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ABSTRACT 

 
This paper presents research on two aspects of distributed speech 
recognition (DSR) in the presence of channel transmission errors 
in wireless network environments. 

The first is on experiments with a frame-based channel 
error protection scheme, where in previous research we reported 
results from experiments using randomly distributed bit-errors. 
This paper presents results from experiments using three 
additional, more realistic error distributions: burst-like packet 
loss, GSM error patterns and UMTS statistics. 

The second is on exploiting the knowledge about channel 
transmission errors for the purpose of optimising the Out-of-
Vocabulary (OOV) detection. Transmission errors influence the 
acoustic likelihood, and therefore affect the optimal threshold 
setting for discrimination between In-Vocabulary (IV) words and 
OOV words. An OOV-detection method is proposed in which the 
estimated Frame-Error-Rate (FER) is used to adjust the 
discrimination threshold. Results from experiments are reported 
over a range of transmission errors. 
 

 
1. INTRODUCTION 

 
In a client-server architecture the modules of a DSR system are 
split between the terminal (client) and the server. The front-end 
pre-processor is located in the terminal to which the remote back-
end server is ‘connected’ via the transmission network. Non-
perfect network transmission definitely induces a number of 
constraints to currently used processing methodologies 
conceptually similar to the influence of environmental noise to 
the speech signal. Without special compensation techniques, the 
performance of speech recognition degrades seriously when used 
in error-prone transmission environments.  

In previous research [1] we proposed to use a frame-based 
channel error protection scheme instead of the frame-pair based 
scheme standardised by the ETSI-DSR Group [2,3]. The 
recognition experiments in [1,4] showed a significant increase in 
recognition accuracy for Additive White Gaussian Noise 
(AWGN) channels simulated over a range of Bit-Error-Rates 
(BER) (from 0 to 2%).  

In section 2 we present results from a set of recognition 
experiments in which three additional and more realistic error 
distributions are used: burst-like channel errors to simulate a 
Rayleigh Fading channel, GSM error patterns [5] EP1, EP2 and 
EP3 and UMTS statistics. 

A channel error protection scheme (detection and 
mitigation) can only partly alleviate the impairment on speech 

features due to transmission errors. However, the modification of 
speech features will influence the performance of the recognition 
back-end. As a consequence transmission errors affect the 
acoustic likelihood and therefore also the threshold setting for 
OOV detection. However, if the Cyclic Redundancy Checking 
(CRC) information in channel error protection is exploited to 
estimate the current FER, then an FER-dependent threshold can 
be employed to optimise the OOV detection.   

Section 3 presents details of this FER-based OOV detection 
method.  Section 4 presents the summary and discussions.  
 

2. CHANNEL ERROR PROTECTION 
 

Within the ETSI-DSR standard, two quantised mel-cepstral 
frames are grouped together and protected with a 4-bit CRC 
forming a frame-pair [2,3]. This causes the entire frame-pair 
erroneous even if only a single bit error occurs in the frame-pair 
packet. No major degradation is observed for strong and medium 
GSM signal strengths using the frame-pair error protection 
scheme. However, for a poor channel, e.g. 4 dB carrier-to-
interference (C/I), the recognition performance degrades from 
10.0% to 16.2% for different tasks in comparison to the case of 
transmission without errors [5].  

To overcome this, a frame-based error protection scheme 
was deployed in [1] to protect each frame independently causing 
the overall probability of one frame in error to be lower (at the 
cost of only a marginal increase in bit-rate, from 4,800 bits/s to 
5,000 bits/s), see Figure 1.  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1. %FER vs BER for two different channel error 
protection schemes 

 
To evaluate the frame-based error protection scheme, a 

number of recognition experiments have been conducted. Two 
different recognition tasks have been investigated: Danish digits 
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recognition (low perplexity) and city names recognition (medium 
perplexity). 

The recogniser applied in the experiments is the 
SpeechDat/COST 249 reference recogniser [6]. A fully automatic, 
language-independent training procedure is used for building a 
phonetic recogniser based on the HTK toolkit and the SpeechDat 
(II) compatible database DA-FDB 4000. This database covers 
speech from 4000 Danish speakers collected over the fixed 
network (FDB).  

The DA-FDB 4000 database is used for training 32 Gaussian 
mixture triphone models. Test data - isolated digits and city names 
- are from the same database. 

 
2.1 AWGN channel 
 
In previous work, we reported on two recognition tasks, namely 
Danish digits and city names for the AWGN channel. Figure 2 and 
Figure 3 show the results for the digits and the city names, 
respectively [1,4]. 
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Figure 2. %WER vs. AWGN channel BER for Danish digits   
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Figure 3. %WER vs. AWGN channel BER for city names   
 
2.2 Burst-like packet loss  
 
Burst-like errors occur in Rayleigh Fading channels. The errors are 
simulated using a three-state Markov Model as in [7]. 

A packet loss of 10% with an average loss-frame length of 8 
is simulated. For the Danish digits task, the WER decreases from 
8.5% to 7.1% - an improvement of 17%. The WER for the city 
names task decreases from 34.2% to 30.8% - an improvement of  
10%. 
 

2.3 GSM error patterns 
 
Error patterns are commonly used for testing speech codecs and 
DSR error protection schemes. GSM transmission over a 9,600 
bps data channel is simulated by adding error patterns to the DSR 
data stream. 

For the frame-pair tests the error patterns are used according 
to [5]; for the frame-based CRC tests in a similar way. The three 
error patterns are: EP1, EP2 and EP3 corresponding to C/I ratios 
of 10 dB, 7 dB and 4 dB, respectively. The results of testing on the 
Danish digits task are shown in Figure 4 and the results for the city 
names task are shown in Figure 5.  
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Figure 4 %WER vs. GSM error patterns for Danish digits 
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Figure 5 %WER vs. GSM error patterns for city names 

It is observed that for EP3, the WER for the Danish digits task 
decreases from 9.8% to 1.9% - an improvement of 81%. The WER 
for the city names task decreases from 38.2% to 26.8% - an 
improvement of 30%.  

 
2.4 UMTS statistics 
 
UMTS statistics are provided from a system-level network 
simulator, which is able to simulate a large variety of scenarios 
and user deployments in order to extract  realistic  performance  
statistics regarding packet error rate or blocking probability.  In 
this experiment, the statistics data encompasses 21.645 frames 
concatenated from 125 users (scenarios). 

For UMTS statistics the WER of Danish digits task de-
creases from 3.3% to 2.5% - an improvement of 25%. The WER 
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of the city names task decreases from 26.6% to 23.9% - an 
improvement of 10%. 
 

3. OOV DETECTION IN DSR SYSTEMS 
 

OOV detection is a statistical hypothesis testing problem in which 
a decision algorithm accepts or rejects the hypothesis [8,9].  Given 
a speech signal observation O, the algorithm tests the null 
hypothesis H0 against the alternative hypothesis H1. H0 represents 
one of the IV words and H1 represents OOV words modelled by 
one filler model. A likelihood ratio LR(O) based on the null and 
alternative hypotheses is then used to detect OOV words. The test 
rejects the H0 hypothesis if  

            T
HOp

HOp
OLR <=

)|(

)|(
)(

1

0  

where T is the threshold of the test. )|( 0HOp  and )|( 1HOp  are 

the probability density functions of the H0 and the H1 hypotheses, 
respectively.  

Transmission errors may, however adversely affect the 
distribution of the likelihood of both the IV models and the filler 
model. 

 

 
Figure 6. Probability densities of the log-likelihood ratios for the 
IV words for three different BER values  

 
Figure 7. Probability densities of the log-likelihood ratios for 
OOV words for three different BER values 

 
Figure 6 and Figure 7 show the best Gaussian fit to the log-

likelihood ratios of IV words and OOV words from the 
experiments for channels with 0%, 1% and 2% BER values, 
respectively. In this paper, the IV words are the Danish digits and 
the OOV words are the city names. 

These figures evidence that the transmission errors change 
the probability density of the log-likelihood ratio in two ways. One 
effect of transmission errors is that the standard deviation of the 
distributions are increased for increasing BER values. This  
weakens the discrimination between IV and OOV words. Another 
effect is the shift of the mean of the distributions which affects the 
optimal threshold setting for OOV detection. A fixed threshold 
method may therefore fail to maintain the balance of the false 
rejection and false acceptance rates.  

One way to aim at maintaining the balance is to adjust the 
threshold according to the transmission errors. A FER-based OOV 
detection method is therefore suggested where the CRC in the error 
protection scheme is exploited to estimate the current FER – 
representing the transmission errors – and use this estimate to 
determine the threshold for OOV detection. 

 
3.1 FER-based OOV detection 
 
A FER-dependent threshold for OOV detection is deployed where 
the threshold is modelled as a fourth-order polynomial function of 
the FER. To calculate the coefficients of the polynomial, five 
experiments (with BER values ranging from 0.1% to 2%) were 
conducted using a training database consisting of 282 digits 
utterances and 249 city names utterances. The FER values are 
calculated from the BER values according to Figure 1. 

The thresholds for each of these experiments are chosen with 
the specific optimisation target of maintaining the false rejection 
rate approximately constant across a range of BER values.  

The filler model is a 32 Gaussian mixture five-state HMM 
model trained on the basis of a large amount of speech data with no 
transmission channel involved. 

Test data for the experiments described below are the 
remaining 200 digits and 200 city names utterances from the same 
database. The CRC is utilised to estimate the FER, which is then 
used for adjusting the threshold of the OOV detection based on the 
fourth-order polynomial function. 

Figure 8 shows that the OOV detection algorithm using FER-
dependent threshold maintains the false rejection rate of IV words 
within the range from 4% to 6% whereas the false rejection rate 
using a fixed threshold is varying in the range from 4.5% to 20%.  
The experiments were targeted at a false rejection rate of 5%. 
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Figure 8. False rejection rate vs. AWGN channel BER values 
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The results in Figure 9 show that the overall recognition rate 
is improved using the FER-dependent threshold approach as 
compared to a fixed threshold.  
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Figure 9. Recognition rate vs. AWGN channel BER values 

In maintaining an almost constant false rejection rate, the 
false acceptance rate increases as shown in Figure 10. However, in 
general threshold setting is a trade-off between false rejection and 
false acceptance and therefore design criteria (such as equal error 
rate requirements) could be the basis for the FER-based OOV 
detection.  
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Figure 10. False acceptance rate vs. AWGN channel BER values 
 
 

4. DISCUSSION 
 
In this paper the frame-based error protection scheme has been 
tested on three different realistic transmission error distributions: 
burst-like packet loss, GSM error patterns and UMTS statistics.  

The results verify and generalise the conclusions from 
previous research on more artificial error distributions: compared 
to the frame-pair scheme, the frame-based error protection scheme 
is able to better maintain the recognition rates. The cost of using 
the frame-based scheme is only marginal, as the bit-rate increases 
from 4,800 bits/s to 5,000 bits/s for which there is plenty of 
bandwidth available in GSM and higher bandwidth wireless 
channels. The results are consistent across two different 
recognition tasks – a low perplexity digits task and a medium 
perplexity city names task. 

Further research is reported from experiments focussing on 
the back-end recogniser where knowledge about current channel 
transmission errors is exploited adaptively to optimise the OOV 
detection.  Since the  likelihood ratio pdf’s are changed due to 
transmission errors, an FER-dependent threshold is proposed as an 
OOV-detection method. This method proved successful in 
maintaining a constant false rejection rate across a range of error 
rates. 

As the frame-pair protection scheme is the current standard, 
it was chosen to use this as a basis for the OOV-detection 
experiments. However, if the frame-based scheme is introduced 
instead, a further improvement will be achieved. 

The principle of exploiting information about the channel 
(e.g. fading channels, overloading services, congested networks 
and degraded acoustic environments) can be exploited to adapt the 
dialogue and the applied grammars and vocabularies. This will 
enable a graceful modification of the behaviour of a given dialogue 
application according to the current quality of the channel. 
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