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Human speech communication process
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Speech recognition
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Part I: Automatic speech recognition

= Automatic speech recognition (ASR)
m Dynamic programming
= Hidden Markov model
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Attributes of ASR systems

Vocabulary: small (<20 words) to large (>50K words)
Perplexity: small (< 10) to large (> 200)

Enrollment: speaker-dependent to speaker-independent
Speaking mode: isolated-word to continuous-speech
Speaking style: read speech to spontaneous speech
SNR: high (> 30 dB) to low (< 10 dB)
Transducer: noise-concelling microphone to cell phone
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Where are we?

Word error rates for several ASR tasks

Corpus Speaking style |[Vocabulary |Word error |Huamn error
size rate (%) rate (%)
Connected Spontaneous 11 0.3 0.009
digit strings
Resource Read speech 1000 3.6 0.1
management
Wall Street Read text 64,000 6.6 1
Journal
Switchboard |Conversational |10,000 19.3 4
telephone
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ASR Trends

~mid 70’s mid 70’s ~mid 80’s |mid 80’s ~

Recognition units [Word & sub-word |Sub-word Sub-word

Modelling Heuristic; {Template matching; _Mathematical;
appraoches Rule-based Deterministic & data-| |Probabilistic & data-
driven

riven

Knowledge Heterogeneous |Homogeneous and Homogeneous and
representation  |and complex simple simple

Knowledge Knowledge Embedded in simple |Automatic learning
acquisition engineering structure

Statistical modelling and data-driven approaches have proved
“to be powerful
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Components of ASR system

Acoustic Language
models models

Feature Decoder Words Rl
extraction (search)

Speech recognition involves:

o How to represent the signal

o How to model both acoustic and language constraints
o How to search for the optimal answer
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Part II: Dynamic programming

m Speech recognition
= Dynamic programming
= Hidden Markov model
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Dimension & speech representation

= The curse of dimension — the computational cost
increases exponentially with the dimension of the
problem

= The frame-based analysis yields a sequence as a
new representation of the speech signal

o samples at 8000/sec - vectors at 100/sec

-l ..ﬂ

-----
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Word template based ASR

Used for both isolated- and connected-word
speech recognition

Speech —— Feature Pattern Decision Words
extraction similarity rule
Word
template

Template matching mechanism
o Calculate the distance btw two patterns
o Dynamic time warping (DTW)
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Speaking rate and time-normalization

Speaking rate variation causes nonlinear
fluctuation in a speech pattern time axis

Time-normalization is needed.
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DP based time-normalization

Dynamic programming is a pattern matching
algorithm with a nonlinear time-normalization

effect.

o Time differences btw two speech patterns are
eliminated by warping the time axis of one so that
the maximum coincidence is attained with the
other, also called dynamic time warping (DTW)

o The time-normalized distance is calculated as the
minimized residual distance between them,
remaining still after eliminating the timing

differences.
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Dynamic programming

Consider two speech patterns expressed as a sequence of

feature vectors :
A=a,a,,..,a,,..,q, J
B:bl,bz,...,bj,...,bJ

Consider an i-j plane, ¢ .| n
then the time difference
can be depicted by a
sequence of points
c=(i,)):

F =c(),c(2),....,c(k),...,c(K)

Signal B

c(k) =node( f,;)

node(I, J)

Signal A

node(0, 0}
where
c(k) = (i(k), j(k))
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Dynamic programming (cont’d)

The sequence c is called a warping function.
A distance btw two feature vectors is
d(c)=d(i, j)=lla;,=b, |
The weighted summation of distances on warping

function F becomes E(F)= éd(c(k))-w(k)

The time-normalized distance btw A and B is defined as
the minimum residual distance btw them

K
2. d(c(k)).w(k)
D(4,B) = min| £=—
2 w(k)
k=1
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Restrictions on warping function

Warping function F (or points c(k) ), as a model of

time-axis fluctuation in speech, has restrictions:
1) Monotonic conditions :

i(k—1<i(k)and j(k-1)< j(k)
2) Continuity conditions :
i(k)—i(k—1)<land j(k)—j(k-1)<1
3 Boundary conditions :
iH=1j0)=1and i(K)=Lj(K)=J.
4) Adjustment window condition
i)~ j(k) < r
5) Slope constraint condition :

— A gradient should be neither too steep nor too gentle.
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The simplest DP of symmetric form

Step 1: Initialisation:
g(Ll)=2d(1,1)
Step 2: Iteration (DP equation):
g, j=D)+d(, )
g(i, j)=min| g(i -1, j-1)+2d(, j)
g(i—=1,j)+d(, )
Adjustment window: j-r<i<j+r
Step 3: Termination:
Time-normalised distance
D(A,B) :%g(I,J), where N=1+J
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Part II1: Hidden Markov model

Speech recognition
Dynamic programming
Hidden Markov model
a Markov chain

o Hidden Markov model

u Difference between an observable and a hidden
Markov model

Basic calculations
How to evaluate an HMM - the forward algorithm
How to decode an HMM — the Viterbi algorithm

How to estimate HMM parameters — Baum-Welch
Algorithm

(]
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From template to statistical method

The template method with DP alignment is a
simplified, non-parametric method which is hard
to characterise the variation among utterances
Hidden Markov model (HMM) is a powerful
statistical method of characterising the observed
data samples of a discrete-time series

The underlying assumption of the HMM is

a The speech signal can be well characterised as a
parametric random process

a The parameters of the stochastic process can be
estimated in a precise, well-defined manner
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The Markov chain

Consider a system described at any time ¢ as being in
one of a set of N states indexed by {1,2,...,N}

Denote the actual state at time t as g;

So, the first-order Markov chain is
Plg,=jlq,.=i,9,,=k,..]1=Plq, = jlq,, =1]

We consider those processes in which the right-side of

the equation above is independent of time, leading to
state-transition probabilities

ay=Plg, =jlq. =i, 1<i,j<N o P
. . Example:A three-state model of ; 0‘3\‘ )
. th th
with constraints: e weather ~
— State 1: precipitation (rain, snow, hail, etc.)
a; >0 Vj ol State 2: cloudy 0.1 0.1
State 3: sunny 0.3%m, 0.2
¥ . N=3
: 2a; =1 Vi 9|
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A three-state Markov model

The weather on day t is characterised by a single one of
the three states

Example:A three-state model of
the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny

0.4 03 0.3
A={a,}=02 0.6 02
0.1 0.1 0.8

The above stochastic process is considered an
observable Markov model since the output process is a
set of states at each instant of time, where each state
corresponds to an observable event.
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Basic calculations

Example: What is the probability that the weather for eight consecutive
days is “sun-sun-sun-rain-rain-sun-cloudy-sun"?

Solution:
0 = sun sun sun rain rain sun cloudy sun
3 3 3 1 1 3 2 3

P(O|Model)

PI3IPI3|31P[3]31P[1]31P[1|11P[3]11P[2]31P(3]2]

= M3d338391 9139329

1536 % 107

Example:A three-state model of
the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny

(After Joseph Picone)

CTiF Center for TeleinFrastruktur Speech Communication, IV, Zheng-Hua Tan, 2006 22




“Hidden” Markov model

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

O = (HHTTTHTTH...H)
What is a reasonable model of the system?

P{H}) 1-P(H)
) 1-P(H) ; 1-Coin Model
g (Observable Markov Model)

y, F{H) O=HHTTHTHHTTH.
Heads Tails =11 2 21 2 11 2 2 1.
g2 2-Coins Model

) (Hidden Markov Model)
O=HHTTHTMHHTT H..
s=211 2 2 21 2 2 1 2.

P(H) = P4 P(H) = P3
P(T)=1-P,; P(T)=1-P,
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The Urn-and-Ball model
The Urn-and-Ball Model ~ doubly stochastic systems
P(red)  =by(1) P(red)  =by(1) P(red)  =bs(1)
P(green) =bs(2) P(green) =by(2) P(green) =bs(2)
Piblug) = b,(3) Plblug)  =hy(3) Plblug)  =hy(3)
P(yellow) = bs(4) P(yellow) = by(4) P(yellow) = bs(4)
& = {green, blue, green, yellow, red, ..., blue}
How can we determine the appropriate model for the observation
sequence given the system above?
ol | | | e S
L] bbb, L =
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Elements of a discrete HMM

N: the number of states

o states, s ={s4,S,,...,S\}

o state attimet, g, € s

M: the number of observation symbols

o observation symbols, v = {v,,v,,...,v), }

o observation attime t, o, € v

A = {a;}: state transition probability distribution

0 ;= PQu1 =51 q=s;), 1=ijsN

B = {b/(k)}: observation probability distribution in state j
a bfk) = P(OFvi| g, =s), 1=j<N, 1sksM

7 ={rx,}: initial state distribution

For convenience, we use the notation: 1=(4,B,x)
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Three basic HMM problems

Scoring: Given an observation sequence O =
{0,,0,,...,07 } and a model A = {A, B, 1}, how to
compute P(O | A), the probability of the observation
sequence? - The Forward-Backward Algorithm

Matching: Given an observation sequence O =
{0,,0,,...,07 } and the model A,how to choose a
state sequence q = {q,,9,,...,q+ } Which is optimum
in some sense? > The Viterbi Algorithm

Training: How to adjust the model parameters A =
{A,B, T} to maximize P(O| A)? - The Baum-Welch
Re-estimation Procedures
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Problem 1: Scoring

Given O = {0,,0,,...,07 } and A = {A, B,m}, how to
compute P(O | A), the probability of the observation
sequence? (probability evaluation)

o Consider all possible state sequences (N7) of length T:

PO 4)= 2 P(O|q,2)P(q| )

allq

= Z 7Ty, bql (Ol )aqllh bl]z (02 )'”aQT—qu bqr (OT)

q1-92 59T

Calculation required = 2T-N"
o ForN=5T =100, 2-100 - 5'% = 1072 computations!
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The forward algorithm

Consider the forward variable ¢, (i) defined as
a,(i) = P(0,0,..0,,q, =i | A)
i.e., the probability of the partial observation sequence until
time t and state i at time t, given the model A
We can solve for ¢, (i) inductively as follows:
1. Initialisation o, (i) = 7.b,(0,), 1<i<N
2. Induction _ N '
O (]) = |:zaz (l)aij :|b/ (OHI)’
3. Termination = N
PO 2)=X a;(i)
i=1

Calculation=N2T. For N=5,T=100, 2500, instead of 1072
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Illustration of forward algorithm

SN
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The backward algorithm

Similarly, consider the backward variable g, (i) defined as
B,(0) = P(0,,10,.,--0; |4, =1, 2)
i.e., the probability of the partial observation sequence from
time t +1 to the end, given state j at time t and model A

We can solve for £, (i) inductively as follows:
1. Initialisation B, (i) =1, 1<i<N
2. Induction t=T-1T-2,.,1

ﬂz (l) = g:lag/‘b_/ (Ot+l)ﬁt+l (])5 1<i<N

3. Termination
N
PO|A)= Z”ibz’ (0)) B, (i)
i=1
Again, calculation=N2T.
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Problem 2: Matching

Given O = {0,,0,,...,07 },how to choose a state
sequence q = {q,9,,-..,q+ } Which is optimum in
some sense? (“Optimal” state sequence)
Several possible optimality criteria:

o Choose the states g; that are individually most likely at
each time t, which maximize the expected number of
correct individual states (by choosing the most likely
state for each t). We define the a posteriori probability

variable _ '
y.(0)=Plg, =i]O,4)

i.e., the probability of being in state i at time t, given the
observation sequence O, and the model A
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Finding optimal state sequence

y.(i)="P(q, =i]0,4)
_P(O,q,=i|4) _ P(O.q,=i|A)

P(O| A) > P(O.q, =i] )
Since P(0,q, =i| 1) =a, (i) B,(i)
So (=0
;%@ﬁm

Then the individually most likely state g, at time tis

g, =argmin(y, (i)}
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The Viterbi algorithm

The individual optimality criterion has the problem that the

“optimal” state sequence may not even be a valid state

sequence 2>

Another criterion is to find the single best state sequence

(path), i.e., to maximize P(q, OJ|A).=>

A formal technique to do so, based on DP methods, is

called the Viterbi algorithm
To find the best path q ={q94,9,,...,97 }, for given O =

{04,0,,...,07 }, we define the best score (highest probability)

along a single path, at time t,
6,()= max P(q,q,..4,,9, =1,0,0,..0,| A)

41592 >-9t-1

which accounts for the first t observations and ends in state /.

Then 5t+l (]) = [mlax 5[ (Z)a,] ]b] (0t+1)
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The Viterbi algorithm (cont’d)

Initialisation 5 iy=zb0,), 1<i<N

w,(()=0
Recursion
8,()=max[6,_,(Da,b,(0)], 2<t<T 1<j<N

;//t(j):argpa§[5t4(i)ay.], 2<t<T 1<j<N

Termination
P" = max[5, (i)]

q; =argmax[&, (i)]
Path (state sequence) backtracking
¢ =Vula)  1=T-LT-2,.]
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The power of recursive equation

Computing factorials n/

1.simply caculate n! for each n
2.usen!=n(n-1)!

if F(n)=n!then

F(n) =nF(n-1)for n > 1 Recursive Equation
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Problem 3: Training

How to adjust the model parameters A =
{A,B, 1} to maximize P(O| A)? - The Baum-
Welch Re-estimation Procedures

(next lecture)
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Summary

Introduction to speech recognition
Dynamic programming
Hidden Markov model

Next lectures: Speech Recognition, Part II
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