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Abstract 

Mobile communication presents a number of challenges to 
speech technology such as the limited resources available in 
the terminals in addition to the bandwidth constraints and the 
errors occurring in transmissions over mobile networks. These 
challenges need to be solved before automatic speech 
recognition (ASR) is ready for widespread use in the context 
of personal communication environments. 

This paper gives an overview of the problems inherent in 
the recently developed network based ASR with an emphasis 
on the robustness issues that are highly influenced by network 
degradations. The paper further presents a number of 
transmission error protection and concealment schemes that 
are evaluated in a number of ASR experiments encompassing 
a range of typical real-environment transmission errors. 

1. Introduction 

Extensive R&D efforts in academia and industry presently 
address research issues aimed at communication in personal 
distributed environments – the so-called personal networks 
(PN) [1]. In such environments users interact with various 
companions, embedded, or invisible computers not only in 
their close vicinity but potentially anywhere. The vision of 
having PNs is that they comprise potentially all of a person’s 
devices capable of network connection whether in her or his 
wireless vicinity, at home or in the office. The work towards 
enabling this vision transparently for users results in major 
extensions of the present personal area networking (PAN) and 
ambient intelligence (AmI) paradigms. At the heart of a PN is 
a core PAN, which is physically associated with the owner of 
the PN, as illustrated in Figure 1. Unlike PANs that have a 
limited geographically coverage, each PN has an unrestricted 
geographical span, which may incorporate devices into the 
personal environment regardless of their geographic location. 
A PN extends and complements the concept of pervasive 
computing. 

In the PN environment there is a high demand for 
applications to include ASR as a key component of the user 
interface. However, the devices used by a PN owner are often 
hand-held devices with limited battery life, computing power 
and memory size for which reasons it is a challenge to 
implement any complicated ASR in the devices. In ASR 
associated with large databases the security and consistency 
considerations also make it hard to build ASR on the devices 
[2]. On the other hand, the ‘always-on’ facility of the PNs 
offers improved opportunities for running the ASR modules in 
a distributed architecture where only the front-end processing 
requires specific porting and implementation to the hand-held 
devices.  

Successful functioning of ASR requires access to high or 
toll quality speech. In networked speech recognition, the 
performance of ASR will degrade seriously as the data may 

be infected with transmission errors and data packet loss. 
Lossy source coding causes degradation as well. 
Subsequently, the ASR modules require modifications to be 
able to function even for varying Quality-of-Service (QoS) of 
the transmission network. 

This paper focuses on a number of problems that need be 
considered aiming at the deployment of robust ASR in PNs. 
Successful solutions are of central importance for the 
widespread use of ASR in PN based services that are expected 
to be part of the daily life for users of the future information 
society. 
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Figure 1: Illustration of the PN concept. 

2. Speech recognition in personal networks 

The integration of ASR into PNs can be implemented as 
either a purely terminal based or a network based architecture. 
Due to their different advantages both architectures will exist 
in the future. An overview and comparison of these 
architectures has been presented in [3]. This paper considers 
network based solutions only.  

2.1. Network based speech recognition 

The research within network based ASR is focused on three 
aspects, namely the architecture, source coding and channel 
robustness. 

In a distributed framework for implementing ASR 
services on wireless mobile devices, efficiency is in focus to 
support a large number of mobile users connected via wireless 
network in [2]. In the DARPA Communicator program a 
more general distributed architecture for an ASR system has 
been developed incorporating a Hub and a variety of servers, 
and the ASR system is decomposed into a number of 
components allowing for flexible, efficient and effective 
interaction among them [4]. 

To enable efficient data transmission in distributed 
architectures source coding is applied to conduct data 
compression. Data representing speech is transmitted from the 



input device to the server either as coded speech or as ASR 
features, resulting in two types of networked ASR namely 
server based ASR and distributed speech recognition (DSR).  

In server based ASR the client samples the speech 
waveform and transmits the encoded speech only. The server 
re-synthesises the decoded data, conducts feature extraction 
and subsequently performs recognition. The quality of the re-
synthesised speech is highly dependent on the speech coder. 
A low bit rate speech coder may cause significant 
degradations in recognition performance [5]. The effect of a 
variety of source coding schemes, e.g. voice over IP (VoIP) 
and GSM codecs, on ASR has been extensively investigated 
in [6], [7]. The feature set, however, may also be estimated 
directly from the bit-stream of the speech coder without 
synthesizing the coded speech [8].  

In DSR speech features suitable for recognition are 
calculated and quantized in the client and transmitted to the 
server, where they are decoded, submitted to an appropriate 
error concealment (EC) algorithm and subsequently handled 
by the recogniser. This set-up provides a good trade-off 
between bit-rate and recognition accuracy [9]. 

To counteract the degradation in recognition performance 
due to a noisy channel, considerable research efforts have 
been conducted in exploring the potential of error protection 
and concealment techniques [9]-[16]. Channel robustness 
issues are further discussed in section 3. 

Supported by the rapid growth in mobile communications, 
a number of algorithms that handle the combined effects of 
source coding, channel coding/decoding and EC techniques 
have been developed [9]-[11]. The ETSI published the first 
DSR standard with the aim of handling the degradations of 
ASR over mobile channels caused by both lossy speech coding 
and transmission errors [16]. The latest extensions to this are 
the advanced front-end aimed at noise-robust ASR and the 
extended front-end aimed at enabling improved tonal language 
recognition and server-side speech reconstruction by 
containing fundamental frequency information for the speech 
[17]. The DSR extended advanced front-end is under 
consideration by the 3rd Generation Partnership Project 
(3GPP) as a candidate for the speech enabled services (SES) 
codec, as an alternative to adaptive multi-rate (AMR) coding. 
Proposals have also been made to the Internet Engineering 
Task Force (IETF) to define Real-Time Protocol (RTP) 
payload formats for these DSR codecs [18].  

2.2. The ETSI-DSR standard 

The ETSI-DSR standard defines the feature-extraction front-
end processing together with an encoding scheme [16]. The 
front-end produces a 14-element vector consisting of log 
energy (logE) in addition to 13 mel-frequency cepstral 
coefficients (MFCC) ranging from c0 to c12 – computed every 
10 ms. Each feature vector is compressed using split vector 
quantization (SVQ). The SVQ algorithm groups two features 
(either {ci and ci+1, i=1, 3...11} or {c0 and logE}) into a 
feature-pair subvector resulting in seven subvectors in one 
vector. Each subvector is quantized using its own SVQ 
codebook. The size of each codebook is 64 (6 bits) for {ci and 
ci+1} and 256 (8 bits) for {c0 and logE}, resulting in a total of 
44 bits for each vector. 

Two quantized frames – in this paper equivalent with 
vectors - are grouped together and protected by a 4-bit cyclic 
redundancy check (CRC) creating a 92-bit frame-pair. Twelve 
frame-pairs are combined and appended with overhead bits 

resulting in an 1152-bit multi-frame. Multi-frames are 
concatenated into a 4 800 bps bit-stream for transmission. 

At the server two calculations determine whether or not a 
frame-pair is received with errors, namely a CRC test and a 
data consistency test. In the EC processing, a repetition 
scheme is applied to replace erroneous vectors. 

The methods presented in this paper utilise the ETSI-DSR 
standard as a baseline. 

3. Robustness against network degradations  

Due to the alleviation of lossy source coding in the DSR 
framework, the remaining key robustness issue against 
network degradations is the presence of transmission errors. A 
number of solutions to overcome these problems have been 
developed on the basis of analyses of error characteristics. 

3.1. Analysis of error characteristics 

3.1.1. Burst-like vs. random 

Errors occur not only due to channel noise but also due to a 
variety of transmission impairments. In real communication 
environments bit errors occur both with random and with 
burst-like distributions.  

To investigate the distribution of errors, three GSM error 
patterns (EP) are analysed due to their realistic characteristic 
and to their common use in testing codecs. The EPs are 
segmented into frames each corresponding to 10 ms – the shift 
step of ASR feature extraction process. Each frame is then 
classified as error-free or erroneous depending on if there are 
any errors in the frame segment. The resulting distribution 
functions of erroneous frames as a function of length (number 
of consecutive erroneous frames) are shown in Figure 2. 

Figure 2: Distribution functions of erroneous frames by 
length. Length ‘O’ covers lengths larger than 8. 

From Figure 2, it is noticed that the percents of erroneous 
frames of adding up all consecutive erroneous frames with a 
length from 1 to 3 (which are not considered as burst-like) are 
approximately 100%, 89% and 56% of the total erroneous 
frames for GSM EP1, EP2 and EP3, respectively. It indicates 
that both random and burst-like errors should be taken into 
account even though burst-like errors do more harm to ASR.  

With the aim of counteracting especially burst-like errors 
the ETSI-DSR standard adopts a frame-pair scheme for error 
protection. However, the analysis above demonstrates that in 
reality random errors cannot be neglected. To take random 
errors into consideration as well, [13] proposed a one-frame 
error protection scheme where each frame is independently 
protected by a 4-bit CRC. 
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3.1.2. Frame-pair vs. one-frame 

To compare the influence of applying the one-frame scheme as 
opposed to the frame-pair scheme, error rates of both schemes 
are calculated across a number of random bit error rates (BER) 
according to the following formula 

     bitsBERErrorRate )1(1 −−=                                   (1) 

where bits is the number of bits in the frame-pair or one-
frame. 

The results in Figure 3 show that the one-frame scheme 
significantly reduces the detected frame error rate (FER). 

Figure 3: % Error rates of frame-pair, one-frame (vector) and 
subvectors vs. % BER.  

3.1.3. Vector based vs. subvector based 

In the ETSI-DSR standard, the EC is split into two parts where 
the first half of a series of erroneous frames is replaced with a 
copy of the last correct frame before the error and replacing 
the second half is replaced with a copy of the first correct 
frame following the error.  

It is observed that the EC is conducted at the vector (or 
frame) level only. A vector is the unit selected for error 
detection, and if erroneous then followed by a substitution. 
This is the common characteristic of vector level EC 
algorithms no matter whether splicing, substitution, repetition 
or interpolation scheme is applied.  

It is, however, highly likely that not all subvectors in an 
erroneous vector are corrupted by errors and the vector level 
EC strategy thus fails to exploit the error free fractions left 
within erroneous vectors. 

To illustrate the potential of exploiting subvector 
information, vector and subvector error rates are calculated 
according to (1) as well where now bits is the number of bits 
in a vector or a subvector. The results are shown in Figure 3 
where Subvector1 and Subvector2 are [C0, logE] and [ci, ci+1], 
i=1,3...11, respectively. It is noticed that the error rates of the 
subvectors are significantly lower. 

3.2. Error-robust speech recognition 

The results of the above analyses motivate a number of 
approaches to error-robust speech recognition.  

3.2.1. One-frame based error protection 

An error protection scheme based on the one-frame approach 
instead of the ETSI frame-pair based approach causes the 
overall probability of a frame being in error to be lower (at the 
cost of only a marginal increase from 4 800 bps to 5 000 bps 
in bit-rate) [13]. 

3.2.2. Subvector based error concealment 

The exploitation of the potential error-free information 
embedded in each erroneous vector – rather than simply 
substituting them – leads to a subvector-level EC scheme in 
which each subvector is selected as the basis for 
supplementary error detection and mitigation. 

Since there is no CRC coding applied at the subvector 
level, error detection at this level can only make use of a data 
consistency test.  

Given that n denotes the frame number and V the feature 
vector, each vector is formatted as  

Tnnnnnn Ecccc ]log,,...,[ 01221=V  

      Tnnnnnn Eccccc ]]log,[],,]...[,[[ 0121121=  

      TTnTnTn ]]...[][,][[ 610 SSS=                                     (2) 

where Sj
n (j=0,1…6) denotes the j’th subvector in frame n. 

The consistency test is conducted across consecutive 

frame-pair vectors [ 1, +nn VV ] such that each subvector Sj
n 

from nV is compared with its corresponding subvector Sj
n+1 

from 1+nV . If any of the two decoded features in a feature-pair 
subvector does not possess a minimal continuity, the subvector 
is classified as inconsistent. Specifically both subvectors Sj

n 
and Sj

n+1 in a frame-pair are classified as inconsistent if 
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where d(x,y)=|x-y| and Sj
n(0) and Sj

n+1(0) and Sj
n(1) and 

Sj
n+1(1) are the first and second element, respectively, in the 

feature-pair subvectors Sj
n and Sj

n+1 as given in (2); otherwise, 
they are classified as consistent. The thresholds )0(j T  and 

)1(j T  are constants given on the basis of measuring the 

statistics of error free speech features. The threshold values 
given in the ETSI-DSR standard for data consistency test are 
used in the experiments for subvector based EC as given in 
Section 3.2.3.  

The data consistency test generates a consistency matrix 
that discriminates between consistent and inconsistent 
subvectors. Only inconsistent subvectors are replaced by their 
nearest neighbouring consistent subvectors whereas the 
consistent subvectors are kept unchanged. Details are 
presented in [14]. 

3.2.3. Experimental results 

To evaluate the performance of the methods presented above, 
two recognition experiments involving the Danish digits and 
city names were conducted. The experimental settings are as 
described in [13]. The baseline word error rate (WER) (no 
transmission errors) for the Danish digits and the city names 
are 0.2% and 20.7%, respectively.  

The repetition scheme used by the ETSI-DSR standard 
was chosen to represent a set of alternative EC algorithms as 
comparison. This choice was taken due to the fact that the 
repetition scheme is a better safeguard to WER against 
transmission errors than methods like linear interpolation and 
splicing [12]. 

The GSM EPs were chosen to corrupt the speech feature 
stream. The GSM error patterns are EP1, EP2 and EP3 
corresponding to carrier-to-interference ratios of 10 dB, 7 dB 
and 4 dB, respectively.  

Figure 4 shows that the WERs for EP1 and EP2 for both 
tasks for all schemes are close to the baseline indicating that 
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the effect of EP1 and EP2 on recognition performance is 
insignificant. The degradation caused by EP3, however, is 
significant. But it is observed that the proposed one-frame 
scheme and subvector based EC technique significantly 
improve the performance.  
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Figure 4: %WER for the Danish digits and city names for 
three schemes for the GSM EPs.  

4. Adaptation to networks - towards QoS 
driven spoken language systems 

In general each EC scheme is designed with the aim of 
maintaining maximal ASR accuracy. The front-end 
approaches, however, can only partly alleviate the impairment 
on speech features. In addition to the effort on the front-end 
solutions, the knowledge of network degradations can be 
further exploited and applied to the adaptation of the back-end 
recogniser.  

One example of this kind is FER based out-of-vocabulary 
(OOV) detection [13] where it is observed that transmission 
errors influence the acoustic likelihood and thus affect the 
optimal threshold setting for discrimination between in-
vocabulary words and OOV words. The CRC information in 
the channel error protection is exploited to calculate the 
current FER – a parameter of QoS – and a FER-dependent 
threshold that optimises the OOV detection can be estimated. 
This method has proved successful in maintaining a constant 
false rejection rate across a range of error rates. 

To further extend this adaptation concept, QoS can be 
exploited to adapt e.g. the spoken language processing and 
dialogue management modules, with the aim of enabling 
graceful modifications to the behaviour of human computer 
interface (HCI). For example, the user can be requested to use 
a more restricted vocabulary and grammar or to switch to 
other modalities.  

Furthermore, beyond individual best-effort research, cross 
layer design enables the interaction among different layers 
namely application, network and media access control (MAC) 
layer aiming at optimum QoS of the entire system [19]. 

5. Conclusions 

This paper reviews the developments and trends of 
incorporating speech technology into a user-centric network 
architecture. Pervasive computing supported by PN offers 
improved opportunities for running ASR modules in a 
distributed architecture, enabling ASR deployment in a wide 
range of devices.  

The research presented in this paper clearly shows the 
importance of applying a robust EC scheme to data 
transmitted across error-prone transmission channel. It is 
however pointed out that new research has to be initiated with 

the aim of introducing QoS-dependent modifications to 
existing ASR modules. The overall goal as seen from the 
users’ perspective is to seamlessly offer robust and user-
friendly HCI independent of which network is used. 
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