low SNR signals. This motivates us to further process the selected frames for speech/non-speech classification, leading to a 

high-accuracy and low-complexity VAD method that performs well in both clean and noisy environments.  

A. VAD Decision Based on VFR Selected Frames 

A moving average is applied to the frames selected by the VFR algorithm as detailed in Subsection II.B. The moving average 

)(nM  is calculated on the basis of a 10 ms frame shift and is measured as the average number of frames within the moving 

average window as follows.   
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where the function )(_ tselectionframe  represents whether the t-th frame is selected or not in the frame selection process: The 

value is 1 if selected and 0 if not. The constant 10  maps the 1 ms frame shift for VFR frame selection to the 10 ms frame 

shift for VAD.  

It is a central moving average when m1 = m2, a prior moving average when m2 = 0, and a biased moving average when m1≠m2. 

The latency of the VAD method is controlled by adjusting m2. 

The output of the moving average )(nM  is compared against a threshold Tvad: If vadTnM )( , the current frame is classified 

as speech; otherwise, the current frame as non-speech.   

The use of a posteriori SNR was introduced in a very recent work in [40] together with a priori SNR and predicted SNR as 

principal parameters of support vector machine based VAD. The method presented in this paper, however, is based on three 

factors: energy distance, a posteriori SNR weighting and accumulation. Further the method first conducts frame selection as 

done in VFR analysis and then applies VAD decision on the frame selection results. Alternatively, the a posteriori SNR 

weighted energy can be used for VAD decision directly.  

B. Generation of Frame-Based Reference VAD 

The frame-by-frame reference VAD is generated from forced-alignment speech recognition experiments. Whole word models 

are trained on clean speech data for all digits using the HTK recognizer as described in III.A.  

The trained word models are used for performing forced-alignment for the 4004 utterances (clean speech) from which all 

utterances in Test Set A, B and C are derived from by adding noise. The forced-alignment results are used to set the time 

boundaries for speech segments to create a frame-based reference VAD.  

C. Illustrative VAD Results  

To provide some insight about the VAD process, the intermediate and final VAD results for two input speech signals are 

depicted in Fig. 3. In this experiment a 37-point central moving average is applied. The utterances are the English digits “five 

nine four” in noiseless and 5 dB noisy environments. The figure presents the results on waveform, spectrogram, frames selected 

by the proposed method and VAD experiments.    
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Fig. 3. VAD experiment for the English digits “five nine four”: (a) For clean speech: waveform (the 1st panel), spectrogram (the 2nd panel), frames selected by 

the proposed method (the 3rd panel), VAD results (the 4th panel: the solid blue for the reference VAD, the dash-dot green for the advanced front-end VAD, the 

dashed red for the proposed VAD and the black dotted for the moving average M(n)); (b) for 5 dB speech with the same order of panels as in (a).    

 

The illustration shows that the VAD method performs well even for a speech signal of 5 dB in terms of both frame selection 

and VAD decision. Also it is observed that the VAD result of the proposed method is more precise than that of the advanced 

front-end. 

D. Performance Comparison  

Frame error rates for several VAD methods on the Aurora 2 Test Set A, B and C are presented in Table VI. Results for G.729, 

G.723.1 and MFB VAD methods are cited from [32].  

 

 

TABLE VI 



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. X, NO. X, MONTH YEAR 

 
18

PERCENTAGE OF FRAME ERRORS OBTAINED BY SEVERAL METHODS ON AURORA 2 DATABASE TEST SET A, B AND C. THE RESULTS FOR G.729 VAD, G.723.1 

VAD AND, MFB VAD ARE CITED FROM [32]. 

 

Methods Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Ave.
G.729 12.8 24.5 26.1 27.4 29.1 32.2 35.2 26.8

G.723.1 19.5 21.3 23.3 24.4 26.3 26.6 28.6 24.3
MFB 6.9 15.4 17.7 20.1 22.8 26.2 31.1 20.0

DSR AFE 18.4 15.2 15.0 14.6 14.5 15.6 22.1 16.5
Proposed 8.1 8.3 9.0 10.6 13.5 19.5 28.2 13.9

 
Table VI shows that the average frame error rate of the proposed method is significantly lower than those of the referenced 

methods. The proposed method is substantially superior to the G.729 VAD [37] and the G.723.1 VAD [38] in all conditions, to 

the Mel-filter bank VAD [32] except for noiseless condition and to the advanced front-end VAD [36] except for very low SNR 

signals (0 dB and -5 dB).  

Speech recognition experiments were carried out on Test Set A for the proposed VAD. The obtained WERs are 28.9% and 

1.0% for noisy and clean speech, respectively, indicating its effectiveness in speech recognition.  

E. Latency Experiments   

Since a 37-point central moving average is applied in the proposed VAD method, this gives a latency of 18 frames. To 

eliminate this latency, further experiments are conducted by using a prior moving average that depends on preceding data only. 

The use of a prior moving average will result in wrongly classifying the first several speech frames as non-speech. To handle 

this problem, an adaptive threshold is applied as follows. 
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where the function )(_ ndecisionvad  is the VAD decision at the n–th frame: 1 for speech and 0 for non-speech. The results of 

this modified VAD method (Modification 1) are presented in the second row of Table VII.  

Further, in Step 2 of the algorithm presented in Section II.B, the average weighted distance )(tD  in (4) is calculated over an 

entire utterance, i.e. relying on knowledge of future observations. To avoid the latency caused by this, the following estimation 

of )(tD  is applied:  

)()1()1()( tDtDtD                                                                                                                             (7) 

This modification is combined with the use of a prior moving average (i.e. Modification 1), resulting in an implementation of the 

method with 0 frame latency (Modification 2). Its results with 9995.0  are shown in the third row of Table VII.  

The performance of the method with 0 frame latency degrades significantly as compared to the one with latency, demanding a 

further research.    
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TABLE VII 

PERCENTAGE OF FRAME ERRORS OBTAINED BY THE PROPOSED METHOD WITH MODIFICATIONS ON AURORA 2 DATABASE TEST SET A ACROSS SNR VALUES. 

 

Methods Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Ave. 

Modification 1 10.3 11.6 12.7 14.2 16.2 20.1 26.5 15.9 

Modification 2 10.7 11.2 12.4 14.1 16.8 21.5 28.7 16.5 

 

VII. CONCLUSIONS  

The contributions of this paper are multifold. First, the accumulative a posteriori SNR weighted energy distance based VFR 

was presented. In terms of frame selection, the method is able to assign a higher frame rate to fast changing events such as 

consonants, a lower frame rate to steady regions like vowels and no frames to silence, even for very low SNR signals.  

Secondly, the VFR method was applied to noise-robust ASR and was combined with spectral- and cepstral-domain methods. 

Encouraging results were obtained. Further experiments were conducted to investigate the behavior of the VFR through the 

analysis of ASR error types. It was found that the decrease in the number of insertion errors is the most significant reason for 

ASR accuracy improvement. The secondary reasons are the increase of the number of correct words and the decrease of the 

number of substitutions. The number of deletions, however, slightly increases.   

Moreover, the VFR method was applied to two new applications namely DSR and VAD. The employment of the VFR method 

in DSR for data compression results in an efficient and scalable DSR coding scheme. Its employment in VAD derives an 

accurate VAD method.  

Importantly, the proposed method has the advantage of a low complexity.  

Future work includes applying the accumulative a posteriori SNR weighted energy distance directly for VAD decision by 

bypassing the frame selection step and applying a weighted prior moving average over the distance measure. The VFR method is 

expected to benefit from a combination with other advanced methods as well, especially model based noise-robustness methods. 
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