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Human speech communication process

Rabiner and Levinson, IEEE Tans. 
Communications, 1981

Speech coding

Speech synthesis

Speech recognition

Speech understanding

(After Rabiner & Levinson, 1981)Lecture 1

Lecture 2

Lecture 3

Lecture 3
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Part I: Automatic speech recognition

Automatic speech recognition (ASR)
Dynamic programming
Hidden Markov model
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Interactive (R&U)
Conversational HCI
Transactions
Information query 

Input (Rec. only)
Command&control
Data entry
Dictation

Human-computer interaction via speech

Text input

Speech

Speech Text

Meaning

Recognition

Text-to-speech

ComputerHuman

Understanding

Generation

Text

Converts the speech
signal to words
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Attributes of ASR systems

Vocabulary: small (<20 words) to large (>50K words)
Perplexity: small (< 10) to large (> 200)
Enrollment: speaker-dependent to speaker-independent
Speaking mode: isolated-word to continuous-speech
Speaking style: read speech to spontaneous speech
SNR: high (> 30 dB) to low (< 10 dB)
Transducer: noise-concelling microphone to cell phone
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Where are we?

Word error rates for several ASR tasks

419.310,000Conversational
telephone

Switchboard

16.664,000Read textWall Street
Journal

0.13.61000Read speechResource
management

0.0090.311SpontaneousConnected
digit strings

Huamn error 
rate (%)

Word error 
rate (%)

Vocabulary
size

Speaking styleCorpus
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ASR Trends

Statistical modelling and data-driven approaches have proved 
to be powerful

Automatic learningEmbedded in simple 
structure

Knowledge
engineering

Knowledge
acquisition

Homogeneous and 
simple

Homogeneous and 
simple

Heterogeneous
and complex

Knowledge
representation

Mathematical; 
Probabilistic & data-
driven

Template matching;
Deterministic & data-
driven

Heuristic; 
Rule-based

Modelling
appraoches

Sub-wordSub-wordWord & sub-wordRecognition units

mid 80’s ~mid 70’s ~mid 80’s~ mid 70’s
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Components of ASR system

Speech recognition involves:
How to represent the signal
How to model both acoustic and language constraints
How to search for the optimal answer

Feature 
extraction

Decoder
(search)

Acoustic
models

Language
models

ApplicationSpeech Words
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Part II: Dynamic programming

Speech recognition
Dynamic programming
Hidden Markov model
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Dimension & speech representation

The curse of dimension – the computational cost 
increases exponentially with the dimension of the 
problem 
The frame-based analysis yields a sequence as a 
new representation of the speech signal

samples at 8000/sec vectors at 100/sec
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Word template based ASR

Used for both isolated- and connected-word 
speech recognition

Template matching mechanism
Calculate the distance btw two patterns
Dynamic time warping (DTW)

Feature 
extraction

Word 
template

Pattern 
similarity

Decision 
rule

Speech Words
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Speaking rate and time-normalization 

Speaking rate variation causes nonlinear
fluctuation in a speech pattern time axis

Time-normalization is needed.
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DP based time-normalization 

Dynamic programming is a pattern matching 
algorithm with a nonlinear time-normalization 
effect.

Time differences btw two speech patterns are 
eliminated by warping the time axis of one so that 
the maximum coincidence is attained with the 
other, also called dynamic time warping (DTW)
The time-normalized distance is calculated as the 
minimized residual distance between them, 
remaining still after eliminating the timing 
differences.
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Consider an i-j plane, 
then the time differences 
can be depicted by a 
sequence of points 
c=(i,j):

where

Dynamic programming
Consider two speech patterns expressed as a sequence of 
feature vectors :
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Dynamic programming (cont’d)
The sequence c is called a warping function.
A distance btw two feature vectors is

The weighted summation of distances on warping 
function F becomes

The time-normalized distance btw A and B is defined as 
the minimum residual distance btw them
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Restrictions on warping function

Warping function F (or points c(k) ), as a model of 
time-axis fluctuation in speech, has restrictions:
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The simplest DP of symmetric form

Step 1: Initialisation:

Step 2: Iteration (DP equation):

Adjustment window:
Step 3: Termination:
Time-normalised distance 
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Part III: Hidden Markov model

Speech recognition
Dynamic programming
Hidden Markov model

Markov chain
Hidden Markov model
Difference between an observable and a hidden 
Markov model 
Basic calculations

How to evaluate an HMM – the forward algorithm
How to decode an HMM – the Viterbi algorithm
How to estimate HMM parameters – Baum-Welch 
Algorithm



10

Speech Communication, IV, Zheng-Hua Tan, 2006 19

From template to statistical method

The template method with DP alignment is a 
simplified, non-parametric method which is hard 
to characterise the variation among utterances
Hidden Markov model (HMM) is a powerful 
statistical method of characterising the observed 
data samples of a discrete-time series 
The underlying assumption of the HMM is

The speech signal can be well characterised as a 
parametric random process
The parameters of the stochastic process can be 
estimated in a precise, well-defined manner
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The Markov chain
Consider a system described at any time t as being in 
one of a set of N states indexed by {1,2,…,N}
Denote the actual state at time t as qt

So, the first-order Markov chain is

We consider those processes in which the right-side of 
the equation above is independent of time, leading to 
state-transition probabilities 

with constraints:
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A three-state Markov model
The weather on day t is characterised by a single one of 
the three states

The above stochastic process is considered an 
observable Markov model since the output process is a 
set of states at each instant of time, where each state 
corresponds to an observable event.
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Basic calculations

(After Joseph Picone)
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“Hidden” Markov model
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The Urn-and-Ball model

doubly stochastic systems
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Elements of a discrete HMM
N: the number of states 

states, s = {s1,s2,...,sN}
state at time t, qt∈ s 

M: the number of observation symbols
observation symbols, v = {v1,v2,...,vM }
observation at time t, ot∈ v 

A = {aij}: state transition probability distribution
aij = P(qt+1 = sj | qt = si ), 1≤ i,j ≤ N 

B = {bj(k)}: observation probability distribution in state j 
bj(k) = P(Ot=vk | qt = sj), 1≤ j ≤ N, 1≤ k ≤ M 

: initial state distribution 
For convenience, we use the notation:

}{ iππ =
),,( πλ BA=
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Three basic HMM problems
1. Scoring: Given an observation sequence O = 

{o1,o2,...,oT } and a model λ = {A, B,π}, how to 
compute P(O | λ), the probability of the observation 
sequence? The Forward-Backward Algorithm

2. Matching: Given an observation sequence O = 
{o1,o2,...,oT } and the model λ,how to choose a 
state sequence q = {q1,q2,...,qT } which is optimum 
in some sense? The Viterbi Algorithm

3. Training: How to adjust the model parameters λ = 
{A,B,π} to maximize P(O| λ)? The Baum-Welch 
Re-estimation Procedures
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Problem 1: Scoring

Given O = {o1,o2,...,oT } and λ = {A, B,π}, how to 
compute P(O | λ), the probability of the observation 
sequence? (probability evaluation)

Consider all possible state sequences (NT) of length T:

Calculation required ≈ 2T·NT

For N =5,T = 100,  2 · 100 · 5100 ≈ 1072 computations!
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The forward algorithm
Consider the forward variable        defined as

i.e., the probability of the partial observation sequence until 
time t and state i at time t, given the model λ
We can solve for         inductively as follows:
1. Initialisation

2. Induction

3. Termination

Calculation≈N2.T.  For N=5,T=100, 2500, instead of 1072
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Illustration of forward algorithm
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The backward algorithm
Similarly, consider the backward variable        defined as

i.e., the probability of the partial observation sequence from 
time t +1 to the end, given state i at time t and model λ
We can solve for         inductively as follows:
1. Initialisation

2. Induction

3. Termination

Again, calculation≈N2.T.  
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Problem 2: Matching

Given O = {o1,o2,...,oT },how to choose a state 
sequence q = {q1,q2,...,qT } which is optimum in 
some sense? (“Optimal” state sequence)  
Several possible optimality criteria:

Choose the states qi that are individually most likely at 
each time t, which maximize the expected number of 
correct individual states (by choosing the most likely 
state for each t). We define the a posteriori probability 
variable

i.e., the probability of being in state i at time t, given the 
observation sequence O, and the model λ

),|()( λγ OiqPi tt ==

Speech Communication, IV, Zheng-Hua Tan, 2006 32

Finding optimal state sequence

Since 

So 

Then the individually most likely state qt
* at time t is
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The Viterbi algorithm
The individual optimality criterion has the problem that the 
“optimal” state sequence may not even be a valid state 
sequence 
Another criterion is to find the single best state sequence 
(path), i.e., to maximize P(q, O|λ).
A formal technique to do so, based on DP methods, is 
called the Viterbi algorithm
To find the best path q = {q1,q2,...,qT }, for given O = 
{o1,o2,...,oT }, we define the best score (highest probability) 
along a single path, at time t,

which accounts for the first t observations and ends in state i.
Then 
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The Viterbi algorithm (cont’d)

1. Initialisation

2. Recursion

3. Termination

4. Path (state sequence) backtracking
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The power of recursive equation

Equation Recursive 1for  )1()( 
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Problem 3: Training

How to adjust the model parameters λ = 
{A,B,π} to maximize P(O| λ)? The Baum-
Welch Re-estimation Procedures

(next lecture)
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Summary

Introduction to speech recognition
Dynamic programming
Hidden Markov model

Next lectures: Speech Recognition, Part II


