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Lecture 5: Speech Recognition, Part II
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Part I: Hidden Markov model

Hidden Markov model
How to evaluate an HMM – the forward algorithm
How to decode an HMM – the Viterbi algorithm
How to estimate HMM parameters – Baum-Welch 
Algorithm

HMM based speech recognition 
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Elements of an HMM

From Dan Ellis, 2004.
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Three basic HMM problems
1. Scoring: Given an observation sequence O = 

{o1,o2,...,oT } and a model λ = {A, B,π}, how to 
compute P(O | λ), the probability of the observation 
sequence? The Forward-Backward Algorithm

2. Matching: Given an observation sequence O = 
{o1,o2,...,oT },how to choose a state sequence q = 
{q1,q2,...,qT } which is optimum in some sense? 
The Viterbi Algorithm

3. Training: How to adjust the model parameters λ = 
{A,B,π} to maximize P(O| λ)? The Baum-Welch 
Re-estimation Procedures



3

Speech Communication, V, Zheng-Hua Tan, 2006 5

Problem 3: Training
How to tune the model parameters λ = {A,B,π} to 
maximize P(O| λ)? - a learning problem

No efficient algorithm for global optimisation 
Effective iterative algorithm for local optimisation: the 
Baum-Welch re-estimation

Baum-Welch
= forward-backward algorithm (Baum, 1972)
is a special case of EM (expectation-maximization) 
algorithm
computes probabilities using current model λ; 
refines λ to    such that P(O| λ) is locally maximised 
uses    and    from forward-backward algorithmα β

λ
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Baum-Welch re-estimation

Define           , the probability of being in state i at time 
t, and state j at time t+1, given λ and O, i.e. 
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Baum-Welch Re-estimation (cont’d)

Recall that        is defined as the probability of 
being in state i at time t, given the entire 
observation sequence and the model, so

Sum        and          over t, we have
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Baum-Welch re-estimation formulas
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Parameter re-estimation process

1. Initialize
2. Compute
3. Estimate                from   
4. Replace     with   
5. If not converged go to 2

It can be shown that

ξβα  and ,,

},{ BA=λ
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Continuous density HMMs

Replaces the discrete observation probabilities, 
bj(k), by a continuous PDF (probability density 
function) bj(x)
The PDF bj(x) is often represented as a mixture 
of Gaussians:
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N is the normal 
density 

The mean and covariance matrix 
associated with state j and mixture k



6

Speech Communication, V, Zheng-Hua Tan, 2006 11

Part II: HMM based ASR

Hidden Markov model
How to evaluate an HMM – the forward algorithm
How to decode an HMM – the Viterbi algorithm
How to estimate HMM parameters – Baum-Welch 
Algorithm

HMM based speech recognition 
HTK (Steve Young, 1996)

Speech Communication, V, Zheng-Hua Tan, 2006 12

Speech recognition system

Feature 
extraction

Decoder
(search)

Acoustic
models

Language
models

ApplicationSpeech Words
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Training and test procedures for IVR

From (Young et al. 1996)
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The Viterbi algorithm for IVR
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Continuous speech recognition

The allowed sequence of phoneme-based 
HMMs is defined by a finite state network and all 
of the words are placed in a loop
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Token passing

An  alternative formulation of the Viterbi 
algorithm is used called the Token Passing 
Model. In brief, the token passing model makes 
the concept of a state alignment path explicit. 
The key steps in this algorithm are as follows 

Pass a copy of every token in state i to all 
connecting states  j, incrementing the log 
probability of the copy by                        . 
Examine the tokens in every state and discard all 
but the token with the highest probability. 
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Grammar
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Continuous speech recognition

Goal:
Given acoustic data
Find word sequence
Such that P(W|Y) is maximized

Bayes Rule:

kyyyY ,...,, 11= kwwwW ,...,, 11=

)(
)()|()|(

YP
WPWYPYWP ⋅

=

Acoustic model Language model

P(Y) is a constant for a complete sentence
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Overview of HMM based ASR

(After Steve Young, 1996)
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MFCC-based front-end processing

(After Steve Young, 1996)
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HMM-based phone model

(After Steve Young, 1996)

Speech Communication, V, Zheng-Hua Tan, 2006 22

Triphone models and state tying
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Decision tree clustering 
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Variability in the speech signal
Most noticeable factors that determine accuracy are 
variations in context, in speaker, and in environment.
Speech recogniser can be very accurate for a particular 
speaker, in a particular language and speaking style, in a 
particular environment, and limited to a particular task.
But it remains a research challenge to build a recogniser 
that can understand anyone’s speech, in any language, 
on any topic, in any free-flowing style, and in any 
speaking environment
Accuracy and robustness are the ultimate measures for 
the success of ASR
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Variability

Context variability
It is easy to recognise speech.
It is easy to wreck a nice beach.

Style variability
Isolated, continuous, spontaneous

Speaker variability – human vocal tract
Speaker-dependent vs. speaker-independent
Speaker-adaptation

Environmental variability
Multistyle training
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Human speech communication process

Rabiner and Levinson, IEEE Tans. 
Communications, 1981

Speech coding

Speech synthesis

Speech recognition

Speech understanding

(After Rabiner & Levinson, 1981)Lecture 1

Lecture 2

Lecture 3

Lecture 3

Lecture 4-5



14

Speech Communication, V, Zheng-Hua Tan, 2006 27

Summary

Hidden Markov model
HMM-based ASR

Next lectures: : Language Processing and 
Speech Understanding by Tom Brøndsted.


