
1

Speech Communication, II, Zheng-Hua Tan, 2006 1

Speech Communication, Spring 2006

Zheng-Hua Tan

Department of Communication Technology 
Aalborg University, Denmark 

zt@kom.aau.dk

Lecture 2: Speech Analysis

Speech Communication, II, Zheng-Hua Tan, 2006 2

Speech analysis 

Previous study:
Production speech
Properties of speech signals

Most applications of speech processing must 
exploit the properties of speech signals 
Speech Analysis: the process of extracting 
such properties from a speech signal.

speech
analysis
(DSP)

speech representation
of speech

applications: e.g. 
pitch, formants, 

boundary detection
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Part I: Short-time speech analysis

Short-time speech analysis
Time-domain processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis
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Properties of speech signals

Speech is a time-varying signal:
excitation
pitch
amplitude
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Discrete-time filter model for speech

Time-varying parameters: fundamental 
freqency (pitch), voiced/unvoiced/silence, 
gain, formants, vocal tract area functions, etc
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Short-time processing solution

Assuming that speech has non-time-varying 
properties (fixed excitation and vocal tract) 
within short intervals 

Processing short segments (frames) of the 
speech signal each time

)()(),( mnwmxmnf x −=
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Frame-by-frame processing

frames (segments) often overlap one another

The frame-based analysis yields a time-
varying sequence as a new representation of 
the speech signal

samples at 8000/sec vectors at 100/sec
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Windows

Rectangular window

Hamming window
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Choice of window

Window type
Bandwidth of Hamming window is about twice the 
bandwidth of Rectangular
Attenuation of more than 40dB for Hamming as 
compared with 14 dB for Rectangular, outside 
passband

Window duration - N
Increase N = decrease window bandwidth
N should be larger than a pitch period, but smaller 
than a sound duration
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Part II: Time-domain processing

Short-time speech analysis
Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis
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Time-domain parameters

Short-time energy
Short-time average magnitude
Short-time zero crossing rate
Short-time autocorrelation
Short-time average magnitude difference
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Short-time energy

The long term energy definition is not useful 
for time-varying signals

Short-time energy of weighted signal around 
n is defined as
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Examples of short-time energy

It can be used to detection voiced/unvoiced/silence
Effects of window type, duration N (bandwidth), why?
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Short-time magnitude

Less sensitive to large signal levels as 
compared to energy where x2(n) terms is used.
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Short-time average zero-crossing rate

A zero-crossing occurs if successive samples 
have different algebraic signs.
It is a measure of the frequency.
Definition 

where 

and
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Zero-crossing rate distributions

A histogram of average zero-crossing rates 
(averaged over 10 msec) for both voiced and 
unvoiced speech
Energe locates in different frequency bands
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Example of zero-crossing rate

Although the zero-crossing rate varies 
considerably, the voiced and unvoiced 
regions are quite prominent.
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Short-time autocorrelation function

The autocorrelation function

The short-time autocorrelation function
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Applications 

Boundary detection
short-time energy
zero crossing rate

Pitch estimation
short-time autocorrelation function
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Part III: Frequency-domain process.

Short-time speech analysis
Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis
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Discrete-time Fourier transform

Convolution and multiplication duality:
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Short-time Fourier transform

It is motivated by the need for a spectral 
representation to reflect the time-varying 
properties of the speech waveform
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Spectra
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Spectra of voiced/unvoiced sounds
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Spectrogram 

Spectrogram
two-dimensional waveform (amplitude/time) is 
converted into a three-dimensional pattern 
(amplitude/frequency/time)
Wideband spectrogram: analyzed on 15ms 
sections of waveform with a step of 1ms

voiced regions with vertical striations due to the 
periodicity of the time waveform (each vertical line 
represents a pulse of vocal folds) while unvoiced regions 
are solid/random, or ‘snowy’

Narrowband spectrogram: on 50ms
pitch for voiced intervals in horizontal lines
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Wide- and narrow-band spectrograms

Wideband spectrogram

waveform

narrowband spectrogram

F1

F2
F3
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Part IV: LPC analysis

Short-time speech analysis
Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis
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Discrete-time filter model for speech
Its philosophy is related to the speech model in which 

speech is modelled as the output of a linear, time-
varying system excited by either quasi-periodic pulses or 
random noise. 

The LPC provides a robust and accurate method for 
estimating the parameters of the time-varying system.

H(z)
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LPC analysis

For efficient coding, speech signals are often 
modelled using parameters of the vocal tract 
shape that generates them.
Pole-zero model (ideal during a stationary frame)

All-pole model (simple): a matter of analytical 
necessity
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All-pole model – the LPC model

where u(n) is a normalised excitation and G is the 
gain of the excitation
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After excluding the excitation term, a given speech 
sample at time n, s(n), can be approximated as 
a linear combination of the past p speech 
samples:

where the coefficients                  are assumed 
constant over the speech frame.

The LPC model
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LPC analysis equations

Windowed speech: 
Error of linear predictor

Error 

Error energy 
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LPC analysis equations (cont’d)

Find ak such that E is minimal

giving

given covariance
so,
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Short-time LP analysis

To solve the following equation for the 
optimum predictor coefficients (the    s)

we have to compute            and then solve the 
resulting set of p equations.

Two standard methods: (Rabiner and Juang, 
pp103-107)

Autocorrelation method
Covariance method
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Part V: Cepstral analysis

Short-time speech analysis
Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis
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Homomorphic speech processing
Again, speech is modelled as the output of a linear, time-
varying system (linear time-invariant (LTI) in short seg.) 
excited by either quasi-periodic pulses or random noise.
The problem of speech analysis is to estimate the 
parameters of the speech model and to measure their 
variations with time.
Since the excitation and impulse response of a LTI 
system are combined in a convolutional manner, the 
problem of speech analysis can also been viewed as a 
problem in separating the components of a convolution, 
called ”deconvolution”.

][*][][ nhnxny =
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Homomorphic systems for convolution

The principle of superposition for conventional 
linear systems:

Homomorphic systems for convolution 
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Homomorphic deconvolution

Converts a convolution into a sum 

Canonic form for system for homomorphic 
deconvolution
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*                .           .                +        +  +

The characteristic system for homomorphic 
deconvolution

The characteristic system

Z[ ] log[ ] Z-1[ ]
)(nx )(zX )(ˆ zX )(ˆ nx

D*[  ]
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Cepstral analysis

Observation:

taking logarithm of X(z), then

in the cepstral domain     
So, the two convolved signals are additive in 

the cepstral domain
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Complex cepstrum and real cepstrum

Real cepstrum       is the even part of       

cepstrum was coined by reversing the first 
syllable in the word spectrum.
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Summary

Short-time speech analysis
Time-domain processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Next lecture: Speech Coding and Synthesis


