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Part I: Hidden Markov model

Hidden Markov model
o How to evaluate an HMM — the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

CTiF Center for TelelnFrastruktur Speech Communication, V, Zheng-Hua Tan, 2006 2




Elements of an HMM

+ HMM is specified by:

- slates qf & ® @ O o
. 1.0 0.0 0.0 0.0
- transition é é "' o 0.9 0.1 0.0 0.0
probabilities a;; al0.0 09 01 0.0
i1 : t]0.0 0.0 0.9 0.1
(g9, 1) = a;;

L0
- emission CAC =
E

distributions bj(x)
p(x|g) = b(x)" AN In TA

X

+ (initial state probabilities p(q’]) =T, )

From Dan Ellis, 2004.
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Three basic HMM problems

Scoring: Given an observation sequence O =
{0,,0,,...,0; } and a model A = {A, B, m}, how to
compute P(O | A), the probability of the observation
sequence? - The Forward-Backward Algorithm

Matching: Given an observation sequence O =
{0,,0,,...,07 },how to choose a state sequence q =
{94.95,---,9+ } which is optimum in some sense? >
The Viterbi Algorithm

Training: How to adjust the model parameters A =
{A,B, 1} to maximize P(O| A)? - The Baum-Welch
Re-estimation Procedures
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Problem 3: Training

How to tune the model parameters A = {A,B,} to
maximize P(O| A)? - a learning problem

o No efficient algorithm for global optimisation

o Effective iterative algorithm for local optimisation: the
Baum-Welch re-estimation

Baum-Welch
o = forward-backward algorithm (Baum, 1972)

o is a special case of EM (expectation-maximization)
algorithm

o computes probabilities using current model A;
o refines A to 1 such that P(O] A) is locally maximised
o uses aand g from forward-backward algorithm
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Baum-Welch re-estimation

Define ¢:(i./), the probability of being in state i at time
t, and state j at time t+1, given A and O, i.e.

é:t(iaj):P(qt :iﬂqu :J|O’/1)
= P(‘It :i’qtﬂ :]’0|l)

oL =
_ a, (i)ai/b./ (0;+l)ﬂz+l(j) ° o :“Iibjw'“]i 3 ":"
PO|) = o S
a,agb(0,,,)p,.,()) ai | | Bt
=N N =1 N BEX t+z
Z Zaz (i)agjbj (0t+1)ﬂt+l (]) . . I ! . )
i=1 j=1 Fig. 6. lllustration of the sequence of operations required

for the computation of the joint event that the system is in
state 5; at time ¢ and state 5; at time + + 1,
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Baum-Welch Re-estimation (cont’d)

Recall that 7.() is defined as the probability of
being in state i at time t, given the entire
observation sequence and the model, so

N N
7,(i) = P(q, =i|0aﬂ)=zp(% =1,q,4 =j|0,ﬂ)=2§,(l',j)

j=1 Jj=1

Sum 7.()and < (. )over t, we have
7-1
Z 7, (i) = expected number of transitions from state i in O
=1

T
(z 7,(i) = the expected number of times that state i is visitied.)
=1
7-1
] Z &, (i, j) = expected number of transitions from state i to state jin O

t=1
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Baum-Welch re-estimation formulas

7; =expected frequency (number of times) in state i
at time (¢ =1) = 7,(7)
= _ expected number of transitions from state 7 to state j

v expected number of transitions from state i

-1
PRAN))
_ =1
Tl
D> 7.0
=1
expected number of times in state j and observing symbol v,

b, (k)= ——
expected number of times in state j

T

20 g _

= D P(0.q,=114)-5(0,.v,) Lo

8.1.0,=V, = =
B 5(0”‘}/‘):{0 oth;rwis];

zyz(j) ZP(O,(]IZI"],)
t=1 t=1
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Parameter re-estimation process

Compute «, 8,and & 3
Estimate Z = {Z, E} from 5 For\xf;nlrd.“B_alckwar(I
_ gorithm
Replace 4 with 2 *
If nOt Converged go tO 2 Update HMM Parameters
It can be shown that

P(O|A)>P(O|A) unless A = A

Estimated HMM
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Continuous density HMMs

Replaces the discrete observation probabilities,
b/(k), by a continuous PDF (probability density
function) b(x)

The PDF b(x) is often represented as a mixture
of Gaussians:

M
¢ is the mixture weight, ¢, >0,and X ¢, =1
k=1

bj(x)zfcjkN[x,,ujk,ij] I<j<N
V N

N is the normal The mean and covariance matrix
density associated with state j and mixture k
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Part II: HMM based ASR

HMM based speech recognition
o HTK (Steve Young, 1996)
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Speech recognition system

Acoustic Language
models models

Feature Decoder Words el
extraction (search)

Speech Data Transcription

| Tramning Tools |

i v
il i

| Recogniser |

Unknown Speech Transcription
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Training and test procedures for IVR

From (Young et al 1996) (a) Training

Training Examples

one two three

. gooooo | booo |oooaoc
‘ 2. Q0000 ooooo (ooooo
\|\ccch\:ma [m;/sulpmn 3 DDDDD DDDDD DDDDD

| Training Tools ‘
Estimate
T comee | ]
2550, B85, JBBE M, M,
t I

| Recogniser ‘

(b) Recognition

Unknown Speech Transcription Unknown O =0 0000
| P(O|M,) P(O|M,) P(O|M;) |

Choose Max

CTI' F Center for TelelnFrastruktur Speech Communication, V, Zheng-Hua Tan, 2006 13

The Viterbi algorithm for IVR

State
A
3
S P O M - Aqg
4 H
............ ) - [)“(04)
I N i
| g i Speech
B F
" > 3 3 & 3 # Frame

(Time)
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Continuous speech recognition

The allowed sequence of phoneme-based
HMMs is defined by a finite state network and all
of the words are placed in a loop

B> 2 N
Co—Ciyo—Ca o been
/_ etc ﬁ
N - /

g

Fig. 1.7 Recognition Network for
Continuously Spoken Word
Recognition
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Token passing

An alternative formulation of the Viterbi
algorithm is used called the Token Passing
Model. In brief, the token passing model makes
the concept of a state alignment path explicit.

The key steps in this algorithm are as follows

o Pass a copy of every token in state i to all
connecting states j, incrementing the log
probability of the copy by ‘sl + tealvielt)]

o Examine the tokens in every state and discard all
but the token with the highest probability.
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Grammar

[
=t

Zerao

(o

sent-start sent-end

Young

Fig. 3.1 Grammar for Voice Dialling
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Continuous speech recognition

Y=y1’y1’~":yk W=W1,W1,...,Wk
Goal: - \ \

l;r:m:t i }Ialcll
o Given acoustic data = 1 Search
Analog Discrete Word
a F|nd WOI'd Sequence Speech Observations Sequence
o Such that P(W]Y) is maximized
Bayes Rule:

Language model

pr |7y~ PO Q)P(W)

P(Y) is a constant for a complete Sentenz
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Overview of HMM based ASR

Ao (After Steve Young, 1996)

Front End
Parameterisation

Acoustic Models

A8.40.08. 0008008048,

Pronouncing
* Dictionary
[ 1 k
s IRIRIRINININININIRININ]
Parameterised Spesch Waveform
H this | is | speech }
L 1
W Language Madel P(W) . P(YlW)
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MFCC-based front-end processing

(After Steve Young, 1996)
"\[\Ff""‘j\fu’\f‘“ﬁ Speech

FFT

FFT based
spectrum

X

Mel scale
ZM» triangular filters

39 Element
Acoustic
Vector

CTI' F Center for TelelnFrastruktur Speech Communication, V, Zheng-Hua Tan, 2006 20




HMM-based phone model

(After Steve Young, 1996)
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Triphone models and state tying

t-ihtn t-ih+ng f-ih+1 s-ih+]

A AL (AL [l

Tie Similar
States
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Decision tree clustering
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R=Central-Consonant?

States in each leaf node are tied
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Variability in the speech signal

Most noticeable factors that determine accuracy are
variations in context, in speaker, and in environment.

Speech recogniser can be very accurate for a particular
speaker, in a particular language and speaking style, in a
particular environment, and limited to a particular task.
But it remains a research challenge to build a recogniser
that can understand anyone’s speech, in any language,
on any topic, in any free-flowing style, and in any
speaking environment

Accuracy and robustness are the ultimate measures for
the success of ASR

CTI' F Center for TelelnFrastruktur Speech Communication, V, Zheng-Hua Tan, 2006 24




Variability

Context variability

o It is easy to recognise speech.

o It is easy to wreck a nice beach.

Style variability

o Isolated, continuous, spontaneous

Speaker variability — human vocal tract

o Speaker-dependent vs. speaker-independent
o Speaker-adaptation

Environmental variability

o Multistyle training
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Human speech communication process

Lecture 1 (After Rabiner & Levinson, 1981)

TEXT PHONEMES, PROSODY  ARTICULATORY MOTIONS

|
MESSAGE LANGUAGE 4 NEURO-MUSCUL AR VOCAL TRAGCT
FORMULATION [ |  COCE i CONTROLS | | SYSTEM
i Lecture 2
DISCRETE INPUT : CONTINUOUS INPUT
! ) ACOUSTIC
peech synthes WAVEFORM
Lecture 3
30,000- 80,000
poery 20088 2000 8PS BPS |rRaNSMISSION 5 h codi
! g ‘ + > eech coding
INFORMAT ION RATE CHANNEL P
. SPEECH RECOGNITION 1 Lecture 3
Speech understandln% 1
PRONEMES, WORDS, — ACOUSTIC
SEMANTICS SENTENCES EXTRACTION, SPECTRUM WAVEFORM
! | CODING ANALYSIS
1
MESSAGE LANGUAGE ! NEURAL BASILAR
UNDERSTANDING | | TRANSLATION [~ 1 | TRANSDUCTION [* | MEREIANE
1
1

DISCRETE O = : CONTINUDUS QUTPUT
Speech recognition) ecture 4-5

CTif Center for TelelnFrastruktur Speech Communication, V, Zheng-Hua Tan, 2006 26




Summary

= Hidden Markov model
= HMM-based ASR

» Next lectures: : Lanquage Processing and

Speech Understanding by Tom Brgndsted.
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