
Hybrid evolutionary approach for designing
neural networks for classification

Z.-H. Tan

An approach for the automatic design of artificial neural networks is

presented where a hybrid evolutionary algorithm (HEA) is applied to

the structural and parametric learning of networks. The HEA

combines genetic algorithms and evolutionary programming on the

basis of a real-valued multi-matrix representation. Experimental

results show that the proposed approach has a good generalisation

and a low computational cost.

Introduction: The problem of finding a suitable architecture and the

corresponding weights of the network is of central importance in the

area of designing artificial neural networks (ANNs) [1]. In general,

ANNs are designed by means of trial and error and fixed during the

learning process and the parameters are trained by gradient-based

algorithms liable to converge to a local minimum. To enable an

automatic design of ANNs and perform a global search, evolutionary

ANNs (EANNs) have been widely explored in recent years [2]. EANNs

are often characterised by two classes of evolutionary computations,

namely genetic algorithms (GAs) and evolutionary programming (EP).

At present, there is a trend to prefer EP-based EANNs to GAs as GAs

are theoretically not as well suited for evolving ANNs [1–4].

The distinguishing feature of GAs is the crossover operator, which

often operates on strings called chromosomes or genotypes in the

recombination space. The advantages of crossover come from the

ability of identifying good sub-strings called building blocks and

recombining these from parents into offspring. Each offspring genotype

is then evaluated by mapping it into a solution to the task called a

phenotype in the evaluation space. An interpretation function is

required to map between the two distinct spaces [4]. This mapping

may be many-to-one, termed the competing conventions problem [5].

For example, ANNs with hidden neurons defined in different orders

may have very dissimilar genotypes even though they are functionally

identical. This tends to prevent successful recombination of building

blocks. This is the major argument against applying crossover to

evolving ANNs [1, 4]. EP, however, applies a natural representation

for the problem, allowing a direct manipulation of ANNs so that the

problems associated with the dual space are avoided [1].

However, considerable effort and progress has been made in

GA-based EANNs although without delving into the aforementioned

theoretical considerations. Instead of abandoning crossover or avoiding

the theoretical considerations, this Letter introduces a linear

combination crossover operating on a real-valued multi-matrix encod-

ing so that the problems previously discussed are overcome. Subse-

quently, a hybrid evolutionary algorithm (HEA) is proposed to combine

the crossover operator in GAs with the mutation operator in EP. This

leads to a method of designing ANNs called GAEPNet where connec-

tion weights and architecture of ANNs evolve simultaneously.

Real-valued multi-matrix encoding scheme: In the frequently used

Miller-matrix encoding scheme [6], a network with N neurons is

represented as a Boolean matrix of dimensions N� (Nþ 1) in which

element cij of the first N columns is zero if there is no link from

neurons i to j and one if there is a link, and element ci(Nþ1) of the last

column is zero if there is no bias in neuron i and one if there is a bias.

The concatenation of the elements forms the chromosome represent-

ing the network architecture. The obvious deficiency of this scheme is

the resulting huge genotype with massive redundant genes. In addi-

tion, this binary code is suitable for pure architecture evolution only.

Therefore, a real-valued multi-matrix encoding scheme is presented

to encode each feedforward ANN with one hidden layer as a genotype

encompassing four matrices: in-weight, hidden-bias, out-weight and

out-bias, which describe weights from input neurons to hidden neurons,

hidden neuron biases, weights from hidden neurons to output neurons

and output neuron biases, all in real numbers, respectively. If a neuron

is nonexistent, the corresponding element is set as an imaginary number

and its weights as zero. This scheme encodes both architecture and

weights and eliminates the need for an interpretation function indicating

that the dual space problem is avoided. It is also a flexible scheme as the

only restriction on the architecture is to set a maximum number of

hidden neurons.

Hybrid evolutionary algorithm: Standard GAs are in general slow in

fine-tuning a good solution once a promising region has been identified

whereas EP, relying on Gaussian mutation, is often better at local

search. In addition, EP emphasises the behavioural link between

parents and offspring as opposed to the genetic link stressed in GAs.

To benefit from both EP and GAs, an HEA is introduced where the

proportion of crossover and mutation changes adaptively. In the

beginning, crossover is the dominant variation operation whereas

they are equal in the end.

A conventional crossover operator generates offspring genes via a

combination of the genes in the parents. In this Letter, an arithmetic

recombination is introduced. Assuming that X¼ {x1, . . . , xn} and

Y¼ {y1, . . . , yn} are two real-valued chromosomes for crossover, the

recombination is implemented as follows:

zi ¼ hi � xi þ ð1� hiÞ � yi ð1Þ

where hi is a random variable with a uniform distribution between 0 and

1, and xi and yi correspond to biases or weights.

There are two types of mutation: parametric and structural. Structural

mutations include the deletion and addition of hidden neurons whereas

parametric mutations consist of Gaussian mutation of weights and biases.

Both crossover and mutation operators are followed by a partial

training using back-propagation (BP) with a fixed epoch aiming at

increasing the behavioural link between the parents and their offspring

but avoiding overtraining.

To achieve a good generalisation, known data are divided into two

sets namely training set and validation set, both of which are utilised for

the evaluation of ANNs. The fitness function is defined as follows:

F ¼ aEðtraining setÞ þ ð1� aÞEðvalidation setÞ ð2aÞ

EðxÞ ¼ b=MSEðxÞ þ ð1� bÞ=CERðxÞ ð2bÞ

where a and b are scale factors and normally smaller than 0.5, and

MSE(x) and CER(x) are the mean squared error and the classification

error rate of a single ANN on data set x, respectively.

The selection mechanism is rank based. Given M sorted individuals

numbered as 0, 1, . . . ,M� 1, with the 0th being the fittest, the

(M� i)th individual is selected with a probability of

pðM � iÞ ¼
4
ffip
i

PM
j¼1

4
ffip
j

ð3Þ

GAEPNet: On the basis of the encoding scheme and the HEA

presented previously, GAEPNet evolves ANNs as follows:

Step 1: Randomly generate an initial population of networks with the

number of hidden neurons, neuron biases and connection weights

assigned at random. Subsequently, each network is partially trained.

Step 2: Compute the fitness of each network and according to fitness

values, rank the networks from the best to the worst. The first half in the

ranked population is directly copied to next generation while the

remaining half offspring come from the following evolutionary process.

Step 3: Select parents and conduct crossover according to the current

crossover rate. Each offspring network is partially trained.

Step 4: Select parents and conduct mutations according to the current

mutation rate. The mutation operators are always applied in the order of

bias and weights Gaussian mutation, hidden neuron deletion and hidden

neuron addition. Structural mutations take place only when parametric

mutations fail to increase the fitness of an ANN. All operators are

immediately followed by a partial training.

Step 5: If neither the performance of the best ANN meets the

requirement nor the maximal evolutionary epoch is reached, go to

Step 2.

Experiments and discussion: To evaluate the performance, GAEPNet

is applied to the classification of breast cancer problem based on the

well-known Wisconsin breast cancer dataset [7]. The dataset consists

of 699 patterns of which 458 are benign samples and 241 malignant

samples. The dataset was partitioned into three sets as follows: the

first 349 samples for training, the following 175 samples for valida-

tion and the last 175 samples for test [3].

ELECTRONICS LETTERS 22nd July 2004 Vol. 40 No. 15

The ANNs were multilayer perceptrons with one hidden layer. The

activation function of hidden neurons was sigmoid whereas it was linear

for output neurons. Parameters were chosen aiming at high efficiency as

the cost of computational time is in general high when performing

evolutionary search. The partial training adopted resilient BP with a

learning rate of 0.2 and a training epoch of 15. The maximum number

of hidden neurons was set to 6, the population size to 20 and the generation

of evolution was set to 30. The proportion between mutation and crossover

is 1:59 in the beginning and linearly increases up to 1:1 in the end. The

scale factors a and b in the fitness function were both set to 0.25.

The experimental results of GAEPNet over 30 runs are summarised

in Table 1. As comparison, results of the EPNet system [3] and the

FNNCA [8] are also included. The EPNet is a well-established evolu-

tionary system with an emphasis on the generalisation ability. It is

observed that GAEPNet achieves the lowest error rate for the test set

and a substantially smaller variation indicating that GAEPNet has the

advantages of consistency, stability and accuracy.

Table 1: Percentage error rates across classifiers for breast
cancer task

Classifiers Training set Validation set Test set

GAEPNet (30 runs)

Mean 3.734 1.600 0.724

Max. 5.158 2.286 2.286

Min. 2.865 0.571 0.000

EPNet (30 runs)

Mean 3.773 0.590 1.376

Max. 4.585 1.143 4.000

Min. 1.719 0.000 0.000

FNNCA (50 runs) Mean — — 1.95

GAEPNet performs well not only in classification accuracy but also

in computational time. The total time spent by GAEPNet could be

estimated by adding the initial training time and the evolving time,

resulting in maximum 9300 epochs as opposed to 109 000 epochs for

EPNet for a single run.

Conclusion: An evolutionary approach to the design of ANNs has

been presented for classification. Experimental results verify that the

approach is capable of generating ANNs with high stability and

generalisation. Further improvement is the significant reduction in

computational time.

IEE 2004 3 May 2004

Electronics Letters online no: 20045250

doi: 10.1049/el:20045250

Z.-H. Tan (Department of Communication Technology, Aalborg

University, Aalborg 9220, Denmark)

E-mail: zt@kom.aau.dk

References

1 Garcia-Pedrajas, N., Hervas-Martinez, C., and Munoz-Perez, J.:
‘COVNET: a cooperative coevolutionary model for evolving artificial
neural networks’, IEEE Trans. Neural Netw., 2003, 14, (3), pp. 575–596

2 Abraham, A.: ‘Meta learning evolutionary artificial neural networks’,
Neurocomputing, 2004, 56, pp. 1–38

3 Yao, X., and Liu, Y.: ‘A new evolutionary system for evolving artificial
neural networks’, IEEE Trans. Neural Netw., 1997, 8, (3), pp. 694–713

4 Angeline, P.J., Saunders, G.M., and Pollack, J.B.: ‘An evolutionary
algorithm that constructs recurrent neural networks’, IEEE Trans.
Neural Netw., 1994, 5, (1), pp. 54–65

5 Schaffer, J.D., Whitley, D., and Eshelman, L.J.: ‘Combinations of genetic
algorithms and neural networks: a survey of the state of the art’. Int.
Workshop on Combinations of Genetic Algorithms and Neural
Networks, Baltimore, MD, USA, 1992, pp. 1–37

6 Miller, G.F., Todd, P.M., and Hegde, S.U.: ‘Designing neural networks
using genetic algorithm’. Third Int. Conf. Genetic Algorithms, 1989
pp. 379–384

7 Blake, C.L., and Merz, C.J.: ‘UCI repository of machine learning
databases’, Univ. California, Irvine, CA, 1998

8 Setiono, R., and Hui, L.C.K.: ‘Use of a quasi-Newton method in a
feedforward neural network construction algorithm’, IEEE Trans. Neural
Netw., 1995, 6, (1), pp. 273–277

ELECTRONICS LETTERS 22nd July 2004 Vol. 40 No. 15

	footer1:

