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Abstract AMORE is a hybrid recommendation system that provides movie recommenda-
tion functionality to video-on-demand subscribers of a major triple-play service provider in
Greece. Without any user relevance feedback for movies available, all recommendations are
solely based on the users’ viewing history. To overcome such limitations as well as the extra
problem of user histories that are usually the merger of the preferences of all persons in each
household, we have performed extensive experiments with open-source recommendation
software such as Apache Mahout and Lens-Kit, as well as with our own implementa-
tions of several user-based, item-based, and content-based recommendation algorithms. Our
results indicate that our own custommulti-threaded implementation of collaborative filtering
combined with a custom content-based algorithm outperforms current state-of-the-art imple-
mentations of similar algorithms both in solution quality and in response time by margins
exceeding 100% in terms of recall quality and 6300% in terms of running time. The hybrid
nature of the ensemble allows the system to performwell and to overcome inherent limitations
of collaborative filtering, such as various cold-start problems. AMORE has been deployed
in a production environment where it has contributed to an increase in the provider’s rental
profits, while at the same time offers customer retention support.
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1 Introduction

Recommendation systems have gained widespread popularity in recent years and are consid-
ered to have reached sufficient maturity as a technology [13,20]. The research performed
in this particular field has started more than 20years ago ([10,22] etc.), and it focuses
on examining different ways that recommendation systems can better identify user inter-
ests and preferences based on the knowledge of the users’ behavior as well as on the
characteristics of the items that they have consumed. In order to achieve this, several
approaches have been established; nearest-neighbor-based approaches were among the first
to be explored with good results. Both user-based and item-based neighborhood explo-
ration strategies met huge early success (for the first, the name “collaborative filtering”
was coined early in the 1990s). User-based recommender algorithms attempt to identify
user groups with common characteristics in order to promote to specific user content items
that they have not yet consumed, but other similar users within the group did (or more
generally, expressed an interest for). On the other hand, item-based recommender algo-
rithms were first explored because of scalability concerns: Establishing user neighborhoods
can become very expensive when the number of users increases in the order of several
millions, whereas the number of distinct items a particular e-commerce site is expected
to promote and sell is not usually expected to increase beyond a few tens of thousands
(even though Amazon.com and a few other e-commerce giants carry hundreds of millions
of items!). Item-based recommenders then usually establish for each item a “neighborhood”
of similar items; then, when the system is asked to recommend to a user some items, it
computes the most similar items to the user’s entire history of purchases that have not
already been purchased by the user and recommends them to the user. Often, similarity
between two items is established by looking at how often both the two items appear in
the purchase history of the users (i.e., items are represented as vectors in a very high-
dimensional user space, and the cosine similarity formula or some other function inspired
from information retrieval vector-space models is used to compute the similarity between
them).

Another approach to recommendation systems is the so-called content-based approach
[19]: The system recommends an item to a user based on the degree to which the item’s
content (usually in the form of meta-data, e.g., in the context of recommending movies,
the film’s genres, the film’s crew including actors, directors, and producers.) matches the
user’s purchase history. One major advantage of content-based approaches is that a new item
that has not been purchased by anyone yet can still be recommended to those users whose
purchase history matches the item’s content meta-data, thus solving one type of cold-start
problems.

Recommending content to video-on-demand service subscribers is a challenging prob-
lem that is often made much more so in the absence of any user relevance judgments
and even worse when the same user account is used by multiple persons in the same
household, thus resulting in a purchase/viewing history that is the union of the trans-
actions made by different people. To address the first issue, it is some times, but
not always, possible to use the average session length of a particular video by a
user to infer indirectly the degree of interest of the user for the particular item [5].
On the other hand, [25] detected a low but significant inverse correlation between
the percentage of a movie watched by users and its popularity. We discuss several
experiments we have conducted to address both issues in the later sections in this
paper.
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1.1 Related work

The literature in the field of recommender systems is so vast that the field has its own
conference (ACM Conference on Recommender Systems). Therefore, in this section, we
only mention those few papers that have either exerted the most influence in our own work,
or have otherwise have found them to have a lot in common with our work.

A recurring problem in many production settings of recommender systems is the fact that
popular items usually appear on top of recommendation result lists placing less popular items
(which might have a higher degree of relevance to the interests of a user) at lower ranks. This
behavior is especially evident in the recommendation functionality of YouTube [3], as well
as general-purpose search engines that may promote popular pages of less relevance to the
expense of a relevant, but less popular, page [4]. User-based and item-based collaborative
filtering approaches attempt to minimize this effect by using special formulae that promote
less popular items when computing the user or item neighborhoods (see [14]).

Being able to evaluate the performance of recommenders is also a very demanding task. As
the authors in Herlocker et al. [11] suggest, different recommenders perform better or worse
based on the different datasets used or differently structured datasets. Shani and Gunawar-
dana [21] present a property-directed evaluation of recommendation systems attempting to
explain how recommenders can be ranked with respect to these properties (diversity of rec-
ommendations, scalability, robustness etc). In their work, they rank recommenders based on
specific properties under the assumption that an improved handling of the property at focus
will improve the overall user experience.

Li et al. [16] introduce amethod that uses collaborative filtering approaches in e-commerce
based on both users and items alike. They also show that collaborative filtering based on users
is not successfully adaptive to datasets of users with different interests. Collaborative filtering
algorithms have already been used in different implementations of movie recommendation
systems: [9] present FilmTrust a system that examines a way to generate movie recommen-
dations by combining information such as a user’s Semantic Web social network along with
trust knowledge about the user’s peers in the network.

In Christou et al. [5], the authors present a system that uses a content-based recommen-
dation approach (without using any collaborative filtering algorithms) in order to address
the problem of finding interesting TV programs for users without requiring previous explicit
profile setup, but by applying continuous profile adaptation via classifier ensembles trained
on sliding time windows to avoid topic drift. Similarly, Pazzani et al. [19] focus on content-
based recommenders and review different classification algorithms based on the idea that
certain algorithms perform better when having specific data representation. The algorithms
are used to build models for specific users based on both explicit information submitted by
users and by relevance judgments submitted by them.

Mild et al. [18] claim that the number of users available affects the choice of the category of
recommenders that should be used. Also, they present their findings showing that for a large
dataset, linear regression with simple model selection provides improved results compared
to collaborative filtering algorithms.

Finally, Li et al. [17] present a novel one-class collaborative filtering recommender system
that utilizes rich user information other than user ratings which they assume to be unavailable
and show that such rich user information can significantly enhance recommendation accuracy.
Their basic hypothesis is a perfect fit for our case aswell, where our dataset includes no ratings
at all; unfortunately, however, in our case,we do not have any other historical data (e.g., search
queries, or simple demographic information) about our users either.

123



674 I. T. Christou et al.

1.2 Our contribution

1.2.1 Addressing real-world complications

In this work, we address the issues mentioned above (multiple users associated with a single
account, no user relevance judgments of seen items, cold-start issues) as well as issues of
robustness and efficiency. Other issues that a real-world recommender system has to deal
with include the continuously changing database of available content to subscribers: The
content a triple-play service provider makes available to their subscribers is based on various
limited-time deals they make with content producers. In our case, the traffic of content items
for a particular time period is shown in Fig. 1 that reveals how the available content for the
subscribers to view is in constant flux.

This fact makes the recommendation task much more difficult because items that a user
would appreciate may not be available for viewing. In fact, the system has to also post-
filter various other types of recommendations (such as “adult” movies) that might have
otherwise been recommended by the system, and it also has to maintain a strong variety in
its recommendations as a function of time, so that the user does not constantly see the same
recommendations for more than 2weeks in a row.

Items Traffic

-500

-400

-300

-200

-100

0

100

200

300

400

500

1/
9/

20
11

1/
12

/2
01

1

1/
3/

20
12

1/
6/

20
12

1/
9/

20
12

1/
12

/2
01

2

1/
3/

20
13

1/
6/

20
13

1/
9/

20
13

1/
12

/2
01

3

1/
3/

20
14

1/
6/

20
14

1/
9/

20
14

1/
12

/2
01

4

1/
3/

20
15

1/
6/

20
15

Date

#I
te

m
s 

 (I
n/

O
ut

)

Items Traffic

Currently Available

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1/
9/

20
11

1/
11

/2
01

1

1/
1/

20
12

1/
3/

20
12

1/
5/

20
12

1/
7/

20
12

1/
9/

20
12

1/
11

/2
01

2

1/
1/

20
13

1/
3/

20
13

1/
5/

20
13

1/
7/

20
13

1/
9/

20
13

1/
11

/2
01

3

1/
1/

20
14

1/
3/

20
14

1/
5/

20
14

1/
7/

20
14

1/
9/

20
14

1/
11

/2
01

4

1/
1/

20
15

1/
3/

20
15

1/
5/

20
15

1/
7/

20
15

Date

#A
va

ila
bl

e 
Ite

m
s

Currently Available

Fig. 1 a Fluctuation of available content by date captured on April 2013: positive bars indicate the number
of content items made available since that day, negative bars indicate the number of content items expired that
day. b Total item availability on April 2013. This chart is derived directly from the data in a
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Evenmore importantly, the items available for viewing are not offered at the same constant
price: Items that recently played in theaters are usually offered at a premiumprice, while older
items are usually offered either for free or for a very small price. In our case, there are nine
distinct price levels for content items, in the interval [e0, e7.99]. Pricing of course plays a
major role in the viewing decisions of subscribers, and in our case, the vast majority of items
viewed belongs to the “free items” category, showing that demand for items is most of the
time, for most of the users, very elastic (as related evidence, the histories of many users often
include the same, usually free, item purchased multiple times!). And to further complicate
matters, a business deal with a pizza restaurant chain dictates that anyone purchasing a movie
at a nonzero price is entitled to a 50% discount for pizza delivery at their house from that
particular pizza chain for the duration of the movie; this fact has led many people to purchase
a movie for the cheapest possible price (which is e0.01) without being actually interested in
the item, simply for the 50% discount in pizza offered by the company. Unfortunately, such
offers add significant further noise into the purchase histories of the users based on which the
recommender engine has to provide high-quality recommendations to the users. On top of
all that, then, as an extra marketing requirement, the system has to maintain at least a certain
percentage of non-free items in its top 10 recommendations.

Finally, the recommendation engine needs to be able to instantly respond to recommen-
dation requests at any given point in time and at the same time be able to renew user
recommendations as frequently as possible. The aforementioned requirement becomes even
more difficult to tackle with, when considering the fact that our system was meant to be
deployed in a production environment with limited hardware resources.

Our contribution involves the design and implementation of a hybrid movie recommen-
dation system that address all aforementioned issues. We have designed, implemented, and
successfully deployed live in production, a system that uses an ensemble of user-, item-,
and content-based recommenders. Specifically, the ensemble consists of a k-NN-user-based
collaborative filtering algorithm, a k-NN-item-based recommender as well as a third, custom
content-based recommender; all algorithms are multi-threaded and take full advantage of the
many cores available in all server hardware today. The hybrid configuration of the ensem-
ble allows the system to be able to use content-based information in terms of content item
metadata, as well as user- and item-based collaborative filtering techniques which combined
together, boost the overall system performance.

At a second level, in order to address the issue of having different users bound to a
specific account and in order to be able to offer recommendations with a higher probability
of being interest to the specificuser, that is, currently requesting recommendations,weprovide
special features that allow recommendations to be generated taking into consideration only
the watching history of user accounts during specific time windows. By doing so, we are
narrowing down the recommendation results based on a specific watching behavior, in terms
of watching hours within a day for different categories of users.

Finally, in order for the system to be able to instantly reply to movie recommendation
requests and at the same time renew the user recommendations as frequently as possible, we
have chosen an architectural design that contains two schemas following the exact same data
model. Our architecture allows the system to serve recommendation requests by computing
on-the-fly or retrieving cached recommendations from one schema, while at the same time
the system updates user histories, item catalogs, and the cached recommendations according
to the latest user watching histories on the auxiliary schema. When the caching process com-
pletes, the system switches the data source reference from the main schema to the auxiliary
in order to continue serving recommendation requests from the schema containing the most
recent user recommendations and, at the same time, renews the cached recommendations
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676 I. T. Christou et al.

stored in the schema containing the most outdated recommendations. This process allows
the system to have updated recommendations on an hourly basis by using limited hardware
resources in an extremely cost-effective way.

2 System architecture

The AMORE system is designed as a SOA (service-oriented architecture) in such a way so as
to be as independent as possible from all other, external components that are part of the movie
rental platform. From the triple-play service provider’s point of view, AMORE is treated as a
black box; it receives recommendation web service requests and provides responses, without
exposing any implementation details. Similarly, the recommendation system retrieves via
exposed services only the minimum amount of user and content item information that is
deemed necessary for the recommendation process.

The AMORE system has been designed in such a way that it performs a pre-caching of
all latest recommendation results generated for all active users in order to speed up system
responsiveness to the client invocations. This database-caching of results is implemented in
a batch job (called AMORE batch job) that performs a number of tasks for the “off-line”
updating and caching of the recommendation results. To facilitate the uninterrupted running of
both—theweb service and the batch job in parallel—the systemuses two databases (schemas)
that we will refer to as the original and the alternative that follow the exact same data model.
Having two schemas allows our system to serve web service requests by retrieving cached
results from one schema (for instance, the original) while the batch job uses the second
schema (in this case, the alternative) to store the updated results.

As a business rule, the system treats the “new user” cold-start problem by returning the
top-n recommendations for all users, computed by lexicographically ordering the vectors
associated with each item that have as their i-th component (i = 1, 2, . . . n) the number of
times the itemappeared in the i-th position in the top-n recommendations list for someuser.As
a second business rule, to add diversity to the recommendations made to the subscribers and
to make them more interesting to them, a post-processing mechanism has been implemented
that gradually discounts the value of a recommended item in the list of recommendations
to a user for every time the user sees the recommendation but does not decide to proceed
to a purchase, thus causing recommendations that linger on the user’s screen for too long
eventually “fall off the charts” (see [15] for a detailed evaluation of methods for solving
exactly this kind of temporal diversity issue in recommender systems; see also [12] for a
thorough review of different approaches to the related problem of maximizing diversity to
item recommendations to users; [26] formulate an optimization problem for maximizing
diversity in recommendation lists subject to maintaining high relevance of the recommended
items).

Before the batch job instance completes its operation, having populated the database
with the newly generated recommendations, the job calls a special web service method that
instructs the AMORE web service to switch the active data source from the current schema
to the alternative; after doing so, the web service returns cached recommendation results by
retrieving data from the schema that contains the most updated, recent results. Similarly,
the AMORE job updates its data source reference in order to perform the next batch run
using the schema containing the most outdated data. In order to make sure that the data
retrieved every time from persistence are consistent with the currently active data source, we
have implemented a mechanism that ensures and protects the system resources from “dirty”
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reads/writes. This mechanism is based on a fast reentrant global read/write-lock with the
following properties:

• A thread owning the write-lock may request (and gets) the same lock in read- or write-
mode any number of times, but must call the corresponding release method for every
time it has called the request method in order for the locks to be eventually released

• A thread owning a read-lock may request an upgrade to the write-lock, and the method
will grant the new type lock, unless at the time of request is at least one other thread
having the read-lock, in which case there is a danger of deadlock; in such a situation, a
checked exception is thrown

• Threads executing a request for a read-lock will yield the first time if there exists a thread
waiting for the write-lock so as to avoid any possible live-lock issues

Given this global lock, we implement a simple pattern in all related methods for creating,
maintaining, and/or updating the in-memory caches: Whenever a method needs to access the
in-memory caches, it must first obtain the global read-lock, whereas methods that need to
update the in-memory caches must first obtain the global write-lock. Upon start-up of the
AMORE web service, the first thread started, spawns a new thread that obtains the global
write-lock and starts loading the data from the database into the in-memory caches, while the
first thread waits for the new thread to complete (calling the thread’s join() method). Once
the new thread has loaded the latest snapshot of the database, it releases the write-lock and
finishes, returning control to the first thread to continue its operation. Coordination between
the AMORE batch job and the AMORE web service (two distinct processes residing in
distinct address spaces) is obtained as follows: When the AMORE batch job is about to
complete, as a last step, it calls the special AMORE web service method mentioned above,
which in turn first obtains the global write-lock of the system, then switches the db pointer to
the current active db schema, then refreshes all in-memory caches of the system, and finally,
releases the global write-lock, allowing pending recommendation requests (waiting to obtain
the global read-lock) to proceed using the most updated data.

Figure 2 provides a visual representation of the overall system architecture, as discussed
above.

This configuration allows vice to reply instantly by performing the minimum number of
operations for most operations using the cached recommendations, thus being able to serve
a large number of concurrent requests very fast and with the lowest possible processing
overhead.

3 Recommender ensembles

3.1 Mahout-based initial ensemble

Our first implementation of the AMORE system revolved around two of Apache Mahout’s
most used recommenders: the Boolean log-likelihood-based recommender and the Boolean
Tanimoto-based recommender [24]. Boolean recommenders require only a user’s transaction
history recorded as a list of pairs (user ID, item ID), indicating the items a user has purchased
without any further rating information, and in our case, this is the only information available
to us regarding the interests of the users. Mahout’s Boolean recommender algorithm first
retrieves the user’s entire user neighborhood that corresponds to the collection of users with
the strongest degree of similarity with respect to the common items consumed. Different
methods for the computation of the degree of similarity between any two users give rise to
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678 I. T. Christou et al.

Fig. 2 System architecture overview diagram

the different Boolean Mahout recommenders. Both recommenders adopt a fixed-threshold
size set at 0.3 (instead of a fixed neighborhood size) as a criterion for determining the user
neighborhood (implying that anyuserwhose similarity to the givenuser is above this threshold
is considered as a member of the given user’s neighborhood).
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The initial ensemble contained the above-mentioned Mahout-based recommenders plus
a custom content-based recommender that works using only the meta-data of the con-
tent items in the user’s history of transactions, described in detail in Sect. 3.2 below.
The ensemble worked using a voting system in order to come up with a final recom-
mendation score for a specific user–item pair, with each recommender having different
“voting power” as measured by an assigned voting weight. Each of the recommenders
included in the ensemble provides a score for a specific user–item pair that the sys-
tem stores in persistence. The score value generated by the content-based recommender
is normalized to provide values in the closed interval [0, 1], but the score values gen-
erated by the two Mahout-based recommenders are not initially normalized since there
are no specific ceiling value based upon which the normalization can be applied. In
order to overcome this, the system performs the normalization of the score values for
these two recommenders based on maximal ceiling values calculated after each run
of the AMORE batch job, after the step of individual user recommendation genera-
tion.

The normalization of the scores generated by each individual recommender was per-
formed by dividing the score value of each user-based Boolean recommender with the
ceiling(max) value calculated during the latest run. After the system performed the nor-
malization of the recommendation score generated by each recommender for a specific
user–item pair, the ensemble applied the previously specified voting weights to each of
the recommendation scores to come up with a final ensemble score for the specific pair.
To optimize the performance of the ensemble, we needed an objective criterion to define
as performance measure. We chose the recall metric R(10) as defined in Karypis [14]
and detailed immediately below to be the optimization criterion for this process; many
other criteria are described in Shani and Gunawardana [21], but recall (together with so-
called precision-at-n metric) is deemed as particularly appropriate when evaluating top-n
recommendation results as in our case. Having an early snapshot of the database of all
users at a particular point in time (November 2012), we removed all purchases of a par-
ticular, randomly chosen, item from the list of purchases of each user having more than
one different items purchased and then run the ensemble for each user in the modified
database to produce the top 10 recommendations for that user. If the top 10 recommen-
dations include the removed item, the objective function value is increased by one, else
it remains the same. The final objective function value, forming the R(10) value, is the
resulting sum divided by the total number of users in the database that had an item
removed. Notice that with the given definition of recall and test-bed construction, the average
precision-at-n P(n) satisfies P(n) = R(n)/n. We used the popt4jlib open-source library
(developed by the first author, available for download at http://sourceforge.net/projects/
popt4jlib/) to optimize this objective function using a standard alternating variables opti-
mization process, also known as coordinate ascent, whereby at each iteration the objective
function is restricted to a single variable (voting weight) and is optimized with respect to
this variable. The process repeats until in a cycle none of the function’s variables changes its
value.

From the optimization process, we extracted a number of different configurations tested
and tabulate them in Table 1. These early results, though not unacceptable, when combined
with very long running times (in the order of 36h of wall-clock time for each run of the
AMORE batch job) convinced us that performance in terms of quality as well as speed of
execution could be significantly enhanced.
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Table 1 Initial ensemble recall
performance under different
voting weights of the individual
recommenders on an early
dataset (November 2012)

Ensemble voting weights R(10)

Mahout user-based
(Tanimoto)

Mahout user-based
(log-likelihood)

Content-based

0.5 0.5 0.0 0.099

0.25 0.25 0.5 0.073

0.0 1.0 0.0 0.100

1.0 0.0 0.0 0.026

0.33 0.33 0.34 0.082

0.25 0.5 0.25 0.077

3.2 Content-based recommender

In Christour et al. [5], the authors discuss a content-based recommender that takes a pure
machine learning approach for recommending movies to a subscriber of a content delivery
network: They use the percentage of time the subscriber devoted to watching any of the
content they have chosen to determine class membership of the show into two possible
classes (“like” or “dislike”), an idea that was also used in Bambini et al. [2], and use 4weeks’
historical data to create an initial training set. Then, they form an online classifier ensemble
based on the Hedge-β algorithm that decides class membership of previously unseen content,
to recommend shows in the category “like.”

The above-mentioned approach, while rather successful in its particular setting, cannot be
applied in our own setting, since there is no information available whatsoever as to whether
the user liked an item they purchased or not; there is neither any user-feedback feature
available in the system, nor is there any indication for how long the user actually watched
the purchased item. For this reason, we resort to a simple algorithm that offers the minimal
guarantee that the more common attributes an item shares with the items in the history of the
user, the higher the score for that item will be.

To explain the algorithm behind the content-based recommender we implemented, let
Hu = {

pu,i1 , . . . , pu,ik
}
denote the set of item purchases for user u so far. With each item-

purchase pu,i , we have the following associated meta-data:

• An ordered list of actors Ai that appear in the content item i (in order of appearance).
Each element in this list is an element of the full set of actors A known to the system.

• An ordered list of directors Di that directed the content item. Each element in this list is
an element of the full set of directors D known to the system.

• An ordered list of producers Pi that produced the content item. Similarly, each element
of the list is a member of the set P of producers known to the system.

• An ordered list of the genres Gi of the content item, each element of which is a member
of the full set of genres G that the service provider has defined.

• The year yi the content item was produced.
• An ordered list of the countries Ci that participated in the production of the content item.
• An ordered list of the languages Li in which the content item is available.
• An ordered list of the languages Si in which subtitles in the content item is available.
• The total duration of the content item di (in seconds).
• The price mu,i ≥ 0 the user paid to view the item.
• The exact date and time tu,i the user started viewing the content item.
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Given the above information, our custom content-based recommender is able to compute the
following functions:

F A (x, u) =
∑

i :x∈Ai∧pu,i∈Hu

[
1 + mu,i

]

FD (x, u) =
∑

i :x∈Di∧pu,i∈Hu

[
1 + mu,i

]

FP (x, u) =
∑

i :x∈Pi∧pu,i∈Hu

[
1 + mu,i

]

FG (x, u) =
∑

i :x∈Gi∧pu,i∈Hu

[
1 + mu,i

]

FY (x, u) =
∑

i :|x−yi |<l y∧pu,i∈Hu

[
1 + mu,i

]

(1)

and similarly, the functions FL , FS, FC are defined; all are cached in appropriate hash
tables in memory so that the computations are only performed once, right after the system’s
databases are updated. Each of the above functions provides an estimate of the degree of
“matching” of a user u with the value of the appropriate attribute x : for example, F A(“Tom
Cruise”, “S668275” ) represents the system’s estimate of the matching of user “S668275”
with actor “Tom Cruise,” and the estimate is essentially the sum of euros the user has paid to
see movies starring Tom Cruise plus the total number of times the user saw movies starring
that actor; as another example, FD( “Alfred Hitchcock”, “S668275”) is the sum of euros the
user “S668275” has paid to see movies directed by “Alfred Hitchcock” plus the total number
of times the user saw movies directed by this film-maker.

The prediction score of a content item i that has not been already viewed by user u then
is computed according to the following formula:

Ru,i =
∑

j∈{A,D,P,G,L ,S,C,Y }
w j R j

u,i

/
Mu (2)

where the quantities R j
u,i ,Mu are defined as follows:

Mu =
∑

j∈{A,D,P,G,L ,S,C,Y }
w j ·

∑

i :pu,i∈Hu

| ji | ·
[
max
x

{
F j (x, u) : x ∈ ji

}]k j

R j
u,i = w j ·

∑

x∈ ji

[
F j (x, u)

]k j

(3)

and the set Yi which measures time proximity is defined as Yi = {x ∈ N : |x − yi | < l y}
where l y , empirically set to the value 5, is a nonnegative parameter: Essentially, this set
helps define an estimate for the interest of a user to movies made in a particular time period,
expressed by the function FY (x, u), e.g., FY (1949, “S669758”) is calculated as the total
sum of money the user “S669758” has paid to see movies produced in the years [1944, 1954]
plus the total number of items the user has watched that were produced in that time period.
The score Ru,i ∈ [0, 1] is therefore a weighted nonlinear combination of the “likeness” of
the user toward each of the content item attributes as measured by the total percentage of
the amount of money the user has paid to view items with such an attribute as well as by the
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number of times the user has viewed such items. The top-n recommendations are the n items
currently available for viewing having the highest Ru,i score for each user u.

The parameters l y, w j as well as the exponents k j for j = A, D, P,G, L , S,C, Y were
considered to be independent nonnegative variables to be optimized, with objective cri-
terion the recall metric R (10) specified in the previous section. Different values for the
l y, w j , k j produce different recall metric values.We optimized these parameters, using again
the popt4jlib open-source library via a standard genetic algorithm process.

3.3 Final hybrid parallel recommender ensemble

Given the long running times of the initial ensemble (that were mostly attributed to the
running times of the two Apache Mahout recommenders), and the quality of results that was
deemed suboptimal (since on other movie-related datasets, such as the well-known movie-
lens dataset, most systems achieve an R(10) value above 0.25, see [14]), we decided to replace
the two Apache Mahout recommenders with two custom multi-threaded implementations of
k-nearest-neighborhood item-based and user-based recommenders as well as a modified
fusion technique.

Our custom implementation of the k-NN-item-based recommender is as follows (we sim-
plify somewhat our description to avoid discussing issues that are not essential to the algorithm
such as availability of content items and filtering of the user histories according to certain
time windows) Let U denote the set of all users who have subscribed at some point to
the video-on-demand service; for every user u ∈ U , let their unique sequential user ID be
sid (u) ∈ {1, . . . |U |}, and similarly, let I be the set of all content items known to the system,
and for every item i ∈ I , let its unique sequential item ID be sid (i) ∈ {1, . . . |I |}. For every
user u ∈ U , we compute and store the (sparse) vector h(u) with dimensions equal to |I |,
whose j-th component ( j = 1 . . . |I |) is defined according to the equation

(
h(u)

)
j =

∑

pu,i∈Hu :sid(i)= j

[
mu,i + 1

]
(4)

In the above equation, the price the user has paid for an item is also taken into account
as partial evidence of the “appeal” of the item to the user; in our setting, this is about the
closest thing to a user-rating for an item that we have available, but since prices are solely
determined by the service provider, they cannot be expected to correlate very well with the
true relevance judgment the user would have in mind; still, the computational results showed
that this formula improves the quality of results.

Using these vectors, we build for each item i ∈ I another (sparse) vector g(i) with
dimensions equal to |U | whose j-th component ( j = 1 . . . |U |) is defined to be

(
g(i)

)
j =

{
1√|Hu | , sid(u) = j ∧ pu,i ∈ Hu

0, else
(5)

where |Hu | denotes the number of purchases user u has made so far. Having these data
structures available in shared memory, a number of threads are then spawned and execute
in parallel without any further synchronization required, to compute for each item they have
been assigned to, the k most similar items to it, together with their corresponding similarity
values. Following loosely the SUGGEST recommendation library implementation [7,14],
we define the similarity sim (i1, i2) between two items i1, i2 to be the following quantity:
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sim (i1, i2) =
∑

j :(g(i1)
)
j
>0

(
g(i2)

)
j

∣
∣g(i1)

∣
∣ ·

√∣
∣g(i2)

∣
∣

(6)

where |g|denotes the number of nonzero components of the vector g (notice how the similarity
relationship between two items fails to be reflective, i.e., sim (i1, i2) �= sim (i2, i1) for i1 �= i2
in general). This computation is fully parallelized in an “embarrassingly parallel” loop since
no communication or synchronization between the threads is required.

Having computed (in parallel) and stored for each item, the k most similar items’ indices
and their corresponding similarity values, the k-NN-item-based recommender computes the
top-n recommendations for a user u, using the following procedure: For each nonzero element
of the vector h(u), i , the k most similar items to i are examined, and those that are available
and not already purchased by the user are added to a hash table Cu whose keys are items j
and values the sum of the quantities

(
h(u)

)
sid( j) /

√
q where q denotes the position in the list

of k most similar items to j that item i is found in. Once all the nonzero elements of h(u)
have been examined, the n key value pairs in Cu with the highest values are proposed as the
top-n recommendations for the user u.

Our custommulti-threaded implementation of the k-NN-user-based recommender is com-
pletely analogous to our custom implementation of the k-NN-item-based recommender. For
every user u ∈ U , we define the (sparse) vector ĥ(u) in |I | dimensions, whose j-th component
( j = 1 . . . |I |) is simply defined to be 1 if item i satisfying sid(i) = j was purchased by the
user and zero otherwise. Having obtained these vectors in a global shared memory, a number
of threads are spawned that independently and concurrently execute in another embarrass-
ingly parallel loop that does not require any synchronization or communication among them.
The loop in each thread computes for each of a set of users it has been assigned to, the similar-
ity between this user and every other user in the database, according to the cosine similarity

formula sim (u1, u2) = ĥ(u1) · ĥ(u2)/
(
‖ĥ(u1)‖‖ĥ(u2)‖

)
(notice the reflective relationship that

holds in this definition of similarity between users: The “amount of similarity” that u1 has
with u2 is the same as that of u2 to u1.) Once the k(= 150) most similar users to the given
user u have been computed along with their similarity scores, these top-k similarity scores
are normalized to sum up to unity (by dividing each score by the sum of the k scores). These
k most similar users to u define the k-nearest neighbors of u.

Having created the above data structures in shared memory, our k-NN-user-based rec-
ommender computes the top-n recommendations for a given user u by computing for each
(available and not already purchased) item in the history of the k most similar users to u, the
sum of the (normalized) similarity scores of the users that purchased that item; the algorithm
then simply recommends the n highest scoring items to user u.

The final top-n recommendations for a particular user u are computed by first asking each
of the three recommenders (in parallel) to compute the top 5n recommendations for u and then
computing for each recommended item (by any of the individual recommenders), a linear-
weighted combination of the recommendation values of all three recommenders, whereby if
an item is not in the top 5n list of some recommender, it assumes by default the value zero
for this recommender. The weights wi , wu, wc of the item-based, user-based, and content-
based recommenders were set (using the same optimization process that was employed for
the computation of optimal weights for the parameters of the content-based recommender)
to values approximately equal to 0.75, 0.15, and 0.1 respectively. The actual R(10) value is a
highly nonlinear function of the ensemble weights, and this is why an optimization process is
needed to determine the optimal values for these weights. In Fig. 3, we show some indicative
results of the AMORE R(10) value as a function of these weights.
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Fig. 3 Plot of the recall metric
R(10) as a function of the
weights given to the three
recommenders of the AMORE
ensemble: each curve is drawn
for a constant value of the weight
given to the content-based
recommender cw, and varying the
weight uw given to the user-based
recommender (the item-based
recommender’s weight is then 1
minus the sum of the other two
recommenders’ weights)

The resulting values are sorted in descending order, and the top-n items are returned.
The same linear-weighted combination process (with the same weights) applies when the
recommender ensemble is asked to produce the final value of a (user ID, item ID) pair
recommendation (see [1] for a detailed discussion of fusing ordered lists of search results of
various heuristics in an ensemble to produce superior final ordered result lists).

3.4 Experiments with other base recommender algorithms

Two quite different base recommender algorithms are also very popular today. The first is the
so-called SlopeOne recommender algorithm [24], and the second is reduced-dimensionality-
based recommenders using Singular Value Decomposition (SVD, originally proposed as a
method to make recommender systems more scalable in the face of very large datasets). The
first technique, unfortunately, is not applicable in our case as it only works with datasets con-
taining explicit user ratings of items. Regarding the second one (SVD-based recommenders),
since our dataset is more than 99% sparse (see discussion in next section), we expected that
SVD-based top-n recommendation results on this dataset would be inferior to the results of
k-NN-based algorithms, as Sarwar et al. [23] had reported previously. Indeed, the results pro-
duced by Apache Mahout’s SVDRecommender implementation were quite worse than the
results obtained by the other Boolean user-based recommender implementations available
in Mahout (similar quality results were produced using the open-source FunkSVD imple-
mentation [8]). The performance of the SVD-based recommendations is shown in Fig. 7 in
Sect. 4.

4 Computational results

In this section, we compare the results of our final three-recommender ensemble to the
results produced by Apache Mahout’s Boolean recommender algorithm with log-likelihood
similarity measure and threshold-based definition of user neighborhood, with threshold set at
0.3 (that we found to be the optimal threshold level for our dataset), as well as the individual
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performance of each of the three recommenders participating in our ensemble. The reason
for choosing this particular configuration for Apache Mahout’s user-based recommenders
is that it provided the best performance on the dataset used to produce the results shown in
Table 1.

All test runs reported below were performed on a Dell Opti-Plex 755 equipped with an
Intel Core-2 Quad CPU running at 2.4GHz having 2GBRAM runningWindows. The testing
dataset, being a snapshot of the database taken on April 2013, comprises more than 20,000
users in total, with a little more than one million purchases (views) in total. The total number
of items in the database are a little less than 7000, but it is worth noting that the service
provider’s database contains a significant number of duplicate entries (entries with different
item IDs for items with the same title, year of production, actors, directors, etc., with the
possible exception that the genres in one entry are sometimes a subset of the genres in the
other entry) that we had to keep track of, so that we never recommend an item that the user has
already purchased, even though it is quite common in this dataset for the same user account
to have purchased the same item many times (often 10 times or more); this holds especially
true for items that belong to genres such as “Mickey Mouse’ Fun Club” and others that are
available free of charge. The user-item matrix’s nonzero entries are less than 0.9% of the
total number of cells in the matrix.

Table 2 provides the recall R(n) values and associated running times Tn for the
final ensemble, its individual recommenders acting alone, and Apache Mahout, for n =
10, 20, 30, . . . 100, for recommendations produced using the entire history of each user,
except a single item randomly chosen from each user’s history to act as the “hidden” item to
measure recall against [14].

A graphical illustration of the above results is shown in Figs. 4 and 5, showing recall and
response times of the various recommenders. Quite surprisingly, Apache Mahout’s user-
based recommender lags very significantly behind both the AMORE ensemble and our
custom implementation of the user- and item-based recommenders in terms of recall (and
equivalently, precision), as well as response times, and it is better than our content-based
recommender only in terms of recall (but is much slower). This pattern holds for all values of
n. As it can be easily verified, our AMORE ensemble is more than 80% better than Mahout
in terms of the R (10) metric, and is about 15 times faster than Mahout.

The ensemble’s R (10) value for those users whose history of purchases includes 50 or
more items is 0.316, quite above the overall recall value of 0.28575, implying that for low
values of n, the system is able to better understand the preferences of users with a large
history of purchases. However, the ensemble R (30) value is 0.475 for those users having
made 50 purchases or more, which is nowmuch closer to the overall R (30) value of 0.45995,
showing that as n gets larger, the recall value for the ensemble is approximately the same
between users with small purchase histories and those with large ones.

Notice that the recall values obtained compare well with the best values obtained for much
more controlled datasets, such as the movie-lens dataset where the ratings information that
is made available for each user is the true rating the particular user has given to the item, as
opposed to our dataset that only contains the purchase history of each user account (that is
often used by all members of the household). To alleviate this additional problem with our
dataset, we have provided an additional feature to our algorithms, namely the ability to train
them using only those content items seen by the user within a particular time window. The
rationale behind this choice is that by narrowing the user history to items seen for example
during prime time, the chances that this user history is the union of more than one actual
person in the household should be reduced, and therefore, the accuracy of the system should
be increased. In Table 3, we show the results of running the various recommenders trained
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Fig. 4 Plot of the recall metric R(n) as a function of n for various recommenders trained on the entire user
purchase histories
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Fig. 5 Plot of the response time Tn as a function of n for various recommenders trained on the entire user
purchase histories

using only items that were seen by the users during a time that overlaps with the “prime
time” window between 9 p.m. and 1 a.m. The results again show a very clear superiority
of our ensemble, even though they do not improve upon the results obtained when training
the classifiers with the entire history of user purchases, therefore the hypothesis that time
windows can help narrow down the persons using the service from each user account does not
have statistical support. The quality of the results is visualized in Fig. 6. Regarding running
times, our ensemble is between 1.98 and 6.46 times faster than Apache Mahout.

We attribute the much faster response times of our system to two main reasons:

1. A sophisticated multi-threading design and implementation that allows the software to
utilize 100% of the available cores of the CPU and obtain essentially linear speedups. To
achieve this performance, each running thread never creates any objects on the heap (that
dramatically reduce parallel performance) using the operator new and of course does not
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Recall Metric Comparison
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Fig. 6 Plots of the recall metric R(n) as a function of n for various recommenders trained on user histories
on the interval 9 p.m. to 1 a.m

have to obtain any synchronization locks as they only write data in different areas of the
same arrays and do not require any data computed in parallel from the other threads

2. A better-suited implementation of sparse vectors for k-NN-based implementations of
recommender algorithms than the one available in the Colt numeric library that was
adopted for Apache Mahout’s core numeric computations, combined with a very fast
implementation of thread-local object pools for lightweight objects that make it possible
for the computing threads never to call the new operator as stated in reason #1 above.

As another experiment, we have deleted from the snapshot of our database taken on April
2013, all user purchases that occurred during the last 2weeks recorded in the system, and
have trained the system with the remaining older data, to see the levels of the precision and
recall metrics on this differently constructed test dataset. The plots in Fig. 7 show how average
precision, recall, and the combined F-metric vary with different recommendation list lengths
(measured in points that are multiples of 5 and 8). The reduced recall values are expected
since the system must now be able to find not just one of the items the user has selected at
any random point in the past, but the items the user saw in the last 2weeks: but within the
last 2weeks, items made available within that time frame may have not been seen yet by a
statistically significant number of users so that the system can “understand” to what other
items they are similar with, thus the drop in the recall values. Again, the AMORE ensemble is
far superior to ApacheMahout user-based recommender or the SVD-based recommendation.

We have performed an empirical small-scale test where we asked eight volunteer users
(other than the authors) to explicitly state the relevance (like/dislike) of the top 10 recom-
mendations the systems produced for them, after declaring just five of their favorite movies.
The precision of the results is shown in Fig. 8 and is much more encouraging. The significant
difference between explicitly stated user relevanceandcalculated system accuracy from user
histories can be attributed to many factors, the most prominent of which would be the fact
that users are very likely to have already seen in the theaters their favorite movies that the
system calculates for them, or the sometimes high pricing of specific content items available
for viewing.

We believe that the noteworthy fact that precision-at-n is above 60% for all values of n up
to 10 for users having stated only five movies they like can be attributed to the combination
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Fig. 7 Plots of precision (P_AMORE, P_Mahout, P_SVD), recall (R_AMORE, R_Mahout, R_SVD), and
F-metric (F_AMORE, F_Mahout, F_SVD) for the AMORE ensemble, Apache Mahout, and SVD-based
recommender when the test data are the last 2weeks of user purchases. The F-metric is maximized at n = 10
for the AMORE and Apache Mahout engines
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Fig. 8 Empirical average AMORE precision-at-n measured after users have stated exactly five of their most
favorite movies

of user- and item-based nearest-neighbor recommenders and content-based recommendation
in our ensemble, which can be particularly helpful when only a small number of preferences
is known for a user.

Finally, in Fig. 9, we show how AMORE performance has evolved over time.
The latest experimental results on system recall and response times (September 2013, on

a database of more than 26,000 users and more than 1.9 million views) show that AMORE
outperforms ApacheMahout by more than 100% in terms of the R(10)metric, and more than
6300% in terms of speed! AMORE has been increasing its performance as time passes by,
by more than 13.8% between April and September 2013. Mahout’s user-based recommender
(using the log-likelihood metric) on the other hand, dropped its performance by more than
10% in the same time interval.

123



AMORE: design and implementation of a commercial-strength. . . 691

Recall Curves Temporal Evolution

0,000

0,100

0,200

0,300

0,400

0,500

0,600

0,700

0,800

0,900

10 20 30 40 50 60 70 80 90 100
N

R
(N

)

AMORE 4/2013
Mahout 4/2013
AMORE 9/2013
Mahout 9/2013

Fig. 9 Temporal evolution of AMORE and Mahout performance

In Cremonesi and Turrin [6] and Bambini et al. [2], the authors showed that in their
own production environments, the recall rate of item-based recommenders may deteriorate
as time passes by, due to cold-start issues and the fact that once new users view so-called
easy-to-recommend items (i.e., blockbusters), the task of the recommender engine becomes
much more difficult. In contrast, our results indicate that the combination of our custom
item-based recommender, user-based, and content-based leads to a system that evolves so
that it improves its recall rate as time passes, and the improvement is significant. We reason
that this improvement is mainly due to the fact that k-NN-user-based recommenders attain
a higher level of personalization than k-NN-item-based recommenders as argued in Karypis
[14], and therefore, after a while, and once a user has seen the “easy” items, the user-
based part of the ensemble, together with the equally highly personalized content-based
recommender, “kick-in” to provide more relevant recommendations to the user than the item-
based recommender alone. This “kicking-in” happens as the item-based recommender starts
providing recommendations with mostly low ratings, so that the recommendations provided
by the user-based and the content-based recommenders dominate the final recommendation
list for each user. On the other hand, it should be noted that the improvement comes with
the associated cost of having to maintain the user model of the user-based recommender,
which can become much more expensive than the model of the item-based recommender
when the number of users exceeds the number of items by orders of magnitude (again,
for an estimation of the complexity of building and updating k-NN-user- or item-based
recommenders see [14]). In our setting, the subscriber base of our triple-play service provider
customer is not expected to exceed one hundred thousand, and this is comparable to the
number of items the provider currently offers: On September 2014, there were approximately
39,000 users in the database and a little less than 20,000 items available. Also notice that
the algorithms’ main loops are “embarrassingly parallel,” and further increases in user or
content size can be easily tackled by simply “throwing more processor cores at the problem,”
or in other words by increasing the number of threads spawned in a computer having more
cores. This strategy (theoretically) should let AMORE handle subscriber bases of up to
a few millions of subscribers without any problem. To tackle problems above this size, the
algorithms could become distributed aswell, to utilize distributedmemory clusters and clouds
of computers.
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Fig. 10 AMORE End User-On-TV Screen Interface

5 User interfaces

AMORE recommendations are shown to the service subscribers on their TV screen in a
special screen shown in Fig. 10. The first row shows the recommended movies for the user
account, whereas the second row immediately below it shows the month’s most popular
movies.

While Fig. 10 shows a screen shot of the user interface as seen by the end user (the service
subscriber), AMORE offers a variety of other interfaces. As almost any other commercial
system, AMORE comes equipped with a set of Business Intelligence/Analytics functions
to help operators appreciate the effectiveness of the recommendations engine, as well as
help them in their decision-making processes regarding item promotions, etc. In Fig. 11, the
user has chosen to see the time evolution of the recommendations made by the system for
children’s movies, as well as how many of them were actually followed (the periodicity of
the graph is of course due to the fact that most items are viewed during weekends).

And finally, in Fig. 12, we show how the user may choose to see the contribution in terms
of sales and views of action movies featuring Tom Cruise as an actor. These are just a few
of the functionalities provided by the AMORE BI/BA tool.

6 Conclusions and future directions

We have presented AMORE, a commercial, hybrid movie recommendation system. The sys-
tem addresses a number of issues that originate from business requirements and limitations
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Fig. 11 AMORE business intelligence UI

Fig. 12 AMORE business analytics UI final screenshot

similar to those that other commercial systems face. One of the most significant challenges
in our case is the requirement to accurately determine user preferences given only the infor-
mation of consumed items from all members in the household to which a given user account
belongs, in the absence of any relevance judgments. Relevant to that is the fact that a large
percentage of all available content is currently offered for free, making it easier for anyone to
“purchase” items that they would not otherwise choose to purchase.Without any information
as to the length of time that the user actually watched any item (and especially a “free” item),
user histories can easily become “tainted” with items they do not really like but the system
has no way of knowing that.
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By using different types of recommenders including item-based, user-based as well as
content-based, the ensemble is able to handle cases where a significant number of users have
consumed a significant number of items, thus taking advantage of the benefits of collaborative
filtering, as well as cases where new content items have not been yet consumed by any
user but by using its content-based recommender, the ensemble can still provide meaningful
recommendations (thus, at least partially, solving the “new content” cold-start-type problem).

The system also deals with the “new user” cold-start-type problem (when new users are
added to the system), using the following business rule: whenever a new user is inserted into
the system, and before they have purchased any items, the system simply recommends the
top recommendations made for all other users in the system at that time. In the corner case
of new users having seen yet only very few andrarely watched movies, the content-based
recommender is still able to provide other similar movies to the content the user has opted
for, which is essentially optimal in such context.

Finally, the system addresses hardware infrastructure constraints; we have introduced a
cost-effective way with which the system is able to provide instant replies to web service
requests and at the same time renew user recommendations as frequently as possible (in the
order of 15minor less). Thiswasmadepossible by the architecture of the system, aswell as the
two databases following the same data model that are used to separate the updates of the sys-
tem (performed by the AMORE batch job) from the response to web service requests for rec-
ommendations (performed by theAMOREweb services that live in aweb application server).

AMORE is currently the only live commercial recommender system for video-on-demand
in Greece and has been successfully deployed in the production environment of a prominent
Greek triple-play services provider and has already contributed to an increase in the provider’s
profits in terms of movie rental sales while at the same time offers customer retention support
allowing the company’s Marketing Department to offer more interesting subscription offers
to both old and new customers alike.

We have experimented with the application of various algorithms implemented in the
Apache Mahout suitcase (upon which myrrix is also based, see http://myrrix.com) but the
results were not deemed satisfactory neither in terms of quality nor in terms of response times,
thus necessitating the development of our own parallel multi-threaded custom implementa-
tion of the well-known k-NN-item-based and k-NN-user-based recommenders and variants
thereof. Various other experimental recommendation systems have already shown the supe-
riority of hybrid systems incorporating tens or even hundreds of individual recommender
algorithms over schemes incorporating only a single algorithm (the best Netflix prize con-
testants belong in this category). AMORE results have shown that a very small number of
different types of recommender algorithms (that can be updated very fast) are sufficient to
produce high-quality recommendations that users enjoy: Currently, the users make a rental
from the proposed recommendations once for every two visits to the AMORE recommenda-
tions screen. In the immediate future, we are aiming to introduce novel algorithms which take
into consideration additional information about user behavior patterns including the prices
that users are willing to pay in order to provide improved recommendation services to them.

Acknowledgments The authors would like to thank Hellas On Line S.A. for providing the industrial grant
that made this research possible.

References

1. Amolochitis M, Christou IT, Tan Z-H, Prassad R (2013) A heuristic hierarchical scheme for academic
search and retrieval. Inf Process Manag 49(6):1326–1343

123

http://myrrix.com


AMORE: design and implementation of a commercial-strength. . . 695

2. Bambini R, Cremonesi P, Turrin R (2011) A recommender system for an IPTV service provider: a real
large-scale production environment. In: Ricci et al (eds) Recommender systems handbook. Springer, New
York, NY

3. Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I tube, you tube, everybody tubes: analyzing
the world’s largest user generated content video system. In: Proceedings of the 7th ACM SIGCOMM
conference on internet measurement

4. Cho J, Roy S (2004) Impact of search engines on page popularity. In: Proceedings of World Wide Web
conference

5. Christou IT, Gekas G, Kyrikou A (2012) A classifier ensemble approach to the TV-viewer profile adap-
tation problem. Int J Mach Learn Cybern 3(4):313–326

6. Cremonesi P, Turrin R (2009) Analysis of cold-start recommendations in IPTV systems. In: Proceedings
of ACM recommender systems conference RecSys’09, pp 233–236

7. Deshpande M, Karypis G (2004) Item-based top-n recommendation algorithms. ACM Trans Inf Syst
22(1):143–177

8. Ekstrand MD, Ludwig M, Konstan JA, Riedl JT (2011) Rethinking the recommender research ecosys-
tem: reproducibility, openness, and LensKit. In: Proceedings of ACM recommender systems conference
RecSys’11

9. Golbeck J, Hendler J (2006) Filmtrust: movie recommendations using trust in web-based social networks.
In: Proceedings of the IEEE consumer communications and networking conference

10. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an information
tapestry. Communications of the ACM. December

11. Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender
systems. ACM Trans Inf Syst 22(1):5–53

12. Hurley N, Zhang M (2011) Novelty and diversity in top-n recommendation—analysis and evaluation.
ACM Trans Internet Technol 10(4):14 1–30

13. Jahrer M, Toscher A, Legenstein R (2010) Combining predictions for accurate recommender systems.
In: Proceedings of the ACM conference on knowledge discovery in databases (KDD 2010)

14. Karypis G (2001) Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the
10th conference on information and knowledge management (CIKM 01), pp 247–254

15. Lathia N, Hailes S, Capra L, Amatriain X (2010) Temporal diversity in recommender systems. In: Pro-
ceedings of the SIGIR 2010, July 19–23, Geneva, Switzerland

16. Li Y, Lu L, Xuefeng L (2005) A hybrid collaborative filtering method for multiple-interests and multiple-
content recommendation in E-Commerce. Exp Syst Appl 28(1):67–77

17. Li Y, Zhai CX, Chen Y (2014) Exploiting rich user information for one-class collaborative filtering.
Knowl Inf Syst 38:277–301

18. MildA,NatterM (2002)Collaborative filtering or regressionmodels for Internet recommendation system?
J Targeting Meas Anal Market 10(4):304–313

19. Pazzani M, Billsus D (2007) Content-based recommendation systems. Lect Notes Comput Sci 4321:325–
341

20. Ricci F, Rokach L, Shapira B, Kantor P (eds) (2011) Recommender systems handbook. Springer, New
York, NY

21. Shani G, Gunawardana A (2011) Evaluating recommendation systems. In: Ricci et al (eds) Recommender
systems handbook. Springer, New York, NY

22. Shardanand U, Maes P (1995) Social information filtering: algorithms for automating ‘word of mouth’.
In: Proceedings of the human factors in computing conference (CHI ’95). Denver, CO

23. Sharwar B, Karypis G, Konstan J, Riedl J (2000) Application of dimensionality reduction in recommender
system—a case study. University of Minnesota Computer Science and Engineering, Technical Report 00-
043

24. Owen S, Anil R, Dunning T, Friedman E (2011) Mahout in action. Manning, New York
25. Yu H, Zheng D, Zhao BY, ZhengW (2006) Understanding user behavior in large-scale video-on-demand

systems. ACM SIGOPS Operat Syst Rev 40(4):333–344
26. Zhang M, Hurley N (2008) Avoiding monotony: improving the diversity of recommendation lists. In:

Proceedings of the ACM recommender systems conference RecSys 08, pp 123–130

123



696 I. T. Christou et al.

Ioannis T. Christou holds a Dipl. Ing. Degree in Electrical Engineer-
ing from the National Technical University of Athens, Greece (1991),
an MSc (1993) and PhD (1996), both in Computer Sciences from the
University of Wisconsin at Madison (Madison, WI, USA), and an MBA
from NTUA and Athens University of Economics and Business (2006).
He has been with Delta Technology Inc., as Senior Developer, with
Intracom S.A. Development Programmes Dept. as Area Leader in Data
and Knowledge Engineering, and with Lucent Technologies Bell Labs
as Member of Technical Staff. He has also been an adjunct Assis-
tant Professor with the University of Patras, Greece, and an Adjunct
Professor at Carnegie-Mellon University, Pittsburgh, PA, USA. He is
currently an Associate Professor at Athens Information Technology,
Athens, Greece, and is the CTO and co-founder of IntelPrize, a Big-
Data start-up company, and has published more than 70 articles in
scientific journals and peer-reviewed conferences.

Emmanouil Amolochitis received the BSc degree in Information
Technology in 2005 from Deree, The American College of Greece,
the MSc degree in Information Technology and Telecommunica-
tions in 2009 from Athens Information Technology, Greece, and the
PhD degree from Aalborg University, Denmark, in 2014. He works
as research engineer for Voice-Web, Athens, Greece. His research
interests include Data Mining, Machine Learning, and Information
Retrieval.

Zheng-Hua Tan received the BSc and MSc degrees in 1990 and
1996, respectively, both in Electrical Engineering from Hunan Uni-
versity, China, and the PhD degree in Electronic Engineering from
Shanghai Jiao Tong University, China, in 1999. He is an Associate
Professor in the Dept. of Electronic Systems at Aalborg University
(AAU), Denmark. Before joining AAU, he was a postdoctoral fellow
in the Dept. of Computer Science at the Korea Advanced Institute of
Science and Technology (KAIST), Korea, and was also a visiting sci-
entist at the Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA. He was also an Associate
Professor in the Dept. of Electronic Engineering at Shanghai Jiao Tong
University. His research interests include Computational Intelligence,
Speech Recognition, and Machine Learning. He has published exten-
sively in these areas in refereed journals and conference proceedings,
and is a member of the editorial board of many scientific journals.

123


	AMORE: design and implementation of a commercial-strength parallel hybrid movie recommendation engine
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contribution
	1.2.1 Addressing real-world complications


	2 System architecture
	3 Recommender ensembles
	3.1 Mahout-based initial ensemble
	3.2 Content-based recommender
	3.3 Final hybrid parallel recommender ensemble
	3.4 Experiments with other base recommender algorithms

	4 Computational results
	5 User interfaces
	6 Conclusions and future directions
	Acknowledgments
	References




