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Minimum Mean-Square Error Estimation
of Mel-Frequency Cepstral Features–A
Theoretically Consistent Approach

Jesper Jensen and Zheng-Hua Tan

Abstract—In this work, we consider the problem of feature
enhancement for noise-robust automatic speech recognition
(ASR). We propose a method for minimum mean-square error
(MMSE) estimation of mel-frequency cepstral features, which
is based on a minimum number of well-established, theoreti-
cally consistent statistical assumptions. More specifically, the
method belongs to the class of methods relying on the statis-
tical framework proposed in Ephraim and Malah’s original
work (“Speech enhancement using a minimum mean-square
error short-time spectral amplitude estimator,” IEEE Trans.
Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, 1984). The
method is general in that it allows MMSE estimation of mel-fre-
quency cepstral coefficients (MFCC’s), cepstral-mean subtracted
(CMS-) MFCC’s, autoregressive-moving-average (ARMA)-fil-
tered CMS-MFCC’s, velocity, and acceleration coefficients. In
addition, the method is easily modified to take into account other
compressive non-linearities than the logarithm traditionally used
for MFCC computation. In terms of MFCC estimation perfor-
mance, as measured by MFCC mean-square error, the proposed
method shows performance which is identical to or better than
other state-of-the-art methods. In terms of ASR performance, no
statistical difference could be found between the proposed method
and the state-of-the-art methods. We conclude that existing
state-of-the-art MFCC feature enhancement algorithms within
this class of algorithms, while theoretically suboptimal or based on
theoretically inconsistent assumptions, perform close to optimally
in the MMSE sense.

Index Terms—Robust automatic speech recognition (ASR),
speech enhancement, mel-frequency cepstral coefficient (MFCC),
minimum mean-square error (MMSE) estimation.

I. INTRODUCTION

S TATE-OF-THE-ART automatic speech recognition (ASR)
systems typically consist of a front-end, which tries to ex-

tract relevant information - speech features - from the observed
speech signals, and a back-end that matches the speech features
against pre-trained statistical acoustic models. When observed
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speech signals resemble the speech signals used for training the
acoustic models, e.g., in terms of background noise level, rever-
beration level, etc., then the ASR system may work well. On the
other hand, when the ASR back-end is trained with noise-free
speech signals, but the observed speech signals are noisy or re-
verberant, i.e., a mis-matched condition, then performance may
decrease dramatically, e.g., [2], [3].
Several general methodologies exist for reducing the impact

of environmental noise on ASR performance. These include
methods, which try to reject noise and retrieve the underlying
clean speech features to be presented to the ASR back-ends, e.g.,
[4]–[7]. They also include model adaptation methods, which
adapt the back-ends to be better in line with the observed noisy
features, e.g., [8], [9], methods. Other approaches use speech
features that are inherently noise robust, e.g., [10]–[12]. Finally,
methods exist, e.g. based on missing feature theory, which take
into account the estimation uncertainty related to a given fea-
ture, e.g., [13]–[15].
In this work we consider the problem of speech feature

enhancement for environment robust ASR. More specifically,
given an observation of a noisy speech signal, our goal is to find
minimum mean-square error (MMSE) estimates of the speech
features of the underlying noise-free speech signal. Since tra-
ditional speech features, most notably mel-frequency cepstral
coefficients (MFCC’s), are usually computed via short-time
Fourier transform (STFT) coefficients, the problem is often ap-
proached by trying to retrieve the noise-free STFT coefficients
based on their observable, noisy, counterparts. For example, a
popular approach is to use well-established short-time spectral
speech enhancement algorithms to estimate a clean speech
magnitude spectrum or periodogram based on the available
noisy observation, and then simply compute resulting cepstral
features by inserting these spectral estimates into expression
for noise-free cepstral features. While such “plug-in” approach
is simple, and may, in fact, lead to good improvements in terms
of speech recognition performance, see e.g., [6], it is theoret-
ically sub-optimal; this is so, because MMSE optimality in,
e.g., the linear power domain, does not imply optimality in the
cepstral domain. A more advanced approach was proposed by
Stark and Paliwal [6] who assumed that the log mel-frequency
energy coefficients of the clean speech signal conditioned on
the noisy observation obey a Gamma distribution. Based on
this assumption closed-form expressions were derived for the
MMSE estimator of the MFCC vector for each frame1. The

1In fact, as will become clear from the present work, this estimator is also
the MMSE estimator for derived cepstral features, e.g., delta- and acceleration
features, although this desirable property was not noticed in [6].
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Gamma distribution assumption was made primarily to be able
to obtain a closed-form analytical expression for the MMSE
estimator, and it was shown that it performed better than most
other STFT based feature enhancement methods [6]. However,
a disadvantage - at least from a theoretical perspective - is that
the assumption is somewhat heuristic, and cannot be proved to
be consistent with the statistical assumptions made with respect
to the STFT coefficients. In [5] Yu et al. presented an STFT
based approach for feature enhancement that attempted to find
MMSE estimates of clean MFCC’s based on noisy MFCC’s.
Operating exclusively in the mel-frequency domain leads to
computational savings over noise reduction methods operating
in the STFT domain, because the number of mel-frequency
channels is typically an order of magnitude lower than the
number of STFT channels. However, the method relies on the
assumption that clean mel-spectral coefficients are statistically
independent from noisy mel-cepstral coefficients from different
mel-frequency channels. This assumption is invalid when
mel-filters overlap in frequency, which is usually the case. No
performance scores were given in terms of mean-square error
(MSE) estimation performance, but the method performed
well in ASR experiments. In [7] Indrebo et al. proposed a
method for MMSE estimation of MFCC’s, which also operates
entirely in the MFCC domain. The method assumed the noise
distortions to be additive and Gaussian in the MFCC-do-
main, which allowed the authors to derive an estimator in
closed-form. The assumption of additive and Gaussian noise in
the MFCC-domain, however, is only approximately consistent
with the standard assumption of the noise being additive in the
time-domain.
In this paper we focus on STFT based algorithms for MMSE

estimation of cepstral features in noisy environments. Specif-
ically, we constrain our attention to the class of algorithms,
which rely on the statistical model for speech and noise STFT
coefficients introduced by Ephraim and Malah in [1]. This class
includes a wealth of algorithms such as the short-time spectral
amplitude (STSA) - MMSE algorithm [1], the log-spectral am-
plitude (LSA) - MMSE algorithm [16], the STFT Wiener filter
[17], and the -order - MMSE spectral amplitude estimator [18]
to mention a few. In particular, in this framework, enhancement
is achieved by processing noisy STFT coefficients separately for
each frequency under the assumption that (detailed mathemat-
ical definitions are given below): i) target and noise STFT co-
efficients are uncorrelated, ii) STFT coefficients obey Gaussian
distributions, and iii) STFT coefficients are statistically inde-
pendent across time and frequency, given their respective spec-
tral variances (i.e., power spectral densities (PSDs)). These sta-
tistical assumptions have made the foundation for a large range
of successful speech enhancement algorithms, see, e.g., [19],
[20], and the references therein. Based on these thoroughly es-
tablished statistical assumptions, we propose an approach for
MMSE estimation of mel-cepstral features, including MFCC’s,
cepstral-mean subtractedMFCC’s (CMS-MFCC’s), ARMA-fil-
tered CMS-MFCC’s, velocity and acceleration coefficients. The
potential advantages of the proposed approach can be summa-
rized as follows:
• given the statistical framework, it provides theoretically
correct MMSE estimates of MFCC coefficients and de-
rived features in contrast to “plug-in” algorithms.

• it does not rely on any, potentially inconsistent, assump-
tions (for example, the Gamma pdf assumption made in
[6] is unnecessary).

• it is versatile in that it remains optimal if some of the oper-
ations leading to the derived cepstral features are skipped,
e.g., if the ARMA filtering stage is omitted. Furthermore, it
is straight-forward to find MMSE estimates of speech fea-
tures, where the logarithmic compression used to compute
traditional cepstral features [21] is replaced by physiologi-
cally more relevant compressive non-linearities, e.g., [12].
Therefore, the proposed approach could play an important
role in trying out other compressive non-linearities than the
ones currently known.

However, the proposed algorithm cannot be expressed in
closed-form, but involves numeric solution of a one-dimen-
sional integral. While the method is still practically useful,
existing closed-form algorithms, e.g., the MMSE algorithm
proposed in [6], are computationally cheaper.
The main goal of our study is to propose an algorithm, which

achieves theMMSE bound for cepstral feature estimates (within
the statistical framework outlined above), in the hope that the
resulting MSE improvement is reflected in an improvement in
ASR performance. If significant improvements can be found,
then focus could be directed towards development of computa-
tionally cheaper algorithms without sacrificing performance. If,
on the other hand, improvements are more modest, i.e., the per-
formance of existing algorithms is already close to what can be
achieved, then research should be directed towards other classes
of algorithms.
The paper is organized as follows. In Section II, we in-

troduce the signal model, basic assumptions, and notation.
Section III reviews the theoretical expressions for mel-fre-
quency speech features and presents a general expression for
the MMSE estimator of these features. Section IV presents an
algorithm for MMSE estimation of compressed mel-spectral
coefficients, which serves as a basis for all estimators proposed
in this paper. Section V describes implementation details,
while Section VI presents simulation results with the pro-
posed algorithms and other state-of-the-art algorithms. Finally,
Section VII concludes the work.

II. SIGNAL MODEL AND NOTATION

Let us consider the following additive noise signal model

where , , and denote the noisy observation, the
clean speech signal, and the additive noise signal, respectively,
and where is a discrete-time index.
A time-frequency domain signal representation is obtained by

dividing the input signals into successive, overlapping analysis
frames, applying an analysis window , and transforming
the time-domain frames to the frequency domain using a Dis-
crete Fourier Transform (DFT). The resulting STFT coefficients
for the noisy speech signal are given by

(1)
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where and denote the frequency bin index and the frame
index, respectively, is the frame shift in samples, and is
the DFT order. The STFT coefficients and
for the clean and noise signal, respectively, are defined in an
identical manner, so that we can write

We consider , , and complex-valued,
zero-mean random variables, and assume that speech

and noise STFT coefficients are uncor-
related with each other. Let ,

, and
denote the spectral variances of the clean, noise, and
noisy STFT coefficients, respectively, and observe that

. We make the stan-
dard assumptions that , , and hence

are Gaussian random variables, which are con-
ditionally independent across time and frequency, given
their respective spectral variances, e.g., [1], [22]. Fi-
nally, denote by and

the a priori and a posteriori
SNR, respectively [1], [23].

III. MMSE ESTIMATION OF CEPSTRAL FEATURES

In this section we derive a general expression for the MMSE
estimator of any of the MFCC’s, cepstral-mean subtracted
MFCC’s (CMS-MFCC’s), ARMA-filtered MFCC’s, velocities
and accelerations. To do so, we first review expressions for the
cepstral features in terms of clean STFT coefficients .
Similar expressions hold for the noisy STFT coefficients

.
The ’th mel spectral coefficient in the th frame is defined

as [9], [21]

(2)

where is the th coefficient of the th triangular
mel band pass filter; for later use, let denote the frequency
bin index set for which , i.e., frequency bins cor-
responding to the support of the th triangular mel-spectrum
bandpass filter. Log-mel spectral coefficients follow as

(3)

where

(4)

Alternatively, physiologically more relevant compressive non-
linearities may be used, e.g., a power non-linearity of the form
[12]

(5)

with . The th MFCC in the th frame, ,
is given by

(6)

where are coefficients of the Discrete Cosine Transform,
and is the number of MFCC’s. Then, CMS-MFCC’s are found

by subtracting from a given cepstral coefficient, the temporal
mean of that coefficient, that is

(7)

where is the number of cepstral coefficient in the temporal
average. ARMA-filtered CMS-MFCC’s are found as [24, Eq.
(12)]

(8)

Finally, velocity coefficients are defined as the slope
of a straight line fitted to successive ’s, leading to [9]

(9)

In a similar manner, acceleration coefficients
are found as the slope of a straight line, fitted to successive

values, i.e.,

(10)

We now present a general expression for the MMSE estimator
of any of these quantities. The key observation in the present
context is that MFCC’s, CMS-MFCC’s, ARMA-filtered CMS-
MFCC’s, velocities, and accelerations are all linear combina-
tions of compressed mel spectral coefficients . Note
that this still holds, if the order of some of the operations is
changed, e.g., if velocities are computed from MFCC’s and not
from ARMA-filtered CMS-MFCC’s. Let

denote any such linear combination. Furthermore, let
denote a vector whose entries are the set of noisy STFT co-
efficients that (under the statistical assumptions outlined in
Section II) carry information about the specific compressed
mel spectral coefficient , i.e.,

, where the bin index set was defined after Eq. (2).
Similarly, let denote a vector whose entries are the total set
of noisy STFT coefficients that carry information
about the total set of factors in the sum. For example,
for the th MFCC , vector consists of all noisy
STFT coefficients needed to compute . Finally, re-
call that the minimum mean-square error estimate of the
linear combination is identical to the conditional mean, e.g.,
[25], i.e., the ensemble average of conditioned on all noisy
observations carrying information about . Then, the MMSE
estimate may be written as

(11)
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where

(12)

denotes the MMSE estimate of .
Eq. (11) implies that in order to obtain MMSE estimates of

, , , , and ,
we simply need to find MMSE estimates of the com-
pressed mel-spectral coefficients, and then form the relevant
linear combinations.

IV. MMSE ESTIMATION OF COMPRESSED MEL SPECTRAL
COEFFICIENTS

By inserting Eq. (3) in Eq. (12), theMMSE estimate
of the compressed mel spectral coefficient is given by

(13)
Denote by a vector of all clean STFT coefficients, which
contribute to , that is .
Furthermore, let denote the vector proba-
bility density function (pdf) of the clean STFT coefficients in
vector conditioned on the noisy STFT coefficients in
vector . Then, Eq. (13) may be re-written as

(14)

for , where the integral is
over the elements in . Unfortunately, this integral is
complicated to evaluate analytically based on the statistical
assumptions made so far, for any of the considered non-lineari-
ties . Instead, we evaluate Eq. (14) numerically by drawing
realizations of the vector random variable
and approximating the integral in Eq. (14) by a sum. To this
end, observe that under our distributional assumptions, the pdf

is Gaussian, and is given by

(15)

because STFT coefficients are conditionally independent
across frequency, given their variances. Furthermore, the pdfs

are scalar, circular symmetric, com-
plex-valued, Gaussian, i.e.,

(16)

with known mean

and variance

So, a single realization of the vector random variable
may simply be created by drawing realizations

, where the superscript is a realization index, of
independent scalar, complex random variables according to

in Eq. (16) and stacking them in a vector.
Then, the realization of the corresponding compressed mel
spectral coefficient is given by

(17)

Assume that such independent realizations
are drawn. Then the MMSE estimate

of the compressed mel spectral coefficient is approximated as

(18)

Note that by the law of large numbers [26], this approxima-
tion can be made arbitrarily accurate by increasing ; the
variance of the estimate decreases exponentially with ,
since it is an average of independently drawn random variables

, e.g., [25]. Also note that this procedure facilitates any
compressive non-linearity, e.g., or
(Eqs. (4), (5)).

V. IMPLEMENTATION AND ALGORITHM OUTLINE

Analysis frames of length 200 samples (corresponding to
25 ms at a sample rate of 8 kHz) are Hamming windowed,
and zero-padded, before an point DFT is applied in
Eq. (1)2. The frame shift is samples (10 ms). The
weights in Eq. (2) implement ETSIs Aurora MFCC
standard [27], where the number of filter bank channels is

, the lowest frequency filter is centered at 125 Hz and
has a bandwidth of 125 Hz, while the highest frequency filter is
centered at 3657 Hz and has a bandwidth of 656 Hz.
An estimate of the noise spectral variance

is computed during a 100 ms noise-only signal
region preceding speech activity (using an ideal voice activity
detector (VAD)), and is assumed constant across the speech
sentence. The a priori SNR is estimated using the
decision-directed approach [1], implemented as

(19)

where is the MMSE estimate of , which is
given by [28]

(20)

Furthermore, , and corresponding
to 15 dB.

2Note that is then a 200-point Hamming window followed by 56 ze-
roes.
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The speech spectral variance is estimated via the a
priori SNR and the estimate of as

The spectral variance of the noisy signal is estimated as
. The Discrete Cosine

Transform coefficients in Eq. (6) are entries of a Type 2
(orthogonal) DCT matrix, and we retain cepstral coeffi-
cients. Finally, realizations are used for numerical
computation of the integral in Eq. (14) as a compromise be-
tween computational complexity and performance; increasing

beyond this value does not improve performance (as
defined in Section VI) noteworthy, see App.A.
The proposed algorithm, which we denote as GP-Draw (be-

cause it is based on drawing realizations of Gaussian posterior
densities), may be summarized as follows.
0) Compute estimate of noise spectral variance for

all and . If a noise tracking algorithm is used, this point
is merged with step 2) below.

For each frequency index , and for increasing
frame indices, ,
1) Compute a priori SNR . For the first frame (

), use . Otherwise, use
Eq. (19).

2) Estimate spectral variances , and .
3) For each noisy STFT coefficient , draw in-
dependent complex-Gaussian scalar realizations
according to , Eq. (15).

4) Compute realizations of compressed mel spectral
coefficients , Eq. (17), for ,
and .

5) Compute MMSE estimates of compressed mel
spectral coefficients by averaging across realiza-
tions, Eq. (18).

Finally,
6) Compute MMSE estimates of MFCC’s, CMS-MFCC’s,
ARMA-filtered CMS-MFCC’s, velocities, and acceler-
ations by forming the relevant linear combinations of

, i.e., replacing for in Eqs.
(6), (7), (8), (9), and (10).

VI. RESULTS

We compare the performance of the proposed MMSEMFCC
estimator with state-of-the-art methods from the literature, both
in terms of estimation accuracy, and in terms of performance in
automatic speech recognition experiments.
First, we consider an estimator–denoted here by EM84–based

on Ephraim-Malah’s original minimum mean-square error
short-time spectral amplitude (MMSE-STSA) algorithm [1].
This algorithm produces estimates of clean
short-time magnitude spectra . The corresponding
estimates of the compressed mel spectrum and MFCC’s are
obtained by replacing by in Eq. (2)
and subsequently applying Eqs. (3) and (6)–(10). Hence, EM84
is a “plug-in” algorithm. Secondly, we include the method
proposed by Stark and Paliwal [6], which we refer to here
as SP. We excluded the speech presence uncertainty (SPU)
framework proposed there. Finally, to include a more recent
spectral estimation method, we consider the method in [29]
(with parameters , which estimates the clean

short-term spectral amplitudes based on a super-Gaussian prior,
rather than the Gaussian prior underlying the statistical frame-
work of [1]. As with EM84, the resulting spectral estimates
are plugged into the expressions for the cepstral features, and
as with EM84, this method is sub-optimal from a theoretical
perspective. We refer to this super-Gaussian method as SG.
All algorithms are implemented using the decision-directed

approach for a priori SNR estimation given by Eqs. (19), (20).

A. Performance - Estimation Accuracy in Terms of MSE

Noisy speech signals are generated artificially by adding
noise signals to clean speech signals. The speech material
consists of 250 speech sentences from the TIMIT data base
[30] spoken by 13 female and 12 male speakers (10 sentences
each). The noise signals encompass i) stationary, speech shaped
noise (ssn), generated by passing white Gaussian noise through
an all-pole filter fitted to the long-term spectrum of the speech
signal in question, ii) car noise (car) recorded in a car cabin at
70 km/h, and iii) speech babble (bbl) from the Noisex data base
[31]. All signals are downsampled to a rate of 8 kHz. The noise
signal is scaled to obtain a given desired input signal-to-noise
ratio (SNR) and added to the speech signal. Then, the noisy
signal is pre-emphasized using a first-order IIR filter with
coefficient .
Reporting estimation performance for MFCC’s and all

derivatives is not practical. Instead, we concentrate on the
mean-square estimation error for MFCCs only. This choice
may be motivated by the fact that all derivative features are
temporal linear combinations of MFCC’s, and with MFCC’s,
which are temporally statistically independent, the MSE of
any derivative feature is simply a linear combination of the
MFCC-MSE. Hence, we measure the estimation MSE for each
MFCC index via the following normalized MSE,

(21)

where denotes the total number of frames, and is
the estimated MFCC. In order to condense the performance of
a given estimator into a single number, we use the normalized
mean square error defined above, averaged across cepstral
dimensions,

(22)

Fig. 1 shows performance in terms of for
speech-shaped noise, car noise, and babble noise, respectively,
for an input SNR of 10 dB. Generally speaking, SP and the pro-
posed method, GP-Draw, show almost identical performance,
EM84 performs slightly worse, while SG performs better for
lower cepstral indices but worse for higher cepstral indices. For
speech-shaped and car noise, all methods lead to improvements
for all cepstral indices. For babble noise, performance is gen-
erally much worse. This can be attributed to the fact that this
noise source is somewhat non-stationary, which is in contradic-
tion with the algorithm implementations used here. Straighfor-
ward extension of the methods with adaptive noise power spec-
tral density tracking methods, e.g., [32], [33], is expected to im-
prove performance for all methods in this situation.
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Fig. 1. Normalized mean-square estimation errors for each MFCC for
input SNR of 10 dB. (a) speech-shaped noise. (b) car noise. (c) babble noise.

Fig. 2 shows estimation performance in terms of as a func-
tion of input SNR for the three noise sources. This figure sup-
ports the conclusion that the proposedmethod and SPmanage to

improve MFCC quality across input SNR for all noise sources;
still, these two methods deliver almost identical performance.
The EM84method performs slightly worse; it leads to improve-
ments for speech-shaped and car noise, but degrades perfor-
mance for low input SNRs in babble noise. Finally, SG performs
worse in terms of MSE than the other methods.

B. Performance - Automatic Speech Recognition

In this section we use the MFCC enhancement algorithms
from the previous section as feature enhancement algorithms
for an automatic speech recognition system.
Speech Recognition Database and Experimental Setups:

Experiments were conducted with the Aurora 2 database [34],
which is the TI connected digits database artificially distorted
by adding noise and using a simulated channel distortion. The
sampling rate is 8 kHz. Whole word models were created
for all digits using the HTK recognizer [35] and trained on
clean speech data. For testing, all three test sets were used,
each including clean speech and noisy speech corrupted by
different types of noise with SNR values ranging from 0 to
20 dB with 5 dB intervals. The four noise types in Test Set A
are subway, babble, car, and exhibition while the four types of
noise in Test Set B are restaurant, station, airport, and street.
Test Set C includes two noise types, subway and street, in
addition to convolutional noise. Each noise type and condi-
tion has 1001 test utterances, leading to 60060 utterances in
total for testing. The speech features are 12 ARMA-filtered
CMS-MFCC coefficients, logarithmic energy as well as their
corresponding velocity and acceleration components. To com-
pute the ARMA-filtering in Eq. (8), we used [24, Eq. (12)]

, , , , and ,
and to compute velocity and acceleration coefficients, we used

in Eqs. (9) and (10).
Table I summarizes the average word accuracy (WA) for Test

Set A, obtained with the studied methods. All feature enhance-
ment methods succeed in improving average performance over
the noisy condition. Performance is almost identical for SP,
EM84, and GP-Draw, while SG performs better. According to
[6], [36] a 1.95% absolute difference in WA for the Aurora2
database is required to meet the statistical significance test (

). Table I shows that SGmeets this requirement (for the Set
average) in comparison to SP and GP-Draw.
Table II shows the average WA results for Test Set A, ob-

tained with the studied methods when a power non-linearity is
used instead of the traditional log non-linearity. Using a power
non-linearity increases performance quite significantly: the ab-
solute improvements (average across the test set) for EM84,
GP-Draw, and SG are 5.41%, 5.99%, and 3.60%, respectively,
and the three methods show essentially identical performance.
Performance for the noisy, unprocessed signal with logarithmic
non-linearity (a WA of 69.29% as shown in Table I) is improved
by more than 12%. Note that all experimental results reported
in this paper are based on ARMA-filtered CMS-MFCC. As a
reference, the basic MFCC with logarithmic non-linearity and
without applying ARMA-filter and CMS gives a WA of 60.92%
averaged across SNRs of 0 to 20 dB and across all noise types
in Test Set A.
Tables III and IV show the results for Test Set B, obtained

with the studied methods when the logarithmic non-linearity
and power non-linearity are used, respectively. The differences



192 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 1, JANUARY 2015

Fig. 2. Normalized mean-square estimation errors averaged across MFCC di-
mensions, as a function of input SNR. (a) speech-shaped noise. (b) car noise.
(c) babble noise.

between the enhancement methods are not significant, but the
improvements over the noisy, unprocessed signal are significant

TABLE I
AURORA-2A WORD ACCURACY [%]. FEATURES ARE ARMA-FILTERED
CMS-MFCC’S COMPUTED WITH LOGARITHMIC NON-LINEARITY,

I.E., (EQ. (4)).

for the log non-linearity. The absolute improvements by using a
power non-linearity over a logarithmic non-linearity for EM84,
andGP-Draw, are 1.48% and 2.09%, respectively, while perfor-
mance for SG decreases by 0.27%. The absolute improvements
by using a power non-linearity over a logarithmic non-linearity
for EM84 and GP-Draw are 1.92% and 2.72%, respectively,
with the latter being significant. The relatively smaller improve-
ment as compared with Test Set A is due to the low performance
on Restaurant Noise in Test Set B. The differences for clean
speech for all methods are very minor.
Table V and VI show the results for Test Set C, obtained

with the studiedmethods when a logarithmic and power non-lin-
earity are used, respectively. With the log non-linearity, SG per-
forms significantly better than SP and GP-Draw, while with
the power non-linearity, the difference between the enhance-
ment methods is insignificant. The improvement over the noisy,
unprocessed signal is significant. The absolute improvements
by using a power non-linearity over a logarithmic non-linearity
for EM84, GP-Draw, and SG are 6.94%, 7.01%, and 6.07% re-
spectively, with all being significant. The differences for clean
speech for all methods are very minor.

C. Discussion

Considering MFCC estimation performance in terms of
MSE, there are only small differences between the studied
methods: SP and GP-Draw show essentially identical per-
formance, EM84 is slightly worse, and SG generally shows
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TABLE II
AURORA-2A WORD ACCURACY [%]. FEATURES ARE ARMA-FILTERED

CMS-MFCC’S COMPUTED WITH POWER NON-LINEARITY, I.E.,
(EQ. (5)). SP ASSUMES A LOGARITHMIC NON-LINEARITY,

SO NO SP SCORE CAN BE COMPUTED.

poorest MMSE performance. This rather small difference is
somewhat surprising: the proposed method, GP-Draw, is an
MMSE estimator based on a minimum number of assumptions,
which are well-established in the area of single-channel speech
enhancement. For that reason, we expect the method performs
well. The SP method relies on an additional assumption (the
Gamma pdf assumption, see above), and if this assumption
is valid, SP is MMSE optimal as well; it is not completely
surprising that this estimator works well (similar results were
reported in [6]). It is, however, more surprising that EM84
performs almost as well in terms of MSE; EM84 is a relatively
simple ad hoc method, which cannot claim optimality in any
sense. It may be concluded that estimation accuracy in terms
of MSE is not very sensitive to accurate modeling of the
conditional log-mel spectral coefficients (a property offered
by SP and GP-Draw). Finally, the relatively poor MMSE
performance by SG emphasizes that good MMSE performance
in the linear amplitude domain [29] does not necessarily lead
to good MMSE performance in the MFCC domain.
Turning to ASR performance, feature enhancement gen-

erally improves performance. Again, there are only small
performance differences between SP, GP-Draw and EM84,
and the differences are not statistically significant ( ).
Best performance is achieved using a power non-linearity:
here all methods, including SG shows similar average ASR
performance.

TABLE III
AURORA-2B WORD ACCURACY [%]. FEATURES ARE ARMA-FILTERED
CMS-MFCC’S COMPUTED WITH LOGARITHMIC NON-LINEARITY,

I.E., (EQ. (4)).

As for MSE performance, the good ASR performance for
EM84 is somewhat unexpected. One possible explanation is that
the MFCCMSE performance measure does not completely cor-
relate with ASR performance, a hypothesis, which is supported
by the MMSE and ASR performance of the SG estimator: in
other words, optimality in terms of MFCC MSE may not imply
optimality in terms of ASR performance.
It is interesting to note that SP and GP-Draw perform al-

most identically both in terms of MSE and ASR performance.
This implies that the Gamma assumption made in [6] is not
only better than alternatives such as Gaussian, Log-Normal and
Chi-Square assumptions [6], but is indeed close to optimal. In
situations where a logarithmic non-linearity is used for com-
puting cepstral features, SP is therefore an equally good and
computationally cheaper alternative to GP-Draw.
Finally, it is clear that the ASR performance of the algo-

rithms under study is significantly worse than the performance
of state-of-the-art ASR systems, such as the ETSI Advanced
Front-End (AFE), which achieves average WAs for Sets A, B,
C of 87.74%, 87.19%, and 85.44%, respectively [37]. The dif-
ference may partly be explained by the fact that the ETSI AFE
system is optimized for ASR performance, whereas the algo-
rithms under study aim at MMSE optimality (in the hope that
this leads to improved ASR performance). Another possible ex-
planation is that the ETSI AFE exploits across-frequency infor-
mation, which the algorithms under study in this paper do not.
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TABLE IV
AURORA-2B WORD ACCURACY [%]. FEATURES ARE ARMA-FILTERED

CMS-MFCC’S COMPUTED WITH POWER NON-LINEARITY, I.E.,
(EQ. (5)). SP ASSUMES A LOGARITHMIC NON-LINEARITY,

SO NO SP SCORE CAN BE COMPUTED.

TABLE V
AURORA-2C WORD ACCURACY [%]. SIGNALS ARE MIRS-FILTERED.
FEATURES ARE ARMA-FILTERED CMS-MFCC’S COMPUTED WITH
LOGARITHMIC NON-LINEARITY, I.E., (EQ. (4)).

VII. CONCLUSION

We presented a method for MMSE MFCC feature estima-
tion, which is based on a minimum number of well-proven as-
sumptions, and, which is theoretically consistent. Specifically,

TABLE VI
AURORA-2C WORD ACCURACY [%]. SIGNALS ARE MIRS FILTERED.

FEATURES ARE ARMA-FILTERED CMS-MFCC’S COMPUTED WITH POWER
NON-LINEARITY, I.E., (EQ. (5)). SP ASSUMES A
LOGARITHMIC NON-LINEARITY, SO NO SP SCORE CAN BE COMPUTED.

assuming that STFT coefficients are processed independently
for each frequency, and that i) target and noise STFT coeffi-
cients are uncorrelated, ii) STFT coefficients obey Gaussian dis-
tributions, and iii) STFT coefficients are statistically indepen-
dent across time and frequency, given their respective PSDs,
the proposed method provides MMSE estimates of MFCC’s,
cepstral mean-subtractedMFCC’s (CMS-MFCC’s), ARMA-fil-
tered CMS-MFCC’s, velocity and acceleration coefficients. Fur-
thermore, the proposedmethod is operational for other compres-
sive non-linearities than the traditionally used for MFCC
computation, e.g., a power non-linearity.
In simulation experiments with speech signals contaminated

by various additive noise sources, the proposed method suc-
ceeds in reducing MFCC MSE, compared to the original noisy
MFCC’s. In comparison with other methods based on short-
term spectral coefficient estimation, it shows lower MSE than
a method based on the Ephraim-Malah short-time spectral am-
plitude MMSE estimator [1], and a more recent method based
on a super-Gaussian short-time spectral amplitude prior [29].
Furthermore, the proposed method was compared to the method
(SP) by Stark and Paliwal [6], which relies on the additional as-
sumption that the log mel-frequency energy of the clean signal
conditioned on the noisy observation obeys a Gamma distri-
bution. This method leads to essentially identical performance
in terms of estimation MSE as the proposed method. The ad-
vantage of the proposed method in this situation is that it re-
mains optimal for other non-linearities than the , which
SP is restricted to, although at the cost of higher computational
complexity.
In ASR experiments, all feature enhancement methods suc-

ceed in improving performance over the unprocessed baseline.
Somewhat surprisingly, only small performance differences are
observed between the methods under study. In fact, the EM84
method, which is theoretically sub-optimal, performs slightly
better than SP and GP-Draw, which are theoretically easier to
justify (although this performance difference is not statistically
significant).
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The main goal of our study was to propose an STFT based
algorithm for cepstral feature estimation, which is optimal in
MMSE sense (given the well-proven statistical framework out-
lined above), in the hope that the resulting MSE improvement
is reflected in an ASR improvement. The fact that MSE perfor-
mance of existing schemes is quite close to that of the proposed
scheme suggests that existing schemes within this class of algo-
rithms are already almost optimal. Further improvements, how-
ever, may be achieved by a) refining the existing assumptions
so that the signal model reflects the observed signals better, or
b) extending the set of assumptions to increase the amount of a
priori knowledge built into the algorithm.
Considering first a refinement of the existing assumptions, it

is well-known that STFT coefficient estimation in a speech en-
hancement context may be improved by replacing the Gaussian
STFT assumption with a super-Gaussian assumption [38]. The
estimator SG included in the study belongs to this class, al-
though here it was used as a “plug-in” mfcc estimator, and can
therefore not claimMMSE optimality. Furthermore, since spec-
tral amplitude estimators based on super-Gaussian priors lead
to relatively modest improvements in terms of speech enhance-
ment performance [29], [38], it may be expected that the im-
provements in terms of MFCC estimation performance would
remain modest. Finally, to simplify the interpretation of our re-
sults, the methods considered in this paper relied on a stationary
noise assumption. For non-stationary noise sources, it is ex-
pected that performance can be improved via a straightforward
introduction of methods for noise power spectral tracking, e.g.,
[32], [33], [39].
Secondly, and perhaps more importantly, more a priori

knowledge can be introduced in the enhancement process. For
example, it may be noted that the class of STFT estimation
based methods considered in this paper model STFT coef-
ficients as conditionally independent, given speech spectral
variances, which are estimated independently for each fre-
quency band. Specifically, all methods considered here estimate
the speech spectral variances using an unbiased decision-di-
rected approach, (Eqs. (19)–(20)), applied independently to
each frequency subband. In this way, however, the spectro-tem-
poral structure of speech (and noise) spectral variances are
not fully exploited, and significant performance improvements
may be found by applying more advanced estimation methods,
which to a larger extent make use of prior speech and noise
signal knowledge. Examples of such methods include methods
that exploit speech power spectral density structures across fre-
quency, e.g., via spectral codebooks [40], via Gaussian Mixture
Models (GMMs), e.g., [41], or via cepstrum smoothing tech-
niques, e.g., [42], or methods, which exploit spectro-temporal
speech (and noise) psd structures, e.g., [43]–[45], see also [46,
Chap. 2] and the references therein.
Finally, in this paper we have focused on MMSE estimators

of MFCC features. The MMSE criterion was partly chosen be-
cause of mathematical tractability, and partly because of lack
of obvious alternatives. Our results, however, indicate that opti-
mality in terms ofMFCCMMSE does not necessarily imply op-
timal ASR performance. Mathematically tractable alternatives
to the MMSE criterion for ASR performance prediction are im-
portant topics for future research.

APPENDIX
APPENDIX PERFORMANCE VERSUS COMPLEXITY

It is difficult to determine an appropriate value of ana-
lytically. Instead we determine it via simulation experiments by
computing estimation performance in terms of the mean-square
MFCC estimation error as a function of . For convenience,
let us repeat the definition from the main text of the normal-
ized MSE for the thMFCC, when theMMSE-MFCC estimate,

, is computed using a particular ,

(21)

We evaluated Eq. (21) for noisy speech constructed by adding
speech shaped Gaussian noise to 100 arbitrarily selected speech
signals from the TIMIT data base [30], at an SNR of 0 dB. Each
speech signal was repeated with 75 independently drawn noise
realizations.
Since we aremainly interested in the convergence behavior of

, we plot in Fig. 3 a normalized version of ,

(23)

with MFCC’s. Convergence appears to be reached
with , although the performance loss in using lower
values of appears small. It is interesting to note that
the curves in Fig. 3 arrange themselves from top to bottom
as . This can be explained if
we consider the impact on the estimate of
increasing : recall that is constructed
as a linear combination of compressed mel-spectral esti-
mates . For low values of , the estimate

has a relatively large variance; it can be con-
sidered subject to ‘jitter’ or noise. It appears reasonable that
this jitter does not affect large-scale features of the compressed
mel-spectrum; for example, the spectral envelope may be
largely unchanged due to the jitter. This is in line with Fig. 3,
which shows that low-index MFCC’s, which primarily encode
large-scale spectral features, are insensitive to . Finer
spectral details, which are encoded in higher-index MFCC’s,
however, may be more sensitive to the jitter, which is sup-
ported by Fig. 3. For larger values of , the jitter reduces,
leading to converging curves in Fig. (3) (as mentioned earlier,
it vanishes for ).
In order to quantify the computational complexity of the pro-

posed algorithm we define the relative execution time

where and denote the algorithm ex-
ecution time for the same noisy speech material for GP-Draw
and SP, respectively. Fig. 4 plots vs. , and shows
a relative computation time for GP-Draw re. SP in the range
of 3.5-6 for . Considering the complexity
of a entire ASR system, note that the execution time for the
ASR back-end (which is presumably the same forGP-Draw and
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Fig. 3. Normalized MFCC mean-squared estimation error as a
function of for speech shaped noise and dB, averaged across
75 noise realizations. The performance curves arrange themselves from top to
bottom with increasing cepstral indices , .

Fig. 4. Relative computation time of GP-Draw re. SP as a function of .

SP) must be added to and , respectively.
For this reason, Fig. 4 represents the worst case relative com-
putational time. For large-vocabulary ASR back-ends, the rela-
tive computational complexity could be significantly lower than
shown in the figure. In our Matlab implementation of SP, exe-
cution time is approximately 1/20 times real-time.
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