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About this tutorial

@ Provide an overview of speech recognition on mobile
devices

o Cover network speech recognition, distributed speech
recognition and embedded speech recognition

@ Presume familiarity with speech recognition fundamentals
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© Distributed Speech Recognition
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Mobile technology

The prevalence of mobile devices: being used as digital
assistants, for communication or simply for fun.

@ Mobile phones: 3.5 billion by 2010

o PDAs, MP3 players, GPS devices, digital cameras

*€3)

The proliferation of wireless networks: being accessible
anywhere, anytime and from any devices.

@ 3G, WLAN, Bluetooth, and IP networks

@ Free wireless connection for the public

% O (@)
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Mobile technology

"To the same extent that TV transformed entertainment in
the 1960s and the PC transformed work during the 1980s,
mobile technology is transforming the way that we will
interrelate in the next decade.”

- Michael Gold, SRI Consulting.

When will speech technology transform the way we interact
with mobile devices, and what shall be done to make it
happen?
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Speech interfaces for mobile devices

Plus - opportunities:

@ Advances in mobile technology: powerful embedded
platforms and pervasive networking

@ The course of miniaturisation
o Used while on the move
@ Hands-free requirement in cars

@ Navigation in complex menu structures, inevitable but
beyond manageable

Minus - challenges:

o Competing with existing, well-accepted Ul methods like
typing on a keypad or pushing buttons

@ Disturbing in public places (remember the history of mobile phone!)

@ Technical challenges
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Technical challenges

Difficulty in porting state-of-the-art ASR systems onto mobile
devices

e Computational constraints and power limitations

@ Diverse operating systems and hardware configurations

Imperfection of networks
@ Data compression

@ Transmission impairments
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Resources and constraints of devices

Embedded platform vs. desktop PC

CPU Arithmetic RAM Cache

HP iPAQ 624 MHz  Fixed-point 64 MB 16 KB
HP PC 3000 MHz Floating-point 8000 MB 6000 KB

o Battery lifetime (around 3-5 h in a mobile phone when
talking)

@ In a consumer product, these resources are chosen
according to requirements of the main functionality of the

device.
o ASR is considered but no driving forces

The targeted speech recognition application shall match the
available resources, and optimization is necessary.
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Resources and constraints of networks

Network availability: 'always-on’ networking
@ Networking facility is becoming a standard component on
mobile devices
@ Network service is gradually moving towards a flat-rate
subscription-based business model

Network types: circuit-switched vs. packet-switched

o Circuit-switched networks
o A dedicated circuit (or channel) btw the two parties
o A constant delay and a constant throughput
o lIdeal for real-time communications

@ Packet-switched networks
e Routing packets through shared nodes and data links
o Being more efficient and robust if delay is tolerable
o To be the dominating network form (flexibility and costs)

10
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Resources and constraints of networks

Transmission impairments:

Landline Wireless
Circuit-switched reliable bit error
Packet-switched packet loss packet loss

@ Both bit error and packet loss tend to be burst-like, difficult
to recover from

Network capacity is expanding, so are new applications. As a
result, data compression is always welcomed.

@ Low-bit rate compression in NSR is a source of
performance degradation

@ The effect of data compression on DSR is often negligible

11
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@ Introduction

@ Automatic speech recognition
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Automatic speech recognition

Modern ASR systems are firmly based on the principles of
statistical pattern recognition, in particular the use of hidden
Markov models (HMMs).

The most likely sequence of words W' is found through
Bayesian decision rule:

W' = arg max P(W|O) = arg max P(O|W)P(W)

e P(W) is the a priori probability of observing specified
word sequence W and is given by a language model

o P(O|W) is the probability of observing speech data O
given word sequence W and is determined by an acoustic
model.

13
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Architecture of an ASR System

y(t) 0 W
M Feature ASR Application
H" "’F” M | Extraction Decoder oP
Speech ‘:,
Signal < . LM Language Model
Acoustic . Language Generation
Text
Front-End Back-End

After [Tan and Varga, 2008].
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ASR components

@ Feature extraction

o Mel-frequency cepstral coefficients (MFCC)
o Signal processing for robustness

@ ASR decoding
o Calculation of observation likelihood (based on acoustic
models with millions of parameters)
o Search (in an HMM network formed by language model,
lexicon and sub-phonetic units)

15
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Architectural solutions for ASR on devices

Rule of thumb for data-intensive computing is to place
computation where the data is, instead of moving the data to
the point of computation [Bryant, 2007].

A remote ASR may be preferable when

@ The ASR requires more data from the network than from
the microphone

@ The ASR computation is a big burden for the device
@ A quick implementation is required

@ Humans assist the ASR in the background to provide
semi-automatic speech transcription service

An embedded ASR may be preferable when ...

16
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Architecture of an ASR System

yo 0 w
AELLEEL Feature ASR Application
i MJ > Extraction Decoder o
Speech \:r
: LM
Signal C Ty Language Model
Acoustic . Generation
YT
Text
Front-End Back-End
NSR CLIENT SERVER
DSR CLIENT SERVER
ESR CLIENT

The decision on where to place the ASR components
distinguishes three approaches: NSR, DSR and ESR.

It is driven by factors including device and network resources,
ASR components complexity and application.
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© Network Speech Recognition
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Network speech recognition

Network speech recognition

Remote speech recognition that uses conventional speech
coders for the transmission of speech from a client device to a
recognition server where feature extraction and recognition
decoding take place.

Pros:
@ Ubiquitous presence of codec on mobile devices
o Plug and play, without touching the massive clients
o The only possibility for devices like a telephone
Cons:
o Network dependency and error-prone channels
o Inter-frame dependency in coding
@ Distortion introduced by low bit-rate coding
o Linear prediction coding (LPC) vs. MFCCs

19



ding Transmission errors

Network speech recognition

Two ways to extract ASR features from the bitstream

@ (a) Reconstruction and feature extraction:
NSR = a CODEC system + an ASR system

o (b) Feature estimation without reconstruction -
bitstream-based front-end [Kim and Cox, 2001]

' 1
I

H '

- Speech encoder Speech decoder Feature extraction ASR
H decoder
'

—>| Speech encoder |Bitstream-based feature extraction ASR
decoder

(b)
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© Network Speech Recognition
@ Speech coding
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Speech coding standards

o ITU-T:
G.711 PCM 64 kbps (u-law, A-law)
G.722.1 24 kbps, 32 kbps, 16k samples/s wideband
G.723.1 ACELP 5.3 kbps, 6.3 kbps (mostly in VolP)
G.728 LD-CELP 16 kbps
G.729 CS-ACELP 8 kbps (mostly in VolP)
o GSM:

o GSM-FR (Full Rate) (RPE-LTP) 13 kbps

o GSM-EFR (Enhanced Full Rate) (ACELP) 12.2 kbps
e 3GPP:

o AMR-NB 4.75-12.2 kbps

o AMR-WB 6.6-23.85 kbps
e IS-136 TDMA

o 1S-641 ACELP 7.4 kbps

® © 6 o o
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Effect of speech coding on ASR performance

Tourist info task (5kw vocab) [Besacier et al., 2001]
WER%
MPEG Lay2 64 kbps 7.5
None 7.7
MPEG Lay3 64 kbps 7.8
G.711 64 kbps 8.1
G.723.1 5.3 kbps 8.8
MPEG Layl 32 kbps 27.0
MPEG Lay3 8 kbps  66.2
MPEG Lay2 8 kbps  93.8

Connected digit recognition [Kim and Cox, 2001]

WER%
Wireline ASR 3.83
[S-641 5.25

Bitstream-based 3.76
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Effect of speech coding on ASR performance

Aurora 2 database is the Tl digit database artificially distorted

by adding noise and using a simulated channel distortion
[Hirsch and Pearce, 2000].

WER% for Aurora 2 when training and testing recognizer in
the same coding mode [Hirsch, 2002]

PCM 26.77

GSM-EFR  28.56

AMR475  29.84

ALAW 29.85

AMR102 31.62

GSM-FR  31.69

GSM-HR  33.56

GSM-EFR performs the best among the codecs.
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© Network Speech Recognition

@ Transmission errors
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Effect of transmission error on ASR performance

Aurora 2 database (clean speech only, baseline WER% being
1.77) [Kiss, 2000]
Error-free EP1 EP2 EP3
GSM-EFR 2.53 3.02 435 12.87
DSR 2.01 201 2.06 8.98

Network speech recognition

@ Supports a wide range of devices in a plug and play
fashion

@ Has low requirement for the client devices

o Suffers from coding distortion, especially when it is
coupled with transmission errors

o Suffers from transcoding distortion in heterogeneous
networks

26
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© Distributed Speech Recognition
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Distributed speech recognition

Distributed speech recognition

Remote speech recognition that adopts the client-server
architecture by placing the feature extraction in the client and
the computation-intensive recognition decoding in the server.

Pros:

@ The absence of coding and transcoding problems

@ Robustness against comm. channel & acoustic noise

@ Thin client, easy to update, no limits in ASR complexity

o Sever-side playback, semi-automatic transcription

@ Speech data collection for AM/LM adaptation (ke search engines)
Cons:

@ Front-end must be implemented in the device

(Not an issue if the application requires a client-side installation anyway.)

@ Network dependency and transmission errors
28
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Architecture of a DSR System
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From [Tan and Varga, 2008].
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ETSI STQ-Aurora DSR front-end

Mel-cepstrum front-end and compression [ES 201 108]:

Framing

Pre- Hamming| [Frr Mel-scale| [ DCT 13 Mel
emphasis[ | Window . m filterbank . Cepstra

Log energy

> logE

y

Feature
compression

tqyT

o' ={{ct.c,t)) ¢, logE
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6 bits {

44 bits
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Frame-pair architecture

Frame 1 Frame 2 CRC 1-2
<44 bits > <44 bits> <4 bits>
< 138 octets / 1104 bits > for 12 frame-pairs

Sync Seq Header  Frame packet

2 octets 4 octets 138 octets
< 144 octets / 1152 bits > for 240 ms

Bitrate
4.8 kbps with a payload of 4.4 kbps

31
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DSR processing

The objectives of DSR processing are to achieve
o Low bandwidth requirement
@ High error-robustness

o Low complexity and delay

DSR processing is all about redundancy:
@ Source coding: reduce redundancy
@ Channel coding: add redundancy

@ Error concealment: exploit redundancy

32
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@ Distributed Speech Recognition
@ Properties of MFCCs

33
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Redundancy in speech features

Time (ms)
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Systems

Correlation within and across MFCC Vectors

Temporal correlation (redundancy) in feature stream due to
@ The overlapping in feature extraction processing
@ The speech production process itself

Correlation within and across MFCC vectors (from
[So and Paliwal, 2008]):

Standard deviation of o,

Standard deviation of ¢,

‘Standard déviation of

Square root of

Row number of covariance matrix
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@ Distributed Speech Recognition

@ Quantization

36
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Source coding

Source coding is to compress information for transmission over
bandwidth-limited channels.

Transmission of uncoded feature vectors requires a bitrate of
41.6 kbps

e 13 MFCCs, 100 Hz frame rate and 32 bit floating point
value

State-of-the-art DSR quantization techniques can achieve a
bitrate of 300 bps [So and Paliwal, 2008].

Quantization is a process of lossy coding with the challenge
being the rate-distortion trade-off. J

37
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Quantization

@ Scalar quantization (SQ): input samples are quantized
individually

@ Vector quantization (VQ): input samples are quantized as
vectors [Digalakis et al., 1999]

Split VQ: each vector is partitioned into subvectors which are
then independently quantized, as done in the DSR front-end:
O =([[S§]",..[S§]7]1"

o Lower storage and computational requirement than full

VQ
e Significantly better performance than SQ at any bit-rate

38



MFCC Quantization ER.EC Standards Systems

Quantization

o

@ Block quantization (transform coding): the components
of a block of samples are decorrelated by using a linear
transformation (eg DCT, PCA) before SQ

o 2D-DCT [Zhu and Alwan, 2001]

o GMM-based block quantization [So and Paliwal, 2006]

o Efficient but with drawbacks:
Inter-frame coding exploits correlation across consecutive
MFCC vectors, so error in one frame has considerable
impact on the quality of the following frames.

39
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Histogram-based quantization

Acoustic noise may move feature vectors to a different
quantization cell in a fixed VQ codebook, introducing extra
distortion!

Probability
distribution

Testing ? S s
D N
S0

L

6~ — €

From [Wan and Lee, 2008].

HQ: The partition cells are dynamically defined by the
histogram of a segment of the most recent past values of the
parameter to be quantized.
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Histogram-based quantization

A dynamic quantization, based on signal local statistics, not on
any distance measure, nor related to any pretrained codebook.

by=1 -
C(y)
D"I byy -

b,

z;

b
o Ro.-o /

Yo Yia % Yaa W

Aurora2 (SetA,B,C) (WER%) From [Wan and Lee, 2008].
MFCC SVQ 4.4k 2DDCT 1.45k HVQ1.9k HQ3.9k
38.92 43.49 40.11 22.76 18.74

HQ is also better than methods like MVA, PCA and HEQ.
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Source coding & error-resistance

A low bit-rate source coding method is highly sensitive to
transmission errors.

There is a trade-off between the error-resistance and the low
bit-rate achieved by the removal of redundancy.

No free lunch theorem

Coding efficiency multiplied by robustness is constant.
[Ho, 1999]

So, error recovery and concealment has a role to play ...

42
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@ Distributed Speech Recognition

@ Error recovery and concealment

43
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Error-robustness techniques

Error-robustness techniques

| Error detection |

Client-based error recovery

| Server-based error concealment |

Active Passive

[ Client-based] [ server-based] AR ! [ Interleaving | [ Joint coding| [ Feature-reconstruction | [ ASR-decoder EC |

| Parity check” Checksum| | Block || Convolutional | | Insertion” Interpolation || Statistical” Soft-feature decoding|

From [Tan et al., 2005].
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Error detection

o Error detection methods

o CRC (cyclic redundancy check), linear block codes
e consistancy test

@ Data block size

35
30 U —o— Frame-pair N
—— One-frame /
< 25 H Sub-vectorl
< —a— Sub-vector2
o 20
&
= 15
e
w10 |- /
5
N

EP1 EP2 EP3 GSM EPs
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Error recovery - client based techniques

@ Channel coding:
o Forward error correction (FEC) [Borgstrom et al., 2008]
@ media-specific FEC
o media-independent FEC: e.g. (n, k) block encoding
(Reed-Solomon, BCH, Golay)
o Multiple description coding (MDC): encoding a source
into 2+ substreams to be delivered on separate channels
o Joint source and channel coding: UEP (unequal error
protection)
o Packetization

o Interleaving: to counteract burst errors at the cost of
delay [Milner and James, 2006]

46
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Error recovery - client based techniques

A common attribute is the participation of the client aimed at
exploiting the characteristics of channels and signals.

It is always a trade-off btw the achieved performance and the
required resources:

o FEC trades bandwidth for redundancy

@ MDC trades multiple channels for uncorrelated
transmission errors among descriptions

@ Interleaving trades delay for randomizing error
distribution.

One disadvantage is their weak compatibility.
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Error concealment - server based techniques

EC generally deploys the strong temporal correlation residing
in speech features and uses the statistical info about speech.

EC techniques

@ Feature-reconstruction EC: create a substitution as close
to the original as possible.

@ ASR-decoder EC: modify ASR decoder to handle
degradations introduced by transmission errors - unique
to DSR

48
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Error concealment - server based techniques

Feature-reconstruction EC:

@ Insertion-based techniques: splicing, mean value
substitution, repetition

@ Interpolation-based techniques: linear, cubic

o Soft-feature decoding based techniques
[Peinado et al., 2003]

o Statistical-based techniques: use a priori info about
speech features [Gomez et al., 2003]

ASR-decoder EC:

@ Weighted Viterbi decoding [Cardenal-Lopez et al., 2004],
[Tan et al., 2007]

@ Uncertainty decoding [lon and Haeb-Umbach, 2006]

49
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Repetition EC at subvector level

EC generally operates at vector level, yet error rates for
subvector are significantly lower [Tan et al., 2007].

Buffering matrix
\V A vih—l*y;A:Z LV A+2N -1 vV A+2N \V; B
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54A+2 . SAA+2N71 SAA+ZN SAB
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Weighted Viterbi decoding

Weighted Viterbi decoding

(t) a", n=1.N/2
M=V 1—aV=r1 n=N/2+1.N

Feature-based weighted Viterbi decoding

0¢(j) = max[de1( aU]H[b K))[O

d(o*(k),0"* (K))/ Tk gt i
(6] , . consistent
Yi(t) = { ¢

Yi(t + p). B3PI, of(k) substituted by of*P(k)
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Uncertainty decoding

In standard form, state emission prob. (modelled by GMM) is
K-1
bj(0") = p(0'|s;) = > wiN(OF; g, )
k=0
where Q' is the observing vector, and s; is the state.

In uncertainty decoding, O is considered corrupted and the

uncorrupted, unobservable vector X is a random variable with
a distribution p(X|O*).

Integration over the feature uncertainty:
K-1

B(0°) = [ p(XI0)B(X)dX = 3 wicM(yaxiors e Eyect Excor)
k=0

The standard HMM decoding remains, but the variance of

each Gaussian is increased. .
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Error concealment - server based techniques

Remarks:

@ No requirement for modifying the client-side of DSR,
compatible with the ETSI-DSR standards

@ Repetition EC works pretty well with short burst length

@ Statistical based techniques benefit from a priori
knowledge of speech and is useful in particular when burst
length is long

@ ASR-decoder based techniques are unique for DSR and
can be applied in combination with other EC

o Computational cost is of concern
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A frame-rate perspective

e Strong temporal correlation in speech features

@ ASR performance is intact with a frame loss rate (short
burst-length) of 50% (From [James and Milner, 2004])

Word Accuracy (%)

So why not deliberately drop some speech frames (e.g.
applying HFR, VFR), and then conducting repetition based
"error concealment”?
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Half frame-rate front-end

Aurora 2 database, WER% [Tan et al., 2007]
16-state HMM  8-state HMM

Full frame rate 1.00 6.3
HFR-Duplication 1.02 5.84
HFR-NoDuplication 10.63 1.40

This motives a number of coding schemes (e.g. MDC,

interleaving), which exploit temporal correlation of speech for
error-robust and bandwidth-flexible DSR.
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HFR motivated coding schemes

1]2 3|4 5|6 718 9110 11|12

131141 ]15(16| {17 |18 ] 19 |20 {21 |22| |23 |24

(a) ETSI-DSR front-end frame-pair scheme

o
B EE R E R EE

(b) One-frame scheme

oo
E E R e

(d) Interleaving12 scheme

A EEEEEEE
(e) Interleaving24 scheme
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Variable frame-rate front-end

A posteriori SNR weighted energy based variable frame rate
analysis [Tan and Lindberg, 2008]

@ Frame selection based on the a posteriori SNR weighted
energy distance of two consecutive frames:

D(t) = |log E(t) — log E(t — 1)| - SNRpost(t)
@ Frame selection example

| _|fHHH

o Beneficial for source coding and noise robustness: at 1.5
kbps, WERs are 1.2% and 32.8% for clean and noisy

speech (vs no compression: 1.0% and 38.7%).
57
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Error-robustness performance on Aurora 2, EP3

WER (%) Bit-rate (bps) Complexity Compatibility with
ETSI-DSR standards

Splicing 24.00 4800 Low Yes
No CRC 8.88 4600 Low No

Linear interpolation 7.35 4800 Low Yes
Repetition (Aurora) 6.70 4800 Low Yes
Weighted Viterbi 478 4800 Low Yes
RS(32, 16) 3.45 9 600 High No

One-frame 341 5000 Low No

Uncertainty decoding 320 4800 Medium Yes
Subvector 2.65 4800 Low Yes
Interleaving12 243 4800 Low No

Subvector + WVD 2.01 4 800 Low Yes
Uncertainty  decoding 1.98 4800 Medium Yes
(inter-frame correlation)

H-MAP 191 4800 High Yes
Interleaving24 1.74 4800 Low No

H-FBMMSE 1.34 4800 High Yes
MDC 1.04 5200 Low No

Error-free 0.95 4800 - -
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@ Distributed Speech Recognition

@ Standards
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Overview of DSR standards

@ Mel-cepstrum DSR front-end (FE) [ES 201 108]
e ETSI STQ-Aurora, 2000
@ Advanced DSR front-end (AFE) [ES 202 050]

o ETSI STQ-Aurora, 2002
o 53% error rate reduction in acoustic noise

@ Extension for speech construction and tonal languages
(XFE & XAFE) [ES 202 211], [ES 202 212]

o ETSI STQ-Aurora, 2003

o Fixed point specifications for AFE and XAFE
[3GPP TS 26.243]

e 3GPP, 2004
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Advanced front-end

Terminal
e O, e
| Terminal Front-End |
1
! e mmmmm——————————— e ———————— . |
i | Feature Extraction i |
i ! |
[ ! I
N 11 and 16 kHz VAD i |
il Extension | Frami !
H raming, '
:l_'lp::l | Feature BitSteam | To |
ign » Noise | Waveform | | Cepstrum Lyl Blind 1 Compression |y Formatting, a. hne
I | Reduction Processing Calculation Equalization |} Error Protection | |
[ e ———— ! |
(@)
Server
| Server Front-End |
From l
Channel | Bit-Stream Decoding, Feature Server Feature || Back-End
}' Error Mitigation 1 Decompression 1 Processing T’ creEn
! I
| P —————. P il
®)

From [ES 202 050]

Significant improvement over the basic front-end in noise

robustness
61



DSR MFCC Q ER.EC Standards Sy:s

Extended front-ends

Objectives of the extended front-ends

@ Support speech construction and tonal languages.
Development trend of DSR and speech codecs:

@ A convergence, though with different optimization
objectives [Kim, 2008], [Milner and Shao, 2007].
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AMR vs. DSR

Aurora databases (WER%) using AFE [Kelleher et al., 2002]
DSR 4.4kbps AMR 12.2kbps AMR 4.75kbps
Aurora 2 12.6 15.3 18.7
Aurora 3 9.6 11.6 14.5

Aurora 2 database (WER%) [Kiss, 2000]
EP1 EP2 EP3
GSM-EFR 3.02 435 1287
DSR 2.01 2.06 8.98

Extensive comparison organised by 3GPP and conducted by
industry [3GPP TR 26.943].
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@ Distributed Speech Recognition

@ Systems
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Remote speech recognition system

Microsoft(®Response Point™

software (VolP enabled).

is an innovative phone system

@ "Response Point is an example of using the right
technology for the right context and application. The
blue button /voice recognition makes it easier for people
to take the advantage of todays speech technology.”

- X.D. Huang

J (P MR'“é’;'ponse Point:
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Remote speech recognition system

Promptu™provides multimodal solutions for mobile devices
using client-server speech recognition technology.

Button Capture, -+ | icath i
Application State — - P lcation Logic
| | 4
g; Recognition
_H,_‘ i - 2 p—1»| andDemographic
L 1 g Analysis
¥ % A A
=5
Rendering 4
£/

Dictionary
Grammars

Analysis
Grammar
Generation |

Confusability |

s

| AcousticCorpus |3+ | AcousticModel b
e
>

|
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Remote speech recognition system

vlingo systems allow you to say anything to your mobile phone
and still be recognized properly.

@ Hierarchical Language Model Based Speech Recognition

o Adaptation

Acoustic Models
(what speech sounds like)

Pronunciations

New Technology {what words sound likel S
Automatic Adaptation > Recognition
MNo up-front Engine

Vocabulary
iwhat words peeple say)

user training

Language Mods!
{how wards go together]

h
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DSR
A configurable DSR system
Client
Application
i
DSR Client API J
Recorder
Result Command
Listener | [Optimised AFE Processor
Client-side Client Part
; ar
Speech ll Co 1
package =z A
Network
P .
ok
AFE i Comma.nd
Server-side - Processor
Server Part

Recogniser (SPHINX IV)

& & £
i Isolated Grammar Based | [ Large Vocabulary
1| Word Recognition Recognition Recognition
Server

From [Xu et al., 2006].
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A configurable DSR system

@ Real-time efficiency in using different realisations of the
AFE (Advance Front-End) and an H5550 IPAQ with a
400 MHz XScale CPU and 128 MB memory

Algorithm FloatingP  FixedP FixedP + FFT Optim.
X Real time 3.98 0.82 0.69

chapp A Yi<eoe @

®
® @)
i ’ / Wiborg FF havde gaesterne fra Esbjerg
Thes spescti-enabled solution for Heallh Care Workers | nede i seskken, da de to hold medtes i 545
Ligaen mandag, men med to m&l midk | anden
Welcome ! halvleg lykkedes det geesterne at udligne ki
slutresultatet 2-2,
Wiborgs Kenneth Fabricius 8bnede scoringen
allerede efter fire minutter, og han havde
To reach the Help Page, push the P2T ligeledles en Fod med i spillet, da Mota gjorde
button and say "Help".. det
Hor [ Vists | Paient | Opton | o | LErERET =[
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Distributed multimodal services

/ Mobile Device f Voice Server Web
Server
- VBCP
v Controller VoiceXML
Synch. Protocol
Framework (VBCPITCP) Voice
= Browser -—
HTTP
—
DSR Frontend = DSR Recogniser (VoiceXML,
Speech UP (DSR/RTP) ] Ko,
_— ;
[ Speech Decoder I - Audio/TTS | u";r.:'.;';:s'
udic DOWN (AMR/RTP '

- -

From [Pearce et al., 2005]
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