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About this tutorial

Provide an overview of speech recognition on mobile
devices

Cover network speech recognition, distributed speech
recognition and embedded speech recognition

Presume familiarity with speech recognition fundamentals

2



Introduction NSR DSR ESR Applications

Outline

1 Introduction

2 Network Speech Recognition

3 Distributed Speech Recognition

4 Embedded Speech Recognition

5 Applications

3



Introduction NSR DSR ESR Applications Devices and networks Automatic speech recognition

1 Introduction
Devices and networks
Automatic speech recognition

2 Network Speech Recognition
Speech coding
Transmission errors

3 Distributed Speech Recognition
Properties of MFCCs
Quantization
Error recovery and concealment
Standards
Systems

4 Embedded Speech Recognition

5 Applications

4



Introduction NSR DSR ESR Applications Devices and networks Automatic speech recognition

Mobile technology

The prevalence of mobile devices: being used as digital
assistants, for communication or simply for fun.

Mobile phones: 3.5 billion by 2010

PDAs, MP3 players, GPS devices, digital cameras

The proliferation of wireless networks: being accessible
anywhere, anytime and from any devices.

3G, WLAN, Bluetooth, and IP networks

Free wireless connection for the public
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Mobile technology

”To the same extent that TV transformed entertainment in
the 1960s and the PC transformed work during the 1980s,
mobile technology is transforming the way that we will
interrelate in the next decade.”

- Michael Gold, SRI Consulting.

When will speech technology transform the way we interact
with mobile devices, and what shall be done to make it
happen?
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Speech interfaces for mobile devices

Plus - opportunities:

Advances in mobile technology: powerful embedded
platforms and pervasive networking

The course of miniaturisation

Used while on the move

Hands-free requirement in cars

Navigation in complex menu structures, inevitable but
beyond manageable

Minus - challenges:

Competing with existing, well-accepted UI methods like
typing on a keypad or pushing buttons

Disturbing in public places (Remember the history of mobile phone!)

Technical challenges
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Technical challenges

Difficulty in porting state-of-the-art ASR systems onto mobile
devices

Computational constraints and power limitations

Diverse operating systems and hardware configurations

Imperfection of networks

Data compression

Transmission impairments
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Resources and constraints of devices

Embedded platform vs. desktop PC

CPU Arithmetic RAM Cache
HP iPAQ 624 MHz Fixed-point 64 MB 16 KB
HP PC 3000 MHz Floating-point 8000 MB 6000 KB

Battery lifetime (around 3-5 h in a mobile phone when
talking)

In a consumer product, these resources are chosen
according to requirements of the main functionality of the
device.

ASR is considered but no driving forces

The targeted speech recognition application shall match the
available resources, and optimization is necessary.
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Resources and constraints of networks

Network availability: ’always-on’ networking

Networking facility is becoming a standard component on
mobile devices

Network service is gradually moving towards a flat-rate
subscription-based business model

Network types: circuit-switched vs. packet-switched

Circuit-switched networks

A dedicated circuit (or channel) btw the two parties
A constant delay and a constant throughput
Ideal for real-time communications

Packet-switched networks

Routing packets through shared nodes and data links
Being more efficient and robust if delay is tolerable
To be the dominating network form (flexibility and costs)
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Resources and constraints of networks

Transmission impairments:

Landline Wireless
Circuit-switched reliable bit error
Packet-switched packet loss packet loss

Both bit error and packet loss tend to be burst-like, difficult
to recover from

Network capacity is expanding, so are new applications. As a
result, data compression is always welcomed.

Low-bit rate compression in NSR is a source of
performance degradation

The effect of data compression on DSR is often negligible
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Automatic speech recognition

Modern ASR systems are firmly based on the principles of
statistical pattern recognition, in particular the use of hidden
Markov models (HMMs).

The most likely sequence of words W ′ is found through
Bayesian decision rule:

W′ = arg max
W

P(W|O) = arg max
W

P(O|W)P(W)

P(W) is the a priori probability of observing specified
word sequence W and is given by a language model

P(O|W) is the probability of observing speech data O
given word sequence W and is determined by an acoustic
model.
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Architecture of an ASR System
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Fig. 1.1 Architecture of an ASR system.  
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ASR components

Feature extraction

Mel-frequency cepstral coefficients (MFCC)
Signal processing for robustness

ASR decoding

Calculation of observation likelihood (based on acoustic
models with millions of parameters)
Search (in an HMM network formed by language model,
lexicon and sub-phonetic units)
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Architectural solutions for ASR on devices

Rule of thumb for data-intensive computing is to place
computation where the data is, instead of moving the data to
the point of computation [Bryant, 2007].

A remote ASR may be preferable when

The ASR requires more data from the network than from
the microphone

The ASR computation is a big burden for the device

A quick implementation is required

Humans assist the ASR in the background to provide
semi-automatic speech transcription service

An embedded ASR may be preferable when ...
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Architecture of an ASR System
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The decision on where to place the ASR components
distinguishes three approaches: NSR, DSR and ESR.
It is driven by factors including device and network resources,
ASR components complexity and application.
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Network speech recognition

Network speech recognition

Remote speech recognition that uses conventional speech
coders for the transmission of speech from a client device to a
recognition server where feature extraction and recognition
decoding take place.

Pros:
Ubiquitous presence of codec on mobile devices

Plug and play, without touching the massive clients
The only possibility for devices like a telephone

Cons:
Network dependency and error-prone channels

Inter-frame dependency in coding

Distortion introduced by low bit-rate coding
Linear prediction coding (LPC) vs. MFCCs
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Network speech recognition

Two ways to extract ASR features from the bitstream

(a) Reconstruction and feature extraction:
NSR = a CODEC system + an ASR system

(b) Feature estimation without reconstruction -
bitstream-based front-end [Kim and Cox, 2001]
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Speech coding standards

ITU-T:

G.711 PCM 64 kbps (u-law, A-law)
G.722.1 24 kbps, 32 kbps, 16k samples/s wideband
G.723.1 ACELP 5.3 kbps, 6.3 kbps (mostly in VoIP)
G.728 LD-CELP 16 kbps
G.729 CS-ACELP 8 kbps (mostly in VoIP)

GSM:

GSM-FR (Full Rate) (RPE-LTP) 13 kbps
GSM-EFR (Enhanced Full Rate) (ACELP) 12.2 kbps

3GPP:

AMR-NB 4.75-12.2 kbps
AMR-WB 6.6-23.85 kbps

IS-136 TDMA

IS-641 ACELP 7.4 kbps
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Effect of speech coding on ASR performance

Tourist info task (5kw vocab) [Besacier et al., 2001]
WER%

MPEG Lay2 64 kbps 7.5
None 7.7
MPEG Lay3 64 kbps 7.8
G.711 64 kbps 8.1
G.723.1 5.3 kbps 8.8
MPEG Lay1 32 kbps 27.0
MPEG Lay3 8 kbps 66.2
MPEG Lay2 8 kbps 93.8

Connected digit recognition [Kim and Cox, 2001]
WER%

Wireline ASR 3.83
IS-641 5.25
Bitstream-based 3.76

23



Introduction NSR DSR ESR Applications Speech coding Transmission errors

Effect of speech coding on ASR performance

Aurora 2 database is the TI digit database artificially distorted
by adding noise and using a simulated channel distortion
[Hirsch and Pearce, 2000].

WER% for Aurora 2 when training and testing recognizer in
the same coding mode [Hirsch, 2002]

PCM 26.77
GSM-EFR 28.56
AMR475 29.84
ALAW 29.85
AMR102 31.62
GSM-FR 31.69
GSM-HR 33.56

GSM-EFR performs the best among the codecs.
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Effect of transmission error on ASR performance

Aurora 2 database (clean speech only, baseline WER% being
1.77) [Kiss, 2000]

Error-free EP1 EP2 EP3
GSM-EFR 2.53 3.02 4.35 12.87
DSR 2.01 2.01 2.06 8.98

Network speech recognition

Supports a wide range of devices in a plug and play
fashion

Has low requirement for the client devices

Suffers from coding distortion, especially when it is
coupled with transmission errors

Suffers from transcoding distortion in heterogeneous
networks
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Distributed speech recognition

Distributed speech recognition

Remote speech recognition that adopts the client-server
architecture by placing the feature extraction in the client and
the computation-intensive recognition decoding in the server.

Pros:
The absence of coding and transcoding problems
Robustness against comm. channel & acoustic noise
Thin client, easy to update, no limits in ASR complexity
Sever-side playback, semi-automatic transcription
Speech data collection for AM/LM adaptation (like search engines)

Cons:
Front-end must be implemented in the device
(Not an issue if the application requires a client-side installation anyway.)

Network dependency and transmission errors
28
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Architecture of a DSR System  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2 Diagram of a DSR system.  
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ETSI STQ-Aurora DSR front-end

Mel-cepstrum front-end and compression [ES 201 108]:

 

13 Mel 
Cepstra  Framing Pre- 

emphasis 
Hamming 
Window

FFT Mel-scale 
filterbank

| | DCT 

Log energy logE 

Log

Ot 

Feature 
compression

Zheng-Hua Tan

Tttttttt Eccccc ]  log,  ,  ,  ..., ,  ,  [O 0121121=

TTtTtTt ]    ]S[          , ]S[   ...,      , ]S[   [ 650=
Feature-pair

Subvector2
8 bits

Subvector1
6 bits

44 bits

30



Introduction NSR DSR ESR Applications MFCC Quantization ER.EC Standards Systems

ETSI STQ-Aurora DSR front-end

Frame-pair architecture

Frame 1 Frame 2 CRC 1-2 ... CRC 23-24
<44 bits > <44 bits> <4 bits> ... <4 bits>
< 138 octets / 1104 bits > for 12 frame-pairs

Multiframe

Sync Seq Header Frame packet
2 octets 4 octets 138 octets
< 144 octets / 1152 bits > for 240 ms

Bitrate

4.8 kbps with a payload of 4.4 kbps
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DSR processing

The objectives of DSR processing are to achieve

Low bandwidth requirement

High error-robustness

Low complexity and delay

DSR processing is all about redundancy:

Source coding: reduce redundancy

Channel coding: add redundancy

Error concealment: exploit redundancy
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Redundancy in speech features

July 1, 2008Acoustics 2008, Paris 1
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Correlation within and across MFCC Vectors

Temporal correlation (redundancy) in feature stream due to

The overlapping in feature extraction processing
The speech production process itself

Correlation within and across MFCC vectors (from
[So and Paliwal, 2008]):

Quantization of Speech Features: Source Coding
 

 
 
 

the Aurora-2 database (Hirsch and Pearce 2000). The MFCCs consist of 13 cepstral 
coefficients, 12

0}{ iic . The log energy coefficient log E, which is often concatenated 
with the MFCC feature set in ASR, has not been included. Rather than presenting a 
13  13 matrix of coefficients, we have plotted the absolute value of the covariance 
coefficients in Fig. 7.6. Because of the large difference in magnitude of the variance 
of c0 compared with those of the other cepstral coefficients, we have applied a square 
root operation to the covariance coefficients to compress the dynamic range. There-
fore, the coefficients on the diagonal represent the standard deviation of each cepstral 
coefficient rather than the variance. 

We can see that a large percentage of the energy is contained in the zeroth cep-
stral coefficient, c0. Recall that the final stage of MFCC computation comprises a 
discrete cosine transform (DCT), which tends to compact most of the energy into the 
zeroth cepstral coefficient or DC component. In addition, most of the off-diagonal 
covariance coefficients have low magnitude, which indicates that the cepstral coeffi-
cients are weakly correlated with each other—apart from c0, where the cross-
variance with the other cepstral coefficients appears to be higher. This suggests that 
the other cepstral coefficients 12
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Fig. 7.6 Graphical representation showing the absolute value of the covariance coefficients of 
MFCCs within a single vector with compressed dynamic range (log energy is not included) 
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 Stephen So and Kuldip K. Paliwal 
 
Because the efficiency of scalar quantization is generally optimal when the vector 

components are not correlated (which is the basis of block quantization), the covari-
ance statistics of MFCCs (shown in Fig. 7.6) suggest that directly scalar quantizing 
the MFCCs may not be optimal. In which case, a further transform (such as the KLT) 
may be required to remove the remaining correlation and henceforth improve the 
rate-distortion performance.  

This improvement will be become apparent when comparing the results between 
the scalar quantizer and the block quantizer. 

 
Correlation across Successive MFCC Vectors (Interframe Dependencies) 

 
In order to examine the correlation across successive MFCC vectors, we concatenate 
these vectors to form higher dimensional vectors and compute the covariance matrix 
of this new vector set. Any linear dependencies between MFCCs in successive vec-
tors will be shown by large off-diagonal coefficients in the corresponding rows and 
columns of the covariance matrix. Figure 7.7 is similar to Fig. 7.6, where the covari-
ance matrix is graphically represented in a three dimensional representation. We also 
present the graphical covariance matrix representation for two, three, four, and five  

 
Fig. 7.7 Graphical representation showing the coefficients of the covariance matrix of MFCCs 
within a multiple successive vectors with compressed dynamic range: a two vectors, b three 
vectors, c four vectors, and d five vectors 
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Source coding

Source coding is to compress information for transmission over
bandwidth-limited channels.

Transmission of uncoded feature vectors requires a bitrate of
41.6 kbps

13 MFCCs, 100 Hz frame rate and 32 bit floating point
value

State-of-the-art DSR quantization techniques can achieve a
bitrate of 300 bps [So and Paliwal, 2008].

Quantization is a process of lossy coding with the challenge
being the rate-distortion trade-off.
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Quantization

Scalar quantization (SQ): input samples are quantized
individually

Vector quantization (VQ): input samples are quantized as
vectors [Digalakis et al., 1999]

Split VQ: each vector is partitioned into subvectors which are
then independently quantized, as done in the DSR front-end:
Ot = [[St

0]T , ...[St
6]T ]T

Lower storage and computational requirement than full
VQ
Significantly better performance than SQ at any bit-rate

Block quantization (transform coding)
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Quantization

Scalar quantization (SQ)

Vector quantization (VQ)

Block quantization (transform coding): the components
of a block of samples are decorrelated by using a linear
transformation (eg DCT, PCA) before SQ

2D-DCT [Zhu and Alwan, 2001]
GMM-based block quantization [So and Paliwal, 2006]
Efficient but with drawbacks:
Inter-frame coding exploits correlation across consecutive
MFCC vectors, so error in one frame has considerable
impact on the quality of the following frames.
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Histogram-based quantization

Acoustic noise may move feature vectors to a different
quantization cell in a fixed VQ codebook, introducing extra
distortion!

From [Wan and Lee, 2008].

HQ: The partition cells are dynamically defined by the
histogram of a segment of the most recent past values of the
parameter to be quantized.
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Histogram-based quantization

A dynamic quantization, based on signal local statistics, not on
any distance measure, nor related to any pretrained codebook.

Aurora2 (SetA,B,C) (WER%) From [Wan and Lee, 2008].
MFCC SVQ 4.4k 2DDCT 1.45k HVQ1.9k HQ3.9k
38.92 43.49 40.11 22.76 18.74

HQ is also better than methods like MVA, PCA and HEQ.
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Source coding & error-resistance

A low bit-rate source coding method is highly sensitive to
transmission errors.

There is a trade-off between the error-resistance and the low
bit-rate achieved by the removal of redundancy.

No free lunch theorem

Coding efficiency multiplied by robustness is constant.
[Ho, 1999]

So, error recovery and concealment has a role to play ...
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Error-robustness techniques 
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Error-robustness techniques

From [Tan et al., 2005].
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Error detection

Error detection methods

CRC (cyclic redundancy check), linear block codes
consistancy test

Data block size
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Error recovery - client based techniques

Channel coding:
Forward error correction (FEC) [Borgstrom et al., 2008]

media-specific FEC
media-independent FEC: e.g. (n, k) block encoding
(Reed-Solomon, BCH, Golay)

Multiple description coding (MDC): encoding a source
into 2+ substreams to be delivered on separate channels
Joint source and channel coding: UEP (unequal error
protection)

Packetization

Interleaving: to counteract burst errors at the cost of
delay [Milner and James, 2006]
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Error recovery - client based techniques

A common attribute is the participation of the client aimed at
exploiting the characteristics of channels and signals.

It is always a trade-off btw the achieved performance and the
required resources:

FEC trades bandwidth for redundancy

MDC trades multiple channels for uncorrelated
transmission errors among descriptions

Interleaving trades delay for randomizing error
distribution.

One disadvantage is their weak compatibility.
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Error concealment - server based techniques

EC generally deploys the strong temporal correlation residing
in speech features and uses the statistical info about speech.

EC techniques

Feature-reconstruction EC: create a substitution as close
to the original as possible.

ASR-decoder EC: modify ASR decoder to handle
degradations introduced by transmission errors - unique
to DSR
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Error concealment - server based techniques

Feature-reconstruction EC:

Insertion-based techniques: splicing, mean value
substitution, repetition

Interpolation-based techniques: linear, cubic

Soft-feature decoding based techniques
[Peinado et al., 2003]

Statistical-based techniques: use a priori info about
speech features [Gomez et al., 2003]

ASR-decoder EC:

Weighted Viterbi decoding [Cardenal-Lopez et al., 2004],
[Tan et al., 2007]

Uncertainty decoding [Ion and Haeb-Umbach, 2006]
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Repetition EC at subvector level

EC generally operates at vector level, yet error rates for
subvector are significantly lower [Tan et al., 2007].
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Consistency matrix and subvector concealment
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Weighted Viterbi decoding

Weighted Viterbi decoding

δt(j) = max
i

[δt−1(i)aij ][bj(Ot)]γ(t)

γ(t) =

{
αn, n = 1...N/2

1− αN−n+1, n = N/2 + 1...N

Feature-based weighted Viterbi decoding

δt(j) = max
i

[δt−1(i)aij ]
K∏

k=1

[bj(o
t(k))]γk (t)

γk(t) =

{
αd(ot(k),ot+1(k))/Tk , S t

j consistent
γk(t + p).β|p|, ot(k) substituted by ot+p(k)
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Uncertainty decoding

In standard form, state emission prob. (modelled by GMM) is

bj(Ot) = p(Ot |sj) =
K−1∑
k=0

wjkN(Ot ; µjk ,Σjk)

where Ot is the observing vector, and sj is the state.

In uncertainty decoding, Ot is considered corrupted and the
uncorrupted, unobservable vector X is a random variable with
a distribution p(X|Ot).

Integration over the feature uncertainty:

bj(Ot) =

∫
p(X|Ot)bj(X)dX =

K−1∑
k=0

wjkN(µX|Ot ; µjk ,Σjk+ΣX|Ot )

The standard HMM decoding remains, but the variance of
each Gaussian is increased.
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Error concealment - server based techniques

Remarks:

No requirement for modifying the client-side of DSR,
compatible with the ETSI-DSR standards

Repetition EC works pretty well with short burst length

Statistical based techniques benefit from a priori
knowledge of speech and is useful in particular when burst
length is long

ASR-decoder based techniques are unique for DSR and
can be applied in combination with other EC

Computational cost is of concern
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A frame-rate perspective

Strong temporal correlation in speech features

ASR performance is intact with a frame loss rate (short
burst-length) of 50% (From [James and Milner, 2004])

So why not deliberately drop some speech frames (e.g.
applying HFR, VFR), and then conducting repetition based
”error concealment”?
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Half frame-rate front-end

Aurora 2 database, WER% [Tan et al., 2007]
16-state HMM 8-state HMM

Full frame rate 1.00 6.3
HFR-Duplication 1.02 5.84
HFR-NoDuplication 10.63 1.40

This motives a number of coding schemes (e.g. MDC,
interleaving), which exploit temporal correlation of speech for
error-robust and bandwidth-flexible DSR.
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HFR motivated coding schemes

 
 

 
 
 

 
 
 
 

(a) ETSI-DSR front-end frame-pair scheme  
 
 

 
 
 

(b) One-frame scheme 
 
 

(c) HFR scheme 
 
 
 
 
 

(d) Interleaving12 scheme 
 
 
 
 
 

(e) Interleaving24 scheme 
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Variable frame-rate front-end

A posteriori SNR weighted energy based variable frame rate
analysis [Tan and Lindberg, 2008]

Frame selection based on the a posteriori SNR weighted
energy distance of two consecutive frames:

D(t) = | log E (t)− log E (t − 1)| · SNRpost(t)

Frame selection example 

 

 

 
Beneficial for source coding and noise robustness: at 1.5
kbps, WERs are 1.2% and 32.8% for clean and noisy
speech (vs no compression: 1.0% and 38.7%).
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Error-robustness performance on Aurora 2, EP3
 

 WER (%) Bit-rate (bps) Complexity  Compatibility with  

ETSI-DSR standards 

Splicing 24.00 4 800 Low  Yes 

No CRC 8.88 4 600 Low  No 

Linear interpolation 7.35 4 800 Low  Yes 

Repetition (Aurora) 6.70 4 800 Low  Yes 

Weighted Viterbi 4.78 4 800 Low Yes 

RS(32, 16) 3.45 9 600 High No 

One-frame 3.41 5 000 Low  No 

Uncertainty decoding 3.20 4800 Medium  Yes 

Subvector 2.65 4 800 Low  Yes 

Interleaving12 2.43 4 800 Low  No 

Subvector + WVD 2.01 4 800 Low Yes 

Uncertainty decoding 

(inter-frame correlation) 

1.98 4800 Medium Yes 

H-MAP 1.91 4 800 High Yes 

Interleaving24 1.74 4 800 Low  No 

H-FBMMSE 1.34 4 800 High Yes 

MDC 1.04 5 200 Low  No 

Error-free 0.95 4 800 -  - 
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Overview of DSR standards

Mel-cepstrum DSR front-end (FE) [ES 201 108]

ETSI STQ-Aurora, 2000

Advanced DSR front-end (AFE) [ES 202 050]

ETSI STQ-Aurora, 2002
53% error rate reduction in acoustic noise

Extension for speech construction and tonal languages
(XFE & XAFE) [ES 202 211], [ES 202 212]

ETSI STQ-Aurora, 2003

Fixed point specifications for AFE and XAFE
[3GPP TS 26.243]

3GPP, 2004
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Advanced front-end

From [ES 202 050]

Significant improvement over the basic front-end in noise
robustness
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Extended front-ends

Objectives of the extended front-ends

Support speech construction and tonal languages.

Development trend of DSR and speech codecs:

A convergence, though with different optimization
objectives [Kim, 2008], [Milner and Shao, 2007].
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AMR vs. DSR

Aurora databases (WER%) using AFE [Kelleher et al., 2002]
DSR 4.4kbps AMR 12.2kbps AMR 4.75kbps

Aurora 2 12.6 15.3 18.7
Aurora 3 9.6 11.6 14.5

Aurora 2 database (WER%) [Kiss, 2000]
EP1 EP2 EP3

GSM-EFR 3.02 4.35 12.87
DSR 2.01 2.06 8.98

Extensive comparison organised by 3GPP and conducted by
industry [3GPP TR 26.943].
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Remote speech recognition system

Microsoft R©Response PointTMis an innovative phone system
software (VoIP enabled).

”Response Point is an example of using the right
technology for the right context and application. The
blue button/voice recognition makes it easier for people
to take the advantage of todays speech technology.”
- X.D. Huang
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Remote speech recognition system

PromptuTMprovides multimodal solutions for mobile devices
using client-server speech recognition technology.
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Remote speech recognition system

vlingo systems allow you to say anything to your mobile phone
and still be recognized properly.

Hierarchical Language Model Based Speech Recognition

Adaptation
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A configurable DSR system

4 Chapter 6
 

 

concealment is conducted for feature reconstruction. Secondly, the error-
corrected speech packages are decoded into a set of cepstral features and 
VAD information. Subsequently, the cepstral features are processed by the 
SPHINX speech recogniser. The recogniser presents its result (either the best 
or N-best results) at the utterance end – detected by the VAD information - 
and transmits back to the Result Listener of the client. To increase system 
usability and flexibility, three typical recognition modes are represented, 
namely: Isolated word recognition, Grammar based recognition and Large 
vocabulary recognition. Each is defined by a set of prototype files at the 
server side. The choice is done at system initialisation, and specific settings 
can be changed at any time. The setting may be different across a group of 
end-users. 

 

Figure 6-2. The system architecture 

A Command Processor is implemented at both the client and server side 
to support the interchange of configuration commands. Potential commands 
include control commands to start or stop recognition, choice of recognition 

From [Xu et al., 2006].
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A configurable DSR system

Real-time efficiency in using different realisations of the
AFE (Advance Front-End) and an H5550 IPAQ with a
400 MHz XScale CPU and 128 MB memory

Algorithm FloatingP FixedP FixedP + FFT Optim.
X Real time 3.98 0.82 0.69
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Distributed multimodal services

From [Pearce et al., 2005]
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