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Hidden Markov model (HMM)
 An HMM is a statistical model in which the system being modeled is 

assumed to be a Markov process with unobserved state. 

 In a regular Markov model, the state is directly visible to the 
observer and therefore the state transition probabilities are the onlyobserver, and therefore the state transition probabilities are the only 
parameters. 

 In a hidden Markov model, the state is not directly visible, but output 
dependent on the state is visible. Each state has a probability 
distribution over the possible output tokens. Therefore the sequence 
of tokens generated by an HMM gives some information about the 
sequence of states. Note that the adjective 'hidden' refers to the 
state sequence through which the model passes not to thestate sequence through which the model passes, not to the 
parameters of the model.
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Hidden Markov model applications

 In temporal pattern recognition such as speech, 
handwriting, gesture recognition, part-of-speech tagging, 
musical score following, partial discharges and 
bioinformatics.
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Part I: Markov chain

 Markov chain

 Hidden Markov model

 Basic calculations
 How to evaluate an HMM – the forward algorithm

 How to decode an HMM – the Viterbi algorithm

 How to estimate HMM parameters – Baum-Welch 
Algorithm
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 Continuous and discrete HMMs
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A three-state Markov model

 The weather on day t is characterised by a single one of 
the three states
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 The above stochastic process is considered an 
observable Markov model since the output process is a 
set of states at each instant of time, where each state 
corresponds to an observable event.

Basic calculations
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(After Joseph Picone)
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Log-Domain Mathematics
Multiplying many numbers together brings in the risk of
underflow errors. 
A solution: Transform everything into the log domain:

li d i l d ilinear domain log domain
xy ey · x
x·y x+y
x+y logAdd(x,y)

logAdd(x,y) computes sum of x and y when both x and y are 
already in log domain.

)log()log( x
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(Hosom, 2006)

Log-Domain Mathematics

log-domain mathematics avoids underflow, allows 
(expensive) multiplications to be transformed to (cheap) 
additions.

Typically used in HMMs where there are a large number of
Multiplications, O(F) where F is the number of frames.  

If F is moderately large (e.g. 5 seconds of speech = 500 
frames), even large probabilities (e.g. 0.9) yield small 
results:
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0.9500 = 1.3×10-23

0.65500 = 2.8×10-94
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The Markov chain
 Consider a system described at any time t as being in one of 

a set of N states indexed by {1,2,…,N}

 Denote the actual state at time t as qt

 So, the first-order Markov chain is

 We consider those processes in which the right-side of the 
equation above is independent of time, leading to state-
transition probabilities 

]|[,...],|[ 121 iqjqPkqiqjqP ttttt  

NjiiqjqPa ttij   ,1    ],|[ 1
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with constraints:
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Part II: Hidden Markov model

 Markov chain

 Hidden Markov model

 Basic calculations
 How to evaluate an HMM – the forward algorithm

 How to decode an HMM – the Viterbi algorithm

 How to estimate HMM parameters – Baum-Welch 
Algorithm
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 Continuous and discrete HMMs
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“Hidden” Markov model
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The Urn-and-Ball model

doubly stochastic systems

Hidden State:

Suppose we can observe 
something that’s affected
by the true state.
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What is an HMM

 Hidden Markov Model:
 more than 1 event associated with each state.

 all events have some probability of emitting at each state. all events have some probability of emitting at each state.

 given a sequence of outputs, we can’t determine exactly
the state sequence.

 We can compute the probabilities of different state 
sequences given an output sequence.

 Doubly stochastic (probabilities of both emitting events
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 Doubly stochastic (probabilities of both emitting events 
and transitioning between states); exact state sequence 
is “hidden.”

Elements of a discrete HMM

 N: the number of states 
 states, s = {s1,s2,...,sN}

 state at time t, qt s state at time t, qt s 

 M: the number of observation symbols

 observation symbols, v = {v1,v2,...,vM }

 observation at time t, ot v 

 A = {aij}: state transition probability distribution
 aij = P(qt+1 = sj | qt = si ), 1≤ i,j ≤ N 
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 B = {bj(k)}: observation probability distribution in state j 
 bj(k) = P(Ot=vk | qt = sj), 1≤ j ≤ N, 1≤ k ≤ M 

 : initial state distribution 

 For convenience, we use the notation:

}{ i 
),,(  BA
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Elements of an HMM
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From Dan Ellis, 2004.

an HMM still generates observations,
each state is still discrete, 
observations can still come from a finite set (discrete HMMs).

What is an HMM

(Hosom, 2006)

( )

• the number of items in the set of events does not have to
be the same as the number of states. 

• when in state S, 
there’s p(e1) of generating event 1,
there’s p(e2) of generating event 2, etc.
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pS2(black) = 0.6
pS2(white) = 0.4

S1 S2 0.1

0.90.5

0.5
pS1(black) = 0.3
pS1(white) = 0.7
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What is an HMM

 must know all possible states in advance

 must know possible state connections in advance 

 cannot recognize things outside of model cannot recognize things outside of model

 must have some estimate of state emission probabilities
and state transition probabilities

 make several assumptions (usually so math is easier)

 if we can find best state sequence through an HMM for
a given observation, we can compare multiple HMMs 
f iti
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for recognition.   

Ergodic (fully-connected)
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1 23
4 = 0.0

3 4

0.1 0.2

•Topology defined by the state transition matrix (If an element of this 
matrix is zero, there is no transition between those two states).
•The topology must be specified in advance by the system designer
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Part III: Three HMM calculations

 Markov chain

 Hidden Markov model

 Basic calculations
 How to evaluate an HMM – the forward algorithm

 How to decode an HMM – the Viterbi algorithm

 How to estimate HMM parameters – Baum-Welch 
Algorithm
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 Continuous and discrete HMMs

Three basic HMM problems
1. Scoring: Given an observation sequence O = 

{o1,o2,...,oT } and a model λ = {A, B,π}, how to compute 
P(O | λ), the probability of the observation sequence? 
 The Forward Backward Algorithm The Forward-Backward Algorithm

2. Matching: Given an observation sequence O = 
{o1,o2,...,oT } and the model λ,how to choose a state 
sequence q = {q1,q2,...,qT } which is optimum in some 
sense?  The Viterbi Algorithm

Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 20

3. Training: How to adjust the model parameters λ = 
{A,B,π} to maximize P(O| λ)?  The Baum-Welch Re-
estimation Procedures
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Problem 1: Scoring

 Given O = {o1,o2,...,oT } and λ = {A, B,π}, how to 
compute P(O | λ), the probability of the observation 
sequence? (probability evaluation)sequence? (probability evaluation)
 Consider all possible state sequences (NT) of length T:


q all

qPqOPOP )|(),|()|( 
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 Calculation required ≈ NT ·2T
 For N =5,T = 100,  2 · 100 · 5100 ≈ 1072 computations!

The forward algorithm
 Consider the forward variable        defined as

i.e., the probability of the partial observation sequence until 

)|,...()( 21  iqoooPi ttt 
)(it

, p y p q
time t and state i at time t, given the model λ

 We can solve for         inductively as follows:
1. Initialisation

2. Induction

)(it

Niobi ii  1),()( 11        

Nj

Tt
obaij tj

N

i
ijtt 






  

1

11
),()()( 1

1
1        

Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 22

3. Termination

 Calculation≈T.N2.  For N=5,T=100, 2500, instead of 1072

Nji   11
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i
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Illustration of forward algorithm

From (Rabiner, 1989)
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The backward algorithm
 Similarly, consider the backward variable        defined as

i.e., the probability of the partial observation sequence from 

),|...()( 21  iqoooPi tTttt  

)(it

, p y p q
time t +1 to the end, given state i at time t and model λ

 We can solve for         inductively as follows:
1. Initialisation

2. Induction

NiiT  1,1)(        

Ni

TTt
jobai

N

j
ttjijt 


   1

1,...,2,1
,)()()(

1
11        

)(it

Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 24

3. Termination

 Again, calculation≈N2.T.  

Nij  11
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Problem 2: Matching

 Given O = {o1,o2,...,oT },how to choose a state 
sequence q = {q1,q2,...,qT } which is optimum in 
some sense? (“Optimal” state sequence)some sense? ( Optimal  state sequence)  
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Trellis diagram for an Isolated Word Recognition task.

From (Young et al. 1997, p. 10)

Finding optimal state sequence

 One optimality criterion is to choose the states qi that are 
individually most likely at each time t
 Define the probability of being in state i at time t, given the 

observation sequence O, and the model λ

),|()(  OiqPi tt 
)|(

)|,(




OP

iqOP t 








N

i
t

t

iqOP

iqOP

1

)|,(

)|,(





)()()|,(   Since iiiqOP ttt  

 tt
t

ii
i

)()(
)(haveWe




Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 26

 The individually most likely state qt
* at time t is
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Finding optimal state sequence (cont’d)

 The individual optimality criterion has the 
problem that the optimum state sequence may 
not obey state transition constraintsnot obey state transition constraints 

The “optimal” state sequence may not even be a 
valid sequence (aij=0 for some i and j)

 Another optimality criterion is is to find the single 
best state sequence (path), i.e., to maximize  
P(q O|λ)
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P(q , O|λ) 

The Viterbi algorithm – a method based on 
dynamic programming

The Viterbi algorithm

 To find the best path q = {q1,q2,...,qT }, for given O 
= {o1,o2,...,oT }, we define the best score (highest 
probability) along a single path at time tprobability) along a single path, at time t,

which accounts for the first t observations and ends 
in state i.

)|...,,...(max)( 21121
,...,, 121
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Then )(].)(max[)( 11   tjijt
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The Viterbi algorithm (cont’d)

1. Initialisation 

0)(
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2. Recursion

3. Termination
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4. Path (state sequence) backtracking

)]([maxarg
1
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The Viterbi algorithm (cont’d)

From Joseph Picone
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The power of recursive equation

eachfor!caculatesimply1Method

 factorials Computing

nn

n!
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Problem 3: Training

 How to tune the model parameters λ = {A,B,π} to 
maximize P(O| λ)? - a learning problem

 No efficient algorithm for global optimisation g g p

 Effective iterative algorithm for local optimisation: the 
Baum-Welch re-estimation

 Baum-Welch
 = forward-backward algorithm (Baum, 1972)

 is a special case of EM (expectation-maximization) 
algorithm
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algorithm

 computes probabilities using current model λ; 

 refines λ to    such that P(O| λ) is locally maximised 

 uses    and    from forward-backward algorithm 
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Baum-Welch re-estimation

Define           , the probability of being in state i at time 
t, and state j at time t+1, given λ and O, i.e. 

),( jit
















ttjijt

ttjijt

tt

ttt

jbai

P

jbai

P

jqiqP

jqiqPji

11

11

1

1

)()()(

)|(

)()()(
           

)|(

)|,,(
           

),|,(),(









o

O

o

O

O

O

Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 33


 




N

i

N

j
ttjijt

ttjijt

jbai

j

1 1
11

11

)()()(

)()()(
           





o

Baum-Welch Re-estimation (cont’d)

 Recall that        is defined as the probability of 
being in state i at time t, given the entire 
observation sequence and the model so

)(it

observation sequence and the model, so

 Sum        and          over t, we have
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Baum-Welch re-estimation formulas
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Parameter re-estimation process

1. Initialize

2. Compute

Estimate from

  and ,,

},{ BA

3. Estimate                from   

4. Replace     with   

5. If not converged go to 2

It can be shown that

},{ BA 
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Basic operations in HMMs
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(Andrew Moore)

Part VI: Continuous and discrete HMMS

 Markov chain

 Hidden Markov model

 Basic calculations
 How to evaluate an HMM – the forward algorithm

 How to decode an HMM – the Viterbi algorithm

 How to estimate HMM parameters – Baum-Welch 
Algorithm
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 Continuous and discrete HMMs
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Vector quantization

 Vector Quantization (VQ) is a method of automatically partitioning a 
feature space into different clusters based on training data.

 Given a test point (vector) from the feature space we can determine Given a test point (vector) from the feature space, we can determine 
the cluster that this point should be associated with.

 A “codebook” lists central locations of each cluster, and gives each 
cluster a name (usually a numerical index). 

 This can be used for data reduction (mapping a large number
of feature points to a much smaller number of clusters), or for 
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probability estimation.

 Requires data to train on, a distance measure, and test data.

Given the following data points, create codebook of 4 clusters,
with initial code word values at (2,2), (4,6), (6,5), and (8,8)

Vector quantization – an example

4
5

6
7

8
9

4
5

6
7

8
9

Readings in VGIS, MM1, Zheng-Hua Tan, Fall 2009 40

1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 90

1
2

3
0

1
2

3
0

(Hosom, 2006)
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• Features  observations, probability of feature = bj(ot)

• However, quantization error can arise when modeling a 
continuous signal (feature space) with discrete units (clusters)

Vector quantization

continuous signal (feature space) with discrete units (clusters)

p(x)

x
1 2 3 4 5 6 7 8 9 10 11 12 13
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• What happens to p(x) if feature space moves back and forth
between bins 3 and 4?   What about between bins 5 and 6?

• In addition, initialization can influence the location and 
histogram counts of the final clusters… want more robustness

(Hosom, 2006)

• What we want is a smooth, robust estimate of p(x) (and bj(ot))!!  

• How about this:

Continuous probability distribution 

p(x)

x
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• Now, small movement along x axis has smooth, gradual effect
on p(x).

• Still a question about initialization…

(Hosom, 2006)



22

• One way of creating such a smooth model is to use a mixture
of Gaussian probability density functions (p.d.f.s).

• The detail of the model is related to the number of Gaussian
t

Continuous probability distribution

components
• This Gaussian Mixture Model (GMM) is characterized by

(a) the number of components,
(b) the mean and standard deviation of each component,
(c) the weight (height) of each component

p(x)
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• One remaining question: how to compute probabilities from p.d.f.
at one point (a single x value)

p(x)

x

(Hosom, 2006)

• Typical HMMs for speech are continuous-density HMMs
• Use Gaussian Mixture Models (GMMs) to estimate probability
of “emitting” each observation given the speech category (state).

Gaussian mixture models

pr
ob

ab
il

it
y
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feature value

• Features  observations, probability of feature = bj(ot)

(Hosom, 2006)
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Continuous density HMMs

 Replaces the discrete observation probabilities, 
bj(k), by a continuous PDF (probability density 
function) b (x)function) bj(x)

 The PDF bj(x) is often represented as a mixture 
of Gaussians:

NjNb
M
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NjNcb
k

jkjkjkj  


1               ],,[)(
1

xx

N is the normal 
density 

The mean and covariance matrix 
associated with state j and mixture k

Comparing continuous (GMM) and discrete (VQ) HMMs: 

• Continuous HMMs:
i d d f f t f di l t i

Continuous vs discrete HMMs

 assume independence of features for diagonal matrix
 require large number of components to represent arbitrary

function
 large number of parameters = slow, can’t always

train well
 small number of components may not represent speech well

Di HMM
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• Discrete HMMs:
 quantization errors at boundaries
 relies on how well VQ partitions the space
 sometimes problems estimating probabilities when 

unusual input vector not seen in training
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Speech recognition system

Acoustic
models

Language
models

Feature 
extraction

Decoder
(search)

ApplicationSpeech
Words
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Training and test procedures for IWR

From (Young et al. 1996)
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• Example of using HMM for word “yes” on an utterance: 

HMMs for speech

o1 o2 o3 o4 o5 o6 o7 o8 o29
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y eh s

0.3 0.5 0.8

0.7 0.5 0.20.4sil sil

1.00.6

bsil(o1)·0.6·bsil(o2)·0.6·bsil(o3)·0.6·bsil(o4)·0.4·by(o5)·0.3·by(o6)·0.3·by(o7)·0.7 ...

observation state (Hosom, 2006)

Summary

 Markov chain

 Hidden Markov model

 Basic calculations
 How to evaluate an HMM – the forward algorithm

 How to decode an HMM – the Viterbi algorithm

 How to estimate HMM parameters – Baum-Welch 
Algorithm
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 Continuous and discrete HMMs


