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Speech analysis

Previous study:
o Production speech
o Properties of speech signals

Most applications of speech processing must
exploit the properties of speech signals >
Speech Analysis: the process of extracting
such properties from a speech signal.

speech | rgpresentation | applications: e.g.
speech —| anpalysis of speech pitch, formants,

(DSP) boundary detection
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Part I: Short-time speech analysis

= Short-time speech analysis

m Time-domain processing

m Frequency-domain (spectral) processing
m Linear predictive coding (LPC) analysis
m Cepstral analysis
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Properties of speech signals
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Speech is a time-varying signal:
o excitation
a pitch
a amplitude
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Discrete-time filter model for speech

fundamental A
frequency v
Impal: Glottal

Tr = Pulse

[ o Model

Vocal Tract Lip
Model  |—m= Radiation |
Viz) Model

ug(n) pL(n)

Ay

Time-varying parameters: fundamental
freqency (pitch), voiced/unvoiced/silence,
gain, formants, vocal tract area functions, etc
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Short-time processing solution

Assuming that speech has non-time-varying
properties (fixed excitation and vocal tract)
within short intervals >

Processing short segments (frames) of the
speech signal each time

£ (n,m) = x(m)w(n—m)

wlso-m\ wlioD=m) _Wl200-m)

-~ ’( /ff xim)
i

= —

o n=s0 ne100 n=200

Fig. 6.1 Sketches of x(m) and win—e) for several values of «
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Frame-by-frame processing

= frames (segments) often overlap one another
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= The frame-based anaIyS|s ylelds a t|me-
varying sequence as a new representation of
the speech signal
o samples at 8000/sec - vectors at 100/sec
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Windows
= Rectangular window s
wn]=1,  0<nEN-1 e oo

= Hamming window s

win] = 0.54—0.46 cos(]\zfm ),  0<n<N-I
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Choice of window

= Window type

o Bandwidth of Hamming window is about twice the
bandwidth of Rectangular

o Attenuation of more than 40dB for Hamming as
compared with 14 dB for Rectangular, outside
passband

= Window duration - N
a Increase N = decrease window bandwidth

a N should be larger than a pitch period, but smaller
than a sound duration
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Part II: Time-domain processing

= Short-time speech analysis

= Time-domain speech processing

m Frequency-domain (spectral) processing
m Linear predictive coding (LPC) analysis
m Cepstral analysis
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Time-domain parameters

Short-time energy

Short-time average magnitude
Short-time zero crossing rate

Short-time autocorrelation

Short-time average magnitude difference
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Short-time energy

The long term energy definition is not useful
for time-varying signals

E = ixz(m)

Short-time energy of weighted signal around
n is defined as

8

E, = Y[x(m)w(n—m)]’
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Examples of short-time energy

= It can be used to detection voiced/unvoiced/silence
o Effects of window type, duration N (bandwidth), why?

JWHAT SHE SAID/-RECTANGULAR WINDO w HE SAID/ - HAMMING WINE
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el j\ /L N-aot
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SHORT -TIME ENERGY, Eq

SHORT-TIME ENERGY, Eq

©.5 1.0 1.5 a [-X.) 10 1.8
EEEEEEEEEEEEE TIME IN SECONDS
Fig. 4.6 Short-time energy functions for rectangular windows of various Fig. 4.7 Short-time energy functions for Hamming g windows of various
lengths. lengths.
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Short-time magnitude

= Less sensitive to large signal levels as
compared to energy where x2(n) terms is used.
M, = Y| x(m)|w(n—m)

) [} as
TIME IN SECONDS

Fig. 4,7 functions for Hamming windows of various
lengths
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Short-time average zero-crossing rate

A zero-crossing occurs if successive samples
have different algebraic signs.

It is @ measure of the frequency.

|\|| i |
Definition / \/M
zero crossing

Z, = Ylsgnlx(m)] - sgnlx(m—1)] | w(n—m)

sgn[x(n)] =
-1 x(n)<0
! 0<n<N-1
and  wm=i2y "7
0  otherwise
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Zero-crossing rate distributions

A histogram of average zero-crossing rates

(averaged over 10 msec) for both voiced and
unvoiced speech

Energe locates in different frequency bands

UNVOICED
N .

~OICED

i H H
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NUMBER OF ZERO CROSSINGS PER 10 msec INTERVAL

Fig. 4.11 Distribution of zero-crossings for unvoiced and voiced speech.
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Example of zero-crossing rate

Although the zero-crossing rate varies
considerably, the voiced and unvoiced
regions are quite prominent.

/WHAT ,SHE SAID/

AVERAGE ZERO CROSSING RATE

TIME IN SECONDS

Fig. 4.12 Average zero-crossing rate
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Short-time autocorrelation function

The autocorrelation function

o0

g(k) = 2. x(m)x(m+k)

m=—o0

The short-time autocorrelation function
R.(K)= 3 x(m)yw(n—m)x(m+kw(n—k —m)

m=—0 10
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8. 4.24 Autocorrelation function for () and (b) voiced spee.
ch, using a restangular window with ¥ — 401,
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Applications

= Boundary detection
a short-time energy
o zero crossing rate

= Pitch estimation
o short-time autocorrelation function
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Part III: Frequency-domain process.

m Short-time speech analysis

m Time-domain speech processing

= Frequency-domain (spectral) processing
m Linear predictive coding (LPC) analysis
m Cepstral analysis
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Discrete-time Fourier transform

X(e™)= Y xinle ™"

n=—o

1 2 s 7
— X(e™Ve™ d
x[n] . I_ﬂ (e’)e™dw

Convolution and multiplication duality:

yln]=x{n]* h[n]
Y(e”™)=X(e™)H(e™)

yIn]=x[n]w{n]
Y(e™)= i [ w(e”) X (e’ )do
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Short-time Fourier transform

It is motivated by the need for a spectral

representation to reflect the time-varying

properties of the speech waveform

X, (e™)= Zw[n mlx[mle ™"

W(SO—m\ W(I00—m) w(200-m)

X(m)

L \
A J\A S b
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0 =200
Fig. 6.1 Sketches of x(m) and w(n—m) for several values of n
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Spectra

Hamming Vs. Rectanqular Spectra

0.3082
[
| E— A
0.2082 Original Waveform 0.4052
0. Hamming Window: 100 B000. 0. Rectangular Window: 100 8000,
0. Hamming Window: 300 B000. 0. Rectangular Window: 300 2000,
0. Hamming Window: 500 8000. 0. Rectangular Window: 500 8000.

TN,
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Spectra of voiced/unvoiced sounds

24
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Spectrogram

Spectrogram

o two-dimensional waveform (amplitude/time) is
converted into a three-dimensional pattern
(amplitude/frequency/time)

o Wideband spectrogram: analyzed on 15ms
sections of waveform with a step of 1ms

voiced regions with vertical striations due to the
periodicity of the time waveform (each vertical line
represents a pulse of vocal folds) while unvoiced regions
are solid/random, or ‘snowy’

o Narrowband spectrogram: on 50ms
pitch for voiced intervals in horizontal lines
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Wide- and narrow-band spectrograms
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Part IV: LPC analysis

m Short-time speech analysis

m Time-domain speech processing

m Frequency-domain (spectral) processing
= Linear predictive coding (LPC) analysis
m Cepstral analysis
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Discrete-time filter model for speech

Its philosophy is related to the speech model in which
speech is modelled as the output of a linear, time-
varying system excited by either quasi-periodic pulses or
random noise.

The LPC provides a robust and accurate method for
estimating the parameters of the time-varying system.

fundamental A,
frequenc! y

H(z)
Train stse
3 foded
Vocal Tra ip
Model Radiation
(2] el
— ug(n)
.
enerator

puin}
An
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LPC analysis

For efficient coding, speech signals are often
modelled using parameters of the vocal tract
shape that generates them.

Pole-zero model (ideal during a stationary frame)
- -1
3,(2) _ 1+Zblz

H(z)=——=G—=-
U(z) 1-Ya,z*
k=1

All-pole model (simple): a matter of analytical

necessit . .
Y A=50 _g_1

P
U(Z) l_zaszk
k=1
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All-pole model — the LPC model

I:I(z):;(z):G L > §9-—FG

- - U(z)
@) 1Yz 1-Ya,z™*

S S0)-= S(z)kf a2 +GU(2)

> s(n)= iais(n —i)+ Gu(n)

where u(n) is a normalised excitation and G is the
gain of the excitation
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The LPC model

After excluding the excitation term, a given speech
sample at time n, s(n), can be approximated as
a linear combination of the past p speech
samples:

s(my=as(n—)+a,s(n-2)+...+a,s(n-p)

where the coefficients 4;,4,....a, are assumed
constant over the speech frame.
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LPC analysis equations

Windowed speech:  x(n) = s(m)w(n)
Error of linear predictor  ¢(n) = s(n)-$(n)

e(n)=s(n)— i a,s(n—k)

Error »
e(n) = x(n)— a,x(n—k)

Error energy

E= iez(n): _Zai: [x(n)—kzli:lakx(n—k)]
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LPC analysis equations (cont’d)

Find a, such that E is minimal

E= iez(n): i [x(n)—kflakx(n—k)]

a_E:() for k=1,2,~--ap
oa,

giving  Sx(n-ix(n = d, 3 x(n-i)x(n—k)

n=-—o0

given covariance gi,k)= 3 x(n—i)x(n-k)

SO’ . n=-o0
¢(l’0) = Zak¢(ia k) = 152:---:p
k=1
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Short-time LP analysis

To solve the following equation for the
optimum predictor coefficients (the 4,s)

$G.0) =3 6.9 k) =12, p

we have to compute ¢(.k) and then solve the
resulting set of p equations.

Two standard methods: (Rabiner and Juang,
pp103-107)

o Autocorrelation method
o Covariance method
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Part V: Cepstral analysis

= Short-time speech analysis

m Time-domain speech processing

m Frequency-domain (spectral) processing
m Linear predictive coding (LPC) analysis
= Cepstral analysis
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Homomorphic speech processing

= Again, speech is modelled as the output of a linear, time-
varying system (linear time-invariant (LTI) in short seg.)
excited by either quasi-periodic pulses or random noise.

= The problem of speech analysis is to estimate the
parameters of the speech model and to measure their
variations with time.

= Since the excitation and impulse response of a LTI
system are combined in a convolutional manner, the
problem of speech analysis can also been viewed as a
problem in separating the components of a convolution,
called "deconvolution”.

yin]= x[n]* h[n]
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Homomorphic systems for convolution

The principle of superposition for conventional
linear systems:

L{x(n)] = L{x,(n) + x, ()] = L{x, (m)]+ L[ x, ()]

=y (n)+y,(n) = y(n)
Llax(n)] = aL[x(n)] = ay(n)

Homomorphic systems for convolution

H[x(n)]= H[x,(n)*x,(n)] = H[x,(n)]* H[x,(n)]
=y, (n)*y,(n) = y(n)
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Homomorphic deconvolution

Converts a convolution into a sum
{y(n) = x(n)*h(n)
y(n) =x(n)+ h(n)
Canonic form for system for homomorphic
deconvolution

* + + + + *
—— D] — L1 — D[]
x(n) x(n) y(n) y(n)

x(m*x,(n) 3 (n)+3,(n) )+ 3y(n)  yi(n)+ y,(n)
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The characteristic system

The characteristic system for homomorphic
deconvolution

D. ]
R Ao Fooees +
— 0 <[] log[ ] ZN]

x(n) X(2) X0) “)
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Cepstral analysis

Observation:
x[n] = x,[n]*x,[n] & X(2) = X,(2) X,(2)
taking logarithm of X(z), then
log{X(z)} =log{X,(z)} +log{X,(2)}
ie., X(2)=X,(2)+X,(2)
&>  xn]l=x[n]+x,[n] in the cepstral domain

So, the two convolved signals are additive in
the cepstral domain
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Complex cepstrum and real cepstrum

Real cepstrum c[#] is the even part of x[x]
- _L T (W Wi
X[n]= > j_” X(e™)e™dw

T

1 T . .
cn]= 2—I_” log| X(e™)|e™"dw cepstrum
n

cepstrum was coined by reversing the first
syllable in the word spectrum.
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Summary

Short-time speech analysis
Time-domain processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Next lecture: Speech Coding and Synthesis
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