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Abstract—This paper introduces the concept of affective offset,
which is the difference between a user’s perceived affective state
and the affective annotation of the content they wish to see. We
show how this affective offset can be used within a framework
for providing recommendations for TV programs. First a user’s
mood profile is determined using 12-class audio-based emotion
classifications. An initial TV content item is then displayed to
the user based on the extracted mood profile. The user has the
option to either accept the recommendation, or to critique the
item once or several times, by navigating the emotion space to
request an alternative match. The final match is then compared to
the initial match, in terms of the difference in the items’ affective
parameterization. This offset is then utilized in future recom-
mendation sessions. The system was evaluated by eliciting three
different moods in 22 separate users and examining the influence
of applying affective offset to the users’ sessions. Results show
that, in the case when affective offset was applied, better user
satisfaction was achieved: the average ratings went from 7.80
up to 8.65, with an average decrease in the number of critiquing
cycles which went from 29.53 down to 14.39.

Index Terms—Affective offset, circumplex model of affect,
critique-based recommenders, emotions, EPG, moods.

I. INTRODUCTION

E VEN with the steady increase of on-demand services
such as Netflix and HBO,1 broadcast TV is still firmly

entrenched in the home. It is typically the place where the local
news and programming is to be found, where many consumers
would be reluctant to part with. It is easy to use - turn on the
TV, find a channel and watch. Since the consumer does not take
part in the selection of the program lineup, recommendations
can be serendipitous, something that customers value. From
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1Both Netflix and HBO offer broadband delivery over IP networks (HBO is
traditionally a cable and satellite TV provider, but also offers broadband delivery
through their On Demand service).

the provider-side there have been substantial investments in
satellite, terrestrial and cable networks, and they want to see the
best return on investment. Thus it is anticipated that broadcast
TV will not be going away any time soon.
The Electronic Program Guide (EPG) is today an integrated

part of most home television sets and set top boxes, and is still
the predominant method when it comes to navigating both cur-
rently-showing and up-and-coming TV programs in the broad-
cast realm. It is typically presented in a grid-like fashion, with
channels down and programs across the grid. However, while
the EPG does provide the consumer some assistance, there can
still be an overwhelming amount of content to choose from. Not
only is the currently-airing program of interest, but also future
programs that the consumer may wish to record or be reminded
about. To illustrate: over a three-hour period with 30 available
channels, with a program length of 30 minutes (typical during
prime-time viewing), there are 180 programs to choose from,
making an informed decision difficult.
In order to recommend something personal, a user profile is

needed. The user profile data can be collected explicitly, e.g.
by requesting users to supply data, or implicitly, through usage
patterns. Matching of the user profile to the potentially recom-
mendable content of interest can take place at two levels. At the
cognitive level, semantic information such as content descrip-
tors, e.g. genre or user ratings are utilized. The affective level
on the other hand deals with the emotional context of the user,
and how this relates to the content. The notion of cognitive and
affective levels is not a new idea, and has been proposed before
in the context of video content retrieval [1].
One area that has received little attention, in the context of

recommending content within the EPG framework, is using the
user’s direct audio environment to extract profile information
that can be used to make recommendations. State-of-the-art
speaker recognition methods have made it substantially more
feasible to extract information about the users, such as their
age and gender [2] or emotions [3], using models built upon a
text-independent speaker recognition framework.
In this paper we propose a novel framework that takes into

account users’ audio derived moods to provide the most rele-
vant TV channel recommendation to them. A state-of-the-art
audio classifier classifies users’ speech into individual emotions,
which contribute ultimately to their mood. Since, for a given
mood, two separate users might have different ideas of what
would be applicable to watch, we do not expect them to find the
initially recommended item immediately appealing [4]. Users
are therefore given the possibility to critique the item by navi-
gating the emotion space of all candidate items to find a more
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suitable item, should they wish to do so. To quantify the differ-
ence between the initial item and finally selected item, wemodel
what we call the affective offset between the items. The novelty
lies in leveraging this affective offset to provide system adjust-
ments in such a way that future recommendations are more tai-
lored to the individual person.
This paper is organized as follows: Section II starts with a

discussion on psychological emotion theory, and how this re-
lates to the proposed framework. Section III gives an overview
of emotion detection in speech. The following section then
introduces critique-based recommender systems. Section V
presents the recommendation framework, discussing aspects
relating to mood detection, critiquing and affective offset.
Section VI presents our experimental work and the following
section discusses the findings. The final section concludes the
paper, and provides some recommendations for future work.

II. MOODS AND EMOTIONS

Since moods cannot be measured in the same way as emo-
tions, there is still a lot that is not yet understood about moods.
We know however, that emotions, which are more transient in
nature, give rise to moods and that certain emotions, such as
anger, can cause one to be in a bad mood for a longer period.
If certain emotions are experienced strongly and often enough
over a given time period, they might eventually give rise to
moods, e.g. a continuous sequence of events that cause irritation
might lead one to be in a bad mood. A person with a propensity
for being in bad moods, might more easily be triggered into be-
coming angry. While there is no agreement in the literature on
how long a mood lasts, it is generally understood that moods
last longer than emotions [5].
There is a difference between the mood a person is in and the

pervasive mood of the content item they might want to see [4].
Mood management theory suggests that people will generally
follow their hedonistic desires [6], meaning for example, that
somebody in a bad mood might want to watch good mood con-
tent to repair their negative affective state.
Since we cannot measure mood directly, we concern our-

selves with the actual emotions, and how they might be used
to determine an entry mood for the system. A person’s emo-
tional state can be acquired either explicitly or implicitly. Due
to problems seen with explicit acquisition of emotions [4], it
has been suggested that they be collected implicitly. Of all the
induction methodologies available for obtaining the emotional
state, speech is the cheapest and most non-intrusive method.
While the modeling of emotions themselves has always been

a very controversial topic [7], the most prominent model used is
the dimensional approach, which is based on separate valence,
arousal and dominance dimensions, where any emotional state
can be represented as a linear combination of these three basic
dimensions. Recent studies show that the valence and arousal
axes account for most of the variance [1] and that these are typ-
ically the two prominent dimensions used in digital systems.We
follow in the same vein. In the VA space, valence is more com-
monly referred to as the pleasantness of the emotion, whereas
arousal refers to the actual intensity.
The well-known dimensional model known as the Circum-

plex Model of Affect [8] which is also based on valence and

arousal shows how emotional states exhibit a very particular
ordering around the periphery of a circle. Emotions that are
close in nature are adjacent to one another, whereas bipolar
emotions are situated on opposites sides of the circle. Further-
more the emotional states are not distributed evenly around the
circle, and some states lie closer to each other on the circum-
plex than others. The location of these affective states has been
determined using empirical data from psychological studies.
Each location is expressed in degrees going counterclockwise
around the circle, starting at 0 from the positive valence axis.
While there is general agreement on the location of the emo-
tional states, several studies have concluded different exact lo-
cations, and recent updates to these models have been made
using more stringent statistical models [9].
Not only are there different interpretations of the locations of

these states, but very interestingly, the very orientation of the
valence-arousal axes has been debated [10]. Some studies have
proposed shifting the axes, for example, by orienting them at a
45 angle, or by placing the axes where the emotions are most
densely clustered.
While the valence-arousal model is well suited to Human

Computer Interaction (HCI) applications, distinct emotion cate-
gories, as used in most emotion speech databases today, are not.
It can therefore be difficult to relate these fixed categories to
the valence arousal VA space. Furthermore, labeling of elicited
emotions with universal labels has come under scrutiny [7],
where it has been postulated that the actual felt emotions, for
example, as shown in physiological readings, such as increased
heart rate, might not be the same as the emotion labels them-
selves. This has especially been demonstrated with studies from
non-western cultures. A previous work has for example looked
at mapping from the VA space to distinct emotion categories,
using clustering with density estimation [11]. However not only
is this more in the context of affective video labeling, but it re-
lies on an intuitive interpretation of what emotion each cluster
is assigned to. This can be particular tricky for emotions very
close to one other, and where the ordering of the clusters might
change, such as in the case for the emotions fear and anger.
This study uses the Circumplex Model of Affect to model the

fixed emotions and the VA space to model the content items. The
Circumplex Model of Affect has the advantage of treating emo-
tion categories as single points around a circle while at the same
time giving sense of location, and ordering, for the emotions.
Furthermore, since emotions points are relative to the valence
arousal axes, themodel gives an easy interpretation of what hap-
pens when the valence arousal axes are shifted, or tilted. All
this will help us to relate the emotion categories to the VA space
shortly.

III. DETECTING EMOTIONS IN SPEECH

Emotion classification in speech is a challenging task and has
received a lot of attention in the past ten years. While there is re-
cent interest in continual modeling of emotions [12], speech ut-
terances are generally assigned to fixed labels, such as Ekman’s
“big six” emotions (anger, disgust, fear, happiness, sadness and
surprise), and emotion speech datasets (corpora) typically con-
tain either acted speech [13], [14] or spontaneous speech [15]
assigned to fixed emotion labels.
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After any necessary speech-signal pre-processing, low-level
feature descriptors are extracted, from which an appropriate
model can be constructed. Many parameters are used to de-
tect emotion, including mel-frequency cepstral coefficients
(MFCCs), which have been the most investigated features for
emotion recognition. MFCCs are simply a compact represen-
tation of the spectral envelope of a speech signal. In addition
to MFCCs, pitch, intensity, formants and even zero-crossing
rate are used. Furthermore the modeling can either be based on
fixed length features or variable length features.
Emotions are modeled using a wide variety of techniques

including Gaussian mixture models (GMMs), support vector
machines and back propagation artificial neural networks. Two
recent methods for modeling emotions include class-specific
multiple classifiers, based on standard modeling techniques
[16], and modeling of emotions using front-end factor analysis
(I-vectors) [3], [17].
In the I-vector model, each utterance is expressed as a low-di-

mensional I-vector (usually between 10 and 300 dimensions).
One of the advantages of modeling in the I-vector space is that
the I-vectors themselves are generated as unsupervised data
[18], without any knowledge of classes. What this essentially
means is that when emotion classes are enrolled, a more tradi-
tional classifier, such as a Support Vector Machine (SVM) can
be used, allowing for quick enrollment of the users’ emotional
data. This can be an advantage when lots of background data
is needed to increase the classification performance. In the
I-vector-based system, the background data can be incorpo-
rated in the training of the GMM and total variability model,
which are used to extract the I-vectors themselves, and which
then need not be retrained. Potentially this can reduce mod-
eling of the emotion classifier from hours to seconds. In this
work, we have elected to use the I-vector model for emotion
classification.

IV. CRITIQUE-BASED RECOMMENDER SYSTEMS

Since typically the content from only one channel can be con-
sumed at any given point, there is a strong basis for providing
recommendation for EPG items by quickly being able to select
the most relevant channel.
There have for example been works that have looked at rec-

ommending content within the EPG framework, that rely both
on collaborative [19] as well as content-based [20] techniques.
In particular, collaborative recommender systems rely on using
other people’s ratings for content to generate a list of recom-
mendations for a user. However, we do not believe these fit in
well within the EPG framework. Firstly, there is an out-of-band
(with the broadcast stream) exchange of ratings between users
that needs to take place.While this may seem trivial with today’s
permanently connected TVs, it is an overdimensioned solution.
Secondly, andmost importantly, the very nature of broadcast TV
is that much of the content that is broadcast may be short-lived
and it is possible that it will never be rebroadcast. Once the pro-
gram has aired, there would be little interest in other users rat-
ings for the program, had these been collected in the first place.
Knowledge-based recommender systems came into existence

to deal with the problem of how to recommend knowledge in-
tensive items such as customizable digital cameras, for which

ratings might not be easy to acquire, or where they might not be
entirely applicable for the given application [21]. An inherent
assumption with knowledge-based systems is that a user may be
somewhat undecided on what to search for, and it is therefore
the task of the system to guide the user to the item of interest. In
a typical case-based recommender, a form of knowledge-based
system, a process known as critiquing is used in the following
manner:
1) The consumer’s preference is extracted, either explicitly,
or implicitly.

2) Using some sort of similarity metric, the system provides
an initial recommendation.

3) The consumer either accepts the recommendation, which
ends the entire process, or critiques it, by selecting one of
the critique options available.

4) For each critique made, the item space is narrowed down
by filtering out the unwanted items, and a new recommen-
dation is made.

5) The process continues until the customer finally selects an
item.

A lot of past research has looked at critiquing in the context of
high-risk, once off-items, such as digital cameras and automo-
biles. Since these items are highly customized and often one-off
purchases, they require more effort on the part of the user to
make a sound decision, since there is a larger penalty to pay
if recommendation leads to a poor decision. However, research
in a limited capacity has also begun to look at so-called low-in-
volvement product domains [22]. Low-involvement product do-
mains typically entail low-risk items, such asmusic and TV con-
tent. One particular work that is noteworthy in this regard is the
MovieTuner feature incorporated into MovieLens, that allows
movie qualities, such as more action to be adjusted through cri-
tiquing [23].
We propose to make use of critiquing to allow navigation of

items in the VA space, and to gather feedback needed for com-
puting affective offset. By allowing the user themself to take
part in the recommendation process gives us feedback on how
the user’s perceived affective state differs from their desired
state, and what they really would like to watch.

V. RECOMMENDATION FRAMEWORK

A. General Overview
A typical system operation can be realized as follows: Once

the user’s mood has been detected, from audio-based param-
eters, the closest matching item that matches the user’s mood
profile is displayed to the user. The user can either accept the
item, or request the recommendation of a new item. To be able
to make a new recommendation, the user provides information
on how the system should constrain its search. The process con-
tinues until the user finally accepts the item.
After the recommendation process has completed, the

system calculates the affective offset between the initially
recommended item and the finally selected item (if any), and
takes this into account when processing the output labels from
the classification stage, in such a way as to reflect the new
mood offset. Fig. 1 shows an overview of the proposed system.
We shall now present theory for the individual components.
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Fig. 1. Complete system overview.

B. Mood Detection
Since it is emotions themselves that are detectable and give

rise to moods, we start by discussing emotion detection. Let
be the total number of emotion classes. Emotions can then be
detected by analyzing the speech utterances from each user and
assigning an emotion class to each. The more classes that
need to be classified, the lower the classification accuracy.What
this entails is, that for a set of utterances over a time interval for
which the actual emotion was , and the predicted emotion is
, there will almost always exist a subset of these utterances

where , i.e. utterances for which the actual class was
not predicted correctly. What is important here is not so much
that each emotions is categorized 100% correctly, but that the
areas of the emotion space, and hence adjacent emotions, that
were detected, are reflected in the profile. With this in mind, the
emotion profile for a single user can be modeled by

...
(1)

where , , simply represents the actual predicted

probability for emotion class , , and .

Over a sequence of time intervals, e.g. over the last 12 hours,
the system collects the individual emotion profiles, and con-
denses them to a mood profile

(2)

where
corresponding to the time interval

Total number of discrete time intervals, and
Weighting of for the time interval

To compute the weighting, a modified form of the depreci-
ation factor, originally used in computing the depreciation ci-
tation count [24] is used to compute .2 This will ensure that
emotions recorded over earlier time intervals, regardless of the
size of the time interval, will always contribute less to a given
overall mood profile .
The weighting is thus given by the following:

(3)

C. Determination of Entry Item in Valence Arousal (VA) Space
For a given fixed set of emotions, each emotion can be char-

acterized by associating it with an affective location (offset in
degrees) around a circle.3 There is thus a mapping from each
emotion category to its corresponding angle.More formally, this
set of emotions can be expressed in the following way:

...
(4)

To map the mood profile that was introduced in the previous
section, to a point in the VA space, we introduce the concept of
a directional mood vector.
Each component of both and is associated with a sep-

arate emotion. Therefore for each emotion , , we
create a new vector with magnitude and angle
, with the angle measured in degrees from the positive valence

axis in the VA space

(5)

This results in separate emotion vectors, where the angle for
each serves as an identification for an emotion and the mag-
nitude indicates the confidence of that emotion, as detected by
the audio classifier. Finally, all components are summed to
obtain the final directional mood vector. More formally, this is
depicted as

(6)

In order to find an appropriate entry item, which forms the first
stage of the recommendation process, we associate the direc-
tional mood vector with a suitable point in VA space. To locate
the best item, we iterate through all items, where is the total
number of items. For each item a score
based on cosine similarity is computed as follows:

(7)

2The original depreciation factor is based on years and ours is based on dis-
crete time intervals.
3The location of each emotion is determined by past empirical studies [9], as

discussed earlier.



SHEPSTONE et al.: USING AUDIO-DERIVED AFFECTIVE OFFSET TO ENHANCE TV RECOMMENDATION 2003

where is the location of item in VA space.
The first item to be recommended, or entry item is then the

item which generates the highest score

(8)

D. Critiquing Stage
At this stage the user has the opportunity to examine the

entry item.4 If he/she decides not to accept the item, a critique
is specified for the new item. The possible critiques are more
pleasant, less pleasant,more intense and less intense. These cor-
respond to the affective operations more valence, less valence,
more arousal and less arousal, respectively. The algorithm de-
termines beforehand whether there is an availability of items to
satisfy the potential constraint. If this condition is not satisfied,
the constraint is simply not presented. Although it is possible
to implement compound constraints, due to the low dimension-
ality of the number of free parameters available (only four), we
opted for simple constraints only in this work.5
Once the user has selected a constraint, the best matching item

is determined and displayed in the following way: for a given
iteration , let be the set of items subject to the new constraint
. The next item to be recommended is then the item with the

shortest distance between the currently displayed item ,
i.e. the last recommended item, and all other items subject to
the constraint, and given as

(9)

where the distance is a weighted form of the
standard Euclidean distance in VA space

(10)

One of the problems with using the standard Euclidean distance
is that it is based on pure distance and no consideration is given
to the direction in which the user really wishes to traverse the
space. Figs. 2 and 3 show the case for a user starting out in the
negative valence, positive arousal quadrant (top left), who then
executes 14 critique cycles. In every case, the user selects the
constraint more pleasant, i.e. more valence. For the unweighted
case, we note that the user (unintentionally) gradually wanders
over to the positive valence / negative arousal quadrant (bottom
right), where, ideally, the optimum quadrant would have been
the positive valence / positive arousal quadrant (top right). The
weights and are therefore introduced and chosen empir-
ically to ensure that more preference is given to either the va-
lence or arousal dimension, depending on what constraint was
chosen. This allows for a larger distance in the desired direction
to be taken into consideration than would be otherwise, and re-
sults in a more direct path. The effect of using these weights is
shown in Fig. 3.

4The entry item is the very first item that is recommended to the user.
5Compound critiques would be suitable if the affective parameters were to be

combined with other parameters, such as genre, time of day, and age ratings.

Fig. 2. Navigating the VA space before the modified weighted Euclidean dis-
tance measure is introduced.

Fig. 3. Navigating the VA space after the modified weighted Euclidean distance
measure is introduced.

The recommendation process continues until the user selects
an item as acceptable, in which case it is terminated.

E. Affective Offset Determination

Once the recommendation process has completed, the user
will be located at another point in VA space. How far this point
is located from the initial recommendation depends on both the
number of cycles taken as well as the overall affective bearing
the user took. In order to know how far off the user is from the
initial recommendation, we now compute the affective offset.
This offset will then be taken into account in future recommen-
dation sessions to offset the user’s mood profile (the perceived
mood) with the recommended content (which relates to the de-
sired mood).
Let be the vector passing through the origin and the initial

point where the user set out from, and let be the vector passing
through the origin and the point representing the finally selected
item. The angle of this offset is given as

(11)
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where

the cosine distance between and , and

gives in degrees and not radians.

However, not only is the angle important here, but also the di-
rection (on the emotion circumplex) of relative to . If we in
future recommendation rounds offset the emotions in the wrong
direction, instead of compensating for the mismatch between
detected mood and recommended item, we would effectively
be contributing to the error instead of reducing it.
We therefore determine whether this direction is clockwise,

or counter-clockwise. To do this, we first compute the absolute
angle of both and . The absolute angle for a vector through
the origin (positive valence axis) to a given point , ,

, is computed in the following way:

(12)

where

in degrees

Depending on the location of and , two possible angles can
be computed as

(13)

(14)

where

is located clockwise relative to

is located counterc lockwise relative to

If , then this indicates that the offset
occurs in the clockwise direction and . Like-
wise if , then . The
sign is combined with the previously computed offset angle, to
give the directional offset

(15)

F. Relabeling Stage

For the 12-class emotion classifier, labels indicate the emo-
tion that each utterance is associated with. There is no concept
of distance or overlap between labels - they are simply emo-
tion categories. However, these concepts hold for the emotional
spaces themselves, and where they move, so will the labels.
Fig. 4 shows a possible configuration for a set of emotions

and their location around the circumplex. For a given configu-
ration, starting from , there exists an explicit fixed ordering
of the emotion labels. By tilting the valence and arousal axes
by , which happens to be the affective offset calculated in the
previous stage, we effectively change the ordering of the labels.
An important design consideration was whether to rotate the di-
rectional mood vector, as computed in equation 6, or to rotate

Fig. 4. Tilting of emotion labels. By tilting the valence or arousal axis by ,
we impose a new ordering of the labels.

the labels themselves. The rationale for rotating the speech la-
bels themselves allows for the possibility of incorporating fu-
ture enrollment data, for example, as might be retrieved through
multi-modal emotional systems, and leads to a better accuracy
over time. Simply rotating the directional mood vector would
make the system unadaptable.
Now more formally, let be the set of

labels. Then represents the sequence of
labels from before applying the affective offset. The labels in
the list are arranged in order of their respective locations starting
from . Likewise represents the
sequence of labels from after applying affective offset, but
where the list now starts from instead. The mapping
from old label to new label is then simply carried out by the
mapping function , , where

is the index of label in .

VI. EXPERIMENTAL WORK

A. Annotation of Content Items

In an initial user survey, 16 subjects rated 4 sets of 60 TV pro-
grams, with 3 subjects being assigned to each set. The TV pro-
grams were extracted from the EPG in the interval from 15:00
Friday 13 December 2013 to 10:00 on Saturday 14 December
2013. Each program shown to the evaluator was accompanied
by a title, the name of the channel on which it was aired, a
two-level category into which the program was placed, for ex-
ample “Level1: Movie; Level2: Comedy”, and finally a short
synopsis. All data presented to the evaluators was taken directly
from the EPG metadata and was not manipulated by us in any
way. The task given for each program was to read the informa-
tion and thereafter rate the pervasive mood of each program in
theVA space. Themethod used was the well-known Self Assess-
ment Manikin (SAM) [25], which is a psychological tool used



SHEPSTONE et al.: USING AUDIO-DERIVED AFFECTIVE OFFSET TO ENHANCE TV RECOMMENDATION 2005

Fig. 5. Scales used to collect the pervasive mood for each TV program. The
top scale measures valence and the bottom scale measures arousal. Scales are
courtesy of PXLab.6

to quantify perceived emotions. It is easy to administer, does not
rely on verbs and is suitable for subjects whose native language
is not English, which was the case in this study. Subjects were
shown a diagram of a 9-point SAM scale, where only valence
and arousal ratings were collected. It was possible for subjects
to select a point anywhere on the scale, thus allowing collection
of continuous valence and arousal values. Subjects were also in-
formed that they would be rating the programs on a continuous
scale. Since 3 subjects rated each TV program, a total of three
ratings were collected for each. These ratings were averaged, as
is customarily done [25], to give a mean SAM ratings for each
program. The scales that were used can be seen in Fig. 5.
Once the rating process was complete, the first two sets were

combined and the last two sets were combined, yielding two
larger sets, and of programs containing 120 content items
each. The sets were combined in this manner to create a realis-
tically-sized number of items to browse, but taking into account
the length of time required to annotate the items.

B. Mood Determination and Audio Classification of Emotions

The audio data used to represent the home user’s emotional
state was taken from the Geneva Multimodal Emotion Por-
trayals (GEMEP) [14], which was also chosen as the dataset
for the emotion sub-challenge part of the Interspeech 2013
Computational Paralinguistics Challenge [27]. The dataset
contains 1260 short voice utterances, divided into 18 emotional
classes. The data is split across 10 actors, of which half are
male and other half female. Due to the fact that 6 out of 18
of the emotions occur very sparsely in the dataset, the clas-
sification was restricted to 12 separate emotions. These were
amusement, pride, joy and interest (positive valence, positive
arousal), anger, fear, irritation and anxiety (negative valence,
positive arousal), despair and sadness (negative valence, nega-
tive arousal) and finally pleasure and relief (positive valence,
negative arousal). One of the primary reasons for selecting the
GEMEP corpus was its wide spectrum of available emotions.
For each case, we connected the mood configuration to real

speech utterances from the dataset by assigning each mood to
the most appropriate emotions. The good mood was associated
with the emotions amusement, joy and interest, the bad mood
was associated with cold anger (irritation), hot anger, fear, de-
spair, anxiety and sadness, and the neutral mood was associated
with the emotions relief, pride and pleasure. For each test trial, a
speaker was randomly identified from the GEMEP dataset and
6The PXLab Self Assessment Manikin Scales. Available: http://irtel.uni-

mannheim.de/pxlab/demos/index_SAM.html

a mood configuration was selected. The relevant emotion fea-
tures, taken from the test set, were then concatenated and used
for mood profile determination.
12-way classification of the data was carried out using

front-end factor analysis (I-vectors), using the ALIZE 3.0
framework [28]. The process was as follows: 13 MFCCs
(including log energy), first and second derivatives were ex-
tracted to give a fixed 39-feature frame for each 25 ms voice
frame, with a 10 ms overlap for each frame. A 128-component
Gaussian mixture model (GMM) was trained with the entire
training set. At this point, the six unused classes were not
utilized further in the system. Using the data from the GMM, a
total variability matrix was trained. Subsequent to this, for each
utterance, a 90-dimensional I-Vector was extracted from the
total variability matrix. Once in the I-vector space, classification
of the utterances was then carried out using probabilistic linear
discriminant analysis (PLDA) after performing normalization
on the I-vectors. PLDA is known to exhibit good performance
when used for the classification of I-Vectors. The accuracy for
the acoustic sub-system for all 12 classes on the development
set was 42.72%, and on the test set (used in the end-to-end
system) was 41.20%, which is in line with the state-of-the-art
[27], [29]. More detailed results for the individual categories
can be seen in Table I.

C. Other System Parameters

Theaffectivestate locationsused forcomputing thedirectional
mood vector were adopted from past studies [9]. The range of
values and calculatedmean for each emotion is shown inTable II.
For the operations more pleasant and less pleasant the weights
were set to and and for the operationsmore
intensity and less intensity the weights were set to and

. The user interface used for presenting the items to
usersandused forcritiquingwas implemented inPHP.7

D. User Evaluation

26 subjects agreed to take part in a series of six evaluations,
with each evaluation carried out on a separate day. Half of the
subjects were assigned the items from group and the other
half were assigned the items from group . Each person was
given access to a web portal through which they could interact
with the critique-based recommender.
Each evaluation considered a single mood case. On the first

day, each subject was told to picture themselves being in a neu-
tral and relaxed mood, and to strengthen their mood, they were
presented with a set of 10 neutrally rated pictures, taken from the
International Affective Picture System (IAPS) [30]. The IAPS is
a database of colour photographs, each annotated with valence,
arousal and dominance ratings, and which is often used to elicit
emotions in affective-related research studies. The subject was
asked to not spend more than 15 seconds viewing each picture.
Once all pictures had been viewed, the information for a TV

program was then presented to the user. The subject was asked
to rate the program, on a scale of 1 to 10, on how suitable they
thought the program was for the given mood.

7PHP stands for “PHP: Hypertext Processor.” It is a server-side scripting lan-
guage suitable for the implementation of interactiveweb deployments.
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TABLE I
CONFUSIONMATRIX FOR 12-CLASSEMOTIONCLASSIFIER. SHADEDENTRIESCORRESPOND TOACTUAL predictedclass

TABLE II
AFFECTIVE STATE LOCATIONS [9]

After the program had been rated, it could either be accepted,
in which case the recommendation session for that program was
over, or the user could select a better recommendation case (cri-
tique thecurrent item). If theychose tocritique the item, theywere
then presentedwith a list of choices for selecting amore pleasant,
less pleasant, more intense or less intense item. For each option
the number of items available for that selection were also dis-
played, giving theevaluator anupdated indicationof thepotential
items in each direction. In the case where no items were avail-
able, the option to navigate in that direction was not presented to
the user. Furthermore, users were not prevented from navigating
backover thesameitems theyhadseenbefore.Eachnewitemthat
was presented constituted a new critiquing iteration. The number
of iterations it took the user to finally select an item (by marking
“accept”) was counted and stored. Finally, for the final item, the
user was asked once again to rate the item on a scale of 1-10, on
howsuitable they thought the itemwas.
After the subject had completed the first part of the evaluation

(the neutralmood case), theywere allowed tomove onto the next
part. Days 2 and 3 were identical to Day 1, except that different
mood settings were used. For Day 2, the subject was told to in-
stead imaginebeing inagoodmood,wherecorrespondinglygood
mood pictures were shown. In a similar fashion, Day 3 followed
where the subject was now told to imagine being in a bad mood,
with correspondingly bad mood pictures being shown.8 Further-
more subjectswerenot allowed tocomplete twoparts on the same

8The following IAPS pictures were used in the evaluations: Days 1, 2, and 3,
Neutral Mood: 1121, 1616, 2102, 2221, 2377, 2575, 2579, 2745.1, 7497, 7503;
Good Mood: 2216, 2598, 4614, 5210, 5814, 7405, 7508, 8034, 8503, 8531; Bad
Mood: 2205, 2456, 2745.2, 2751, 6313, 9185, 9252, 9635.1, 9904, 9940 -Days 4,
5, and 6, Neutral Mood: 2026, 2036, 2377, 2382, 2383, 2410, 2594, 2840, 7003,
7640;GoodMood: 1722, 1811, 2158, 7492, 8090, 8163, 8300, 8350, 8420, 8510;
BadMood: 2399, 2682, 2683, 2703, 2800, 2900, 6021, 9420, 6570.1, 9908.

day. If a subject skipped a day, a follow-upmailwas sent to them.
After two follow-up mails had been sent, with no response, the
subjectwas considered to have abandoned the survey. Four of the
subjects ended up dropping out of the survey, and hence we only
present data for 22out of the initial 26.
For days 4, 5 and 6, subjects were asked to repeat the eval-

uation for the neutral, good and bad mood cases, respectively.
However, on these days, the users were not informed that their
affective offset from the previous round (matching that partic-
ular mood), had been recorded and used to offset the system.
Users were shown a new set of frame slides for the second round
of each mood case, since seeing the same slides again would
have a reduced effect.

VII. RESULTS AND DISCUSSION

A. Effect on the Number of Iterations
In Table III, we show a summary of results for both evalu-

ations (before and after applying affective offset) and for all
three mood cases. When browsing in the VA space to find more
suitable items, users can revisit older items as many times as
they wish (in case they change their mind). Occasionally, this
leads to the path from initial item to final item containing one
or several loops, e.g. if while browsing, a user visits items

, the loop can be replaced
with giving the shorter path . For the sake of
brevity, we refer to paths including loops as full paths and
paths with the loops removed as direct paths. We are interested
in these direct paths since going around in a loop essentially
means the user ended up at the same spot they were at previ-
ously, and hence the same region. Direct paths are therefore a
better summary of a user’s ultimate migration. We therefore
show results for both types of path, where the first two rows
in Table III show the number of iterations for full paths, and
the next two rows show results for the number of iterations
for direct paths. The following two rows then show the ratio
between direct path and full path - the closer to 1 the ratio is,
the fewer the number of loops, and the more direct the full path
is. The final row shows the average affective offset for each
case (ignoring the direction of the offset).
Looking at the number of iterations on average that were

taken to find a suitable item, in all cases, as shown in Table III,
we can see that a lower number of iterations was needed in
the case where the user’s affective offset was applied. An
overall improvement was obtained of 43.60% and for the good
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TABLE III
SUMMARY OF RESULTS FOR BOTH EVALUATIONS (BEFORE AND AFTER APPLYING AFFECTIVE OFFSET) AND FOR ALL THREE MOOD CASES.

, Standard Deviation

mood, bad mood and neutral mood cases, improvements were
obtained of 52.12%, 57.51% and 13.08% respectively. The av-
erage number of iterations when applying affective offset was
significantly lower than when it was not applied9 ( ,

, ). The reduction in iterations was also
significant for the both the good mood case ( ,

, ), and the bad mood case ( ,
, ). However, for the neutral mood case, it

was not significant ( , , ).
We believe the initial rather large standard deviation is due

to the fact that browsing is rather personal. Some people gener-
ally tend to browse more than others. If browsing is indeed per-
sonal, then a Pearson correlation between the before and after
iterations for each mood and all users should reveal a medium to
large effect size. Conducting such a correlation gives values of

for the overall case, for the good mood case,
for the bad mood case and for the neutral

mood case. The fairly strong relationship for the good and bad
mood cases indicates that users are definitely more consistent in
their behavior in these mood cases than in the neutral case (and
more so in the good mood case).
For the direct paths, we find an overall improvement

of 30.91%, and improvements of 41.08%, 40.73% and
8.28%, for the good, bad and neutral mood cases, respec-
tively. Once again, the overall reduction was significant
( ). It was also significant for
the good mood case ( ), the
bad case ( ), but not significant
for the neutral mood case ( ).
These results indicate that even in the absence of loops, there
is still a significant reduction in the path length. The higher
direct path / full path ratios, for all mood cases, after applying
affective offset, indicates fewer loops and more direct browsing
paths.
Looking at the affective offset that arose in each case, we see

the exact same trend as was seen for both full paths, direct paths,
and user consistency, in terms of their statistical power. The

9Treating the null hypothesis that the difference between the number of itera-
tions before and after comes from a distribution of zero median, we use the sign
rank test to test for significance. The effect size is computed as (
is the Z-score and is the observation count (22 users gives 44 observations)).
The interpretation of goes according to Cohen’s benchmark (where a poten-
tial minus sign is ignored): is a small effect size, is a medium
effect size and is a large effect size.

largest affective offset was 69.96 degrees for the good mood
case, followed by 49.71 degrees for the bad mood case, and
finally 42.09 degrees for the neutral mood case.
These results are interesting when seen in light of the free-

style user feedback comments that some of the participants pro-
vided. Four people wrote that they found it difficult to place
themselves in a neutral mood setting and that the good mood
setting was far easier to relate to. This might explain why in
the neutral mood case there was no significant reduction in it-
erations - the confusing neutral mood setting resulted in partic-
ipants being less consistent than in the other mood cases. The
badmood case was also considered easier to relate to, but people
had more to say in general on what they thought was appro-
priate content for this mood. Three participants said they would
only consider content that would repair their bad mood state,
two wrote that comedies would be ideal, one person wrote that
more intense content would be a good choice, and another two
reported that if they were in a bad mood, they would not watch
TV at all. It seems that the bad mood case is possibly less nat-
ural than the good mood cause and causes people to think more
about what they want to watch. In the good mood case, people
seem to be more open as what they want to see, and suggesting a
good region allows them tomore quickly find an item. In the bad
mood case however, people are fussier about what they want to
see - even when the region is right, more browsing is needed to
find a good item.

B. Effect on User Ratings
In both evaluations, and for all mood cases, users were asked

to rate both the initially recommended item as well as the fi-
nally selected item on a scale of 1 to 10, on how good a match
they though the items were. A summary of the results for these
ratings is shown in Table IV. The first two rows cover the first
evaluation before affective offset and the second two rows cover
the second evaluation after affective offset.
Firstly, as expected, the final items for each evaluation were

rated higher than the initial items, and in all cases these were
significant: For the first evaluation, the overall increase went
from 5.07 to 7.80 ( , , ), for
the good mood case 4.95 to 7.91 ( , ,

), for the bad mood case from 4.73 to 7.32 ( ,
, ) and for the neutral mood case 5.55 to

8.18 ( , , . Likewise for the



2008 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 16, NO. 7, NOVEMBER 2014

TABLE IV
SUMMARY OF RATINGS FOR BOTH EVALUATIONS AND FOR ALL THREE MOOD CASES. , Standard Deviation

second evaluation, the overall increase went from 5.92 to 8.65
( , , ), for the good mood case,
from 5.23 to to 8.91 ( , , ), for
the bad mood case from 5.64 to 8.32 ( , ,

) and for the neutral mood case 6.91 to 8.73 (
, , ). This indicates that browsing

was effective enough to find more suitable items.
We also looked at the ratings for only the initial item for both

evaluation rounds, and found that in all mood cases, that the
initial item in the second evaluation round received a higher
rating that in the first evaluation round. However, in none of
the mood cases was this actually significant.
More interesting though are the final ratings for both eval-

uation rounds. Here we found that the final ratings, after
browsing had taken place, increased overall from 7.80 to 8.65
( , , ), for the good mood case
from 7.91 to 8.91 ( , , ), for the bad
mood case from 7.32 to 8.82 ( , , ),
and for the neutral mood case from 8.18 to 8.73 ( ,

, ), which were not significant. The good
and bad ratings being strongly significant, and the neutral
ratings not being significant suggests a link between ratings and
reduction of iterations - in the neutral case users took longer to
find an item they really liked (or they simply gave up), which
in turn explains the low iteration reduction. The lower standard
deviation for all mood cases, as noted by comparing the final
ratings for both evaluations, suggests more user consensus in
the higher ratings for the second evaluation than in the first.
The combination of affective offset and browsing might have
a stabilizing effect on users’ rating behavior. We emphasize
furthermore that users were not shown their previous ratings
at all, and since the evaluations were carried out on separate
days, would have been unlikely to recall their previous ratings.
Nevertheless, in all cases we note that the final average ratings
for the second evaluation were higher than any of the other
three ratings, indicating the point of ultimate satisfaction.
The less significant initial ratings imply that applying affec-

tive offset does not necessarily help to improve the initially rec-
ommended item, but given the added browsing functionality,
allows a good final item to be located. This is an interesting
finding because it indicates that single-shot recommendation of
items based on users’ audio features is not quite adequate. For
example, a user in a goodmoodmight be recommended an emo-
tionally appropriate item, such as a sports game. However, if
they are not interested in sports, regardless of the accuracy of
the match, the item is likely to receive a low rating. It there-
fore makes sense to rather recommend a region from which the
search is to be commenced, and then to harness the particular

user’s feedback to provide a better (more personal) recommen-
dation the next time round.

C. Effect of Audio Classification

To show qualitatively how our system is affected by the inac-
curacies of the audio classification component, we briefly turn
our attention to six examples that show how the directional
mood vector (Equation (6)), changes with label ro-
tations, all of which can be seen in Table V. To recap, a change
in the configuration of emotion labels leads to a different place-
ment of the directional mood vector, and hence determines the
initially recommended item. A value of 0 indicates no rotations
and corresponds to the label sequence ‘amu-joi-int-irr-col-peu-
inq-des-tri-sou-fie-pla’. This corresponds to observing a very
low affective offset or when the finally selected item remained
in the same emotion region. A value of 1 indicates one displace-
ment and the sequence ‘pla-amu-joi-int-irr-col-peu-inq-des-tri-
sou-fie’, a value of 2 the sequence ‘fie-pla-amu-joi-int-irr-col-
peu-inq-des-tri-sou’ and so on. If the offset is in the other direc-
tion, the label shifting is reversed. From the figures three things
are apparent:
1) Shifting of labels does not necessarily lead to an even dis-
placement of the directional the mood vectors around the
circle. This is particularly evident for the bad mood case
for the female speaker.

2) Occasionally the ordering of labels is not preserved. This
can be seen in the bad mood case for the female speaker
and in the neutral mood case for the male speaker.

3) In some cases certain areas of the emotion space appear
to be underrepresented. This can be seen in the bad mood
case for the female speaker, where a large potential area for
content items might be excluded.

The primary cause for these effects is due to the limited per-
formance of the audio classifier. Since each test trial contains
multiple speaker utterances, the limited accuracy of the emo-
tion classifier causes utterances to fall into different emotion
categories, which then contribute to unwanted shifting of the
directional mood vector. Furthermore the emotion coordinates
given in Table II are not evenly spaced apart, which further con-
tributes to the above-mentioned effects.

D. Limitations of the Model and Our Study

Finally, we observed five issues with the proposed model and
experiments that we think are worthy of discussion:
1) The model does not handle items situated close to the VA
origin very well. Take for example the case where the
currently selected item is located in the positive valence,
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TABLE V
EXAMPLES OF THE DIRECTIONAL MOOD VECTOR FOR 12 DIFFERENT LABEL

DISPLACEMENTS FOR THE THREE MOOD CASES

positive arousal quadrant, and where just a few browse
operations leads the user to the negative valence, negative
arousal quadrant. Although the distance between these
items may be quite short, the resulting affective offset
might be quite large. Another problem with this model
is that rotation of labels will only occur when a user has
moved far enough to wander into a new emotion region.
For the proposed emotion offsets given in Table II, some
areas are larger than others, meaning that more browsing
will be needed to trigger a rotation.

2) As also seen in both Table I and Table V, the effectiveness
of the model is affected by the accuracy with which indi-
vidual emotions can be recognized.

3) The three mood profiles for each user are assumed to be
fixed. However, it is possible that some users’ mood pro-
files might vary over time.

4) One of the problems faced with the user evaluation itself is
that three of the subjects wrote that they found it difficult
to browse programs in the neutral mood setting, and that
it was far easier to imagine a good or bad mood case. As
evidenced by the results, this difficulty in relating to the
neutral mood setting almost certainly led to the rather poor
results across the board for the neutral mood setting. It
appears that users perform better in a more activated mood
state.

5) Two people complained that they did not necessarily al-
ways agree with the valence and intensity of programs that
the initial subjects had rated, indicating just how personal
each user’s taste is, and also raises the question of the ef-
fectiveness of using third party annotations.

VIII. CONCLUSION

In this paper we developed a framework for recommending
TV content based on moods derived from user’s emotions. By
allowing the user to take part in the recommendation process,

we were able to compute each user’s affective offset, to be used
for future recommendation sessions. We used each user’s af-
fective offset to locate an initial region for recommendation,
from which a recommendation was determined. The use of af-
fective offset led to better user satisfaction overall, where ratings
went from 7.80 up to 8.65. Furthermore, there was a marked de-
crease in the number of cycles that was needed to find a good
item, compared to the case when no affective offset was applied,
which went from 29.53 down to 14.39. Future work could in-
clude better modeling of items situated close to the VA origin,
more predictive modeling of the directional mood vector and a
framework that takes in account mood profiles that vary over
time.
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