Camera Calibration

Readings in Vision, Graphics and Interactive Systems

Christian Lindequist Larsen

October 16, 2009

Introduction

Camera Models

Camera Calibration

A Picture Says More Than a Thousand Words

What is Camera Calibration?

- Camera calibration "is the process of finding the true parameters of the camera that produced a given photograph or video," Wikipedia

What is Camera Calibration?

- Camera calibration "is the process of finding the true parameters of the camera that produced a given photograph or video," Wikipedia
- Two sets of parameters are determined:
- Intrinsic parameters
- Extrinsic parameters

Camera Calibration Parameters

- Intrinsic parameters
- how does the camera depict the scene?

$=(624.25,448.269)$

$+/-$	$[4.505$,
$+/-$	4.43 .087,
.847$]$	

Camera Calibration Parameters

Extrinsic parameters (world-centered)

- Intrinsic parameters
- how does the camera depict the scene?
- Extrinsic parameters
- where is the camera located?

Motivation and Applications

- Calibration is necessary whenever we want to measure anything accurately from images.
- Accurate measurements are vital for many computer vision systems.

Motivation and Applications

- Calibration is necessary whenever we want to measure anything accurately from images.
- Accurate measurements are vital for many computer vision systems.
- Applications include:
- Augmented reality
- Robots picking up objects
- Aerial photography

Augmented Reality

ARToolKit

Augmented Reality

Interactive Assembly Guide using Augmented Reality

Robots Picking Up Objects

Bin Picking

Camera Models

Basic Pinhole Model

- Central projection of points in space onto the image plane.
- Centre of projection is $\mathbf{C}=\mathbf{O}$, and image plane is $Z=f$.

Basic Pinhole Model

- Central projection of points in space onto the image plane.
- Centre of projection is $\mathbf{C}=\mathbf{O}$, and image plane is $Z=f$.
- A point in space $\mathbf{X}=\left[\begin{array}{lll}X & Y & Z\end{array}\right]^{\top}$ is mapped to the image plane at the intersection with the line from \mathbf{C} to \mathbf{X}. By similar triangles

$$
\mathbf{X}=\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{lll}
f X / Z & f Y / Z
\end{array}\right]^{\top}=\mathbf{x} .
$$

Central Projection using Homogeneous Coordinates

- Representing world and image coordinates by homogeneous vectors, this becomes a linear mapping:

$$
\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \mapsto\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Central Projection using Homogeneous Coordinates

- Representing world and image coordinates by homogeneous vectors, this becomes a linear mapping:

$$
\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \mapsto\left[\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right]=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- In homogeneous coordinates $\left[\begin{array}{lll}f X & f Y & Z\end{array}\right]^{\top} \sim\left[\begin{array}{lll}f X / Z & f Y / Z & 1\end{array}\right]^{\top}$.

Central Projection using Homogeneous Coordinates

- With $\left.\mathbf{X}=\left[\begin{array}{lll}X & Y & Z\end{array}\right]\right]^{\top}$, and $\mathbf{x}=\left[\begin{array}{lll}f X & f & Z\end{array}\right]^{\top}$, we have the camera projection matrix

$$
\mathbf{P}=\left[\begin{array}{llll}
f & & & 0 \\
& f & & 0 \\
& & 1 & 0
\end{array}\right]=\operatorname{diag}(f, f, 1)[1 \mid \mathbf{0}] .
$$

- The mapping from world to image coordinates is now simply

$$
x=P X
$$

Principal Point Offset

- In general the origin of coordinates in the image plane is not the principal point, $\mathbf{p}=\left[p_{x} p_{y}\right]^{\top}$. Thus there is a mapping

$$
\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]^{\top} \mapsto\left[\begin{array}{ll}
f X / Z+p_{x} & f Y / Z+p_{y}
\end{array}\right]^{\top}
$$

- Expressed in homogeneous coordinates, this becomes:

$$
\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \mapsto\left[\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{y} \\
Z
\end{array}\right]=\left[\begin{array}{cccc}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

Principal Point Offset

- Letting $P=K[\mathbf{I} \mid \mathbf{0}]$, where K is the camera calibration matrix

$$
\mathrm{K}=\left[\begin{array}{lll}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right],
$$

- the mapping from camera space $\mathbf{X}_{\text {cam }}$ to image coordinates \mathbf{x} becomes:

$$
\mathbf{x}=\mathrm{P} \mathbf{X}_{\mathrm{cam}}=\mathrm{K}[\mathbf{I} \mid \mathbf{0}] \mathbf{X}_{\mathrm{cam}}
$$

Camera Rotation and Translation

- Points are expressed in the world coordinate frame, which is related to the camera coordinate frame via a rotation $\mathrm{R}(3 \times 3$ matrix $)$ and a translation \mathbf{t}.
- In homogeneous coordinates, this becomes:

$$
\mathbf{X}_{\mathrm{cam}}=\left[\begin{array}{cc}
\mathrm{R} & \mathbf{t} \\
\mathbf{0} & 1
\end{array}\right] \mathbf{X}
$$

Camera Rotation and Translation

- This leads to a camera projection matrix of the form

$$
P=K[R \mid \mathbf{t}] .
$$

- A direct mapping from world to image coordinates is now

$$
\mathbf{x}=\mathrm{P} \mathbf{X}=\mathrm{K}[\mathrm{R} \mid \mathbf{t}] \mathbf{X}
$$

CCD Cameras

- In the previous slides, image coordinates were assumed to have equal scale on both axes.
- CCD cameras may have non-square pixels, and if image coordinates are measured in pixels, this changes the calibration matrix.

CCD Cameras

- Let m_{x} and m_{y} be the number of pixels per unit distance in the x and y directions, then

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

where $\alpha_{x}=f m_{x}$, and $\alpha_{y}=f m_{y}$ represent the focal length in pixel dimensions. Similarly $x_{0}=m_{x} p_{x}$, and $y_{0}=m_{y} p_{y}$ represent the principal point in pixel dimensions.

Finite Projective Camera

- For added generality, a skew parameter s is included, and finally

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right] .
$$

- If pixels in the CCD array are skewed, $s \neq 0$ meaning the x - and y-axes are not perpendicular.
- In general $s=0$ for CCD cameras.

Lens Distortion

- A real camera may also have lens distortion, which can not be described by the camera projection matrix.
- This distortion is described by 5 distortion coefficients represented as a column vector \mathbf{d}.

Lens Distortion

- A real camera may also have lens distortion, which can not be described by the camera projection matrix.
- This distortion is described by 5 distortion coefficients represented as a column vector \mathbf{d}.
- Letting $\mathbf{X}_{\text {cam }}=\left[\begin{array}{lll}X_{c} & Y_{c} & Z_{c}\end{array}\right]^{\top}$, we have the normalized (pinhole) image projection:

$$
\mathbf{x}_{n}=\left[\begin{array}{l}
X_{c} / Z_{c} \\
Y_{c} / Z_{c}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

Lens Distortion

- With $r^{2}=x_{n}{ }^{2}+y_{n}{ }^{2}$, the distorted normalized image coordinate becomes:

$$
\mathbf{x}_{d}=\left[\begin{array}{l}
x_{d} \\
y_{d}
\end{array}\right]=\left(1+d_{1} r^{2}+d_{2} r^{4}+d_{5} r^{6}\right) \mathbf{x}_{n}+\mathbf{d x}
$$

- where $\mathbf{d x}$ is the tangential distortion vector:

$$
\mathbf{d} \mathbf{x}=\left[\begin{array}{l}
2 d_{3} x_{n} y_{n}+d_{4}\left(r^{2}+2 x_{n}^{2}\right) \\
d_{3}\left(r^{2}+2 y_{n}^{2}\right)+2 d_{4} x_{n} y_{n}
\end{array}\right]
$$

Lens Distortion

- Finally, the pixel coordinate $\mathbf{x}_{\rho}=\left[x_{p} y_{p}\right]^{\top}$ of the projection of $\mathbf{X}_{\text {cam }}$ when distortion is applied is:

$$
\left[\begin{array}{c}
x_{p} \\
y_{p} \\
1
\end{array}\right]=\mathrm{K}\left[\begin{array}{c}
x_{d} \\
y_{d} \\
1
\end{array}\right]
$$

- In other words,

$$
\mathbf{x}_{p}=\left[\begin{array}{c}
\alpha_{x} x_{d}+s y_{d}+x_{0} \\
\alpha_{y} y_{d}+y_{0}
\end{array}\right] .
$$

Summary of Camera Models

- For finite projective cameras points in space \mathbf{X} are mapped onto image coordinates \mathbf{x} through the linear transformation

$$
x=P X
$$

where P is the 3×4 camera projection matrix.

- Defining the camera calibration matrix

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

we can express P as:

$$
\mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathbf{t}],
$$

where R and \mathbf{t} are the rotation and translation transforming points from world to camera space.

Summary of Camera Models

- The intrinsic parameters of the camera are:
- the calibration matrix K , and
- the lens distortion parameters $d_{i}, i=1,2, \ldots, 5$.
- The extrinsic parameters are:
- the rotation matrix R , and
- the translation vector \mathbf{t}.

Camera Calibration

Camera Calibration Toolbox for Matlab

- Recall that we want to find the true parameters of the camera, i.e. the intrinsic and extrinsic parameters.
- This process is greatly simplified using the Camera Calibration Toolbox for Matlab.
- The following is a minimal introduction on how to use the toolbox. Really good tutorials are available on its homepage.

A. Camera Calibration Toolbox - Standard Version	$\square \square$		
Image names	Read images	Extract grid corners	Calibration
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners
Add/Suppress images	Save	Load	Exit
Comp. Extrinsic	Undistort image	Export calib data	Show calib results

Intrinsic Calibration

Steps involved:

1. Load input images with calibration pattern.
2. Extract grid corners on all images.
3. Compute calibration parameters.
4. Inspect the result.

Loading Calibration Images

- Best results are achieved with more images, e.g. 20, of the calibration pattern from different angles.
- Images are loaded using the Image names button in the GUI of the calibration toolbox.
- In this example 9 images are loaded.

Extracting Grid Corners

- Press Extract grid corners in the GUI.
- Click the four extreme grid corners (first click defines the origin).

Extracting Grid Corners

- Press Extract grid corners in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.

Extracting Grid Corners

- Press Extract grid corners in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.
- Optimized corner locations are found.

Extracting Grid Corners

- Press Extract grid corners in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.
- Optimized corner locations are found.
- Repeat for all images.

Computing Calibration Parameters

- Press the Calibration button in the GUI to start calibration.

```
Aspect ratio optimized (est_aspect_ratio =1) -> both components of fc are estimated
Principal point optimized (center_optim=1) - (DEFAULT). To reject principal point,
Skew not optimized (est_alpha=0) - (DEFAULT)
Distortion not fully estimated (defined by the variable est_dist):
    Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT).
Initialization of the principal point at the center of the image.
Initialization of the intrinsic parameters using the vanishing points of planar patt
Initialization of the intrinsic parameters - Number of images: 9
Calibration parameters after initialization:
```



```
Main calibration optimization procedure - Number of images: 9
Gradient descent iterations: 1...2...3...4...5...6...7...8...9...10...11...12...13.
Estimation of uncertainties...done
Calibration results after optimization (with uncertainties):
```



```
Note: The numerical errors are approximately three times the standard deviations
```


Calibration Results

- After calibration, the intrinsic parameters of the camera are available.
- The variable KK contains the camera calibration matrix:

$$
K K=\left[\begin{array}{ccc}
1033.6 & 0 & 624.25 \\
0 & 1032.1 & 448.27 \\
0 & 0 & 1
\end{array}\right]
$$

- The distortion coefficients are available in $\mathbf{k c}$:

$$
\mathbf{k c}=\left[\begin{array}{llll}
-0.0996 & -0.0121 & -0.0005 & -0.0014
\end{array}\right]^{\top}
$$

Calibration Results

- Visualizing the effect of distortions on the pixel image (run the script visualize_distortions from the Matlab prompt):

Pixel error
Focal Length
Frincipal Point
Principal Point Radial coefficients Tangential coefficients $=(-0.0004539,-0.001394 /-[0.0007763,0.0009737]$

Calibration Results

- Visualization of extrinsic parameters for calibration images (press Show extrinsic in the GUI):

Extrinsic parameters (world-centered)

Remove camera reference frame
Switch to world-centered view

Switch to world-centered view

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the Comp. extrinsic button in the GUI.

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the Comp. extrinsic button in the GUI.
- As before, click the four extreme corners of the grid.

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the Comp. extrinsic button in the GUI.
- As before, click the four extreme corners of the grid.
- The result is shown as an overlay on the image.

Extrinsic Calibration

- Recall that the extrinsic parameters are a rotation matrix R , and a translation vector \mathbf{t}.
- The variable Rc_ext now contains the rotation matrix:

$$
\text { Rc_ext }=\left[\begin{array}{ccc}
0.9145 & 0.4046 & 0.0093 \\
0.2263 & -0.4921 & -0.8406 \\
-0.3355 & 0.7708 & -0.5415
\end{array}\right]
$$

- The translation vector is available in Tc_ext:

$$
\text { Tc_ext }=\left[\begin{array}{lll}
-250.2 & 267.5 & 980.4
\end{array}\right]^{\top}
$$

Complete Calibration of a Single Camera

- Having computed both the intrinsic and extrinsic parameters of the camera, the mapping between world and image coordinates is known.
- Using the finite projective camera model, the camera projection matrix of the calibrated camera becomes:

$$
\mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathbf{t}]
$$

- Disregarding lens distortion, the world coordinate \mathbf{X} is mapped to the image coordinate \mathbf{x} by the linear transformation

$$
x=P X
$$

Image Rectification

- Using the toolbox, images can be rectified (undistorted). Here is an example:

Image Rectification

- Using the toolbox, images can be rectified (undistorted). Here is an example:

Summary of Camera Calibration

- Estimation of the true parameters of a camera.
- Intrinsic parameters are computed based on a set of calibration images.
- Camera calibration matrix is stored in KK.
- Distortion coefficients are stored in kc.
- Afterwards extrinsic parameters can be calculated for other images from the same camera.
- Rotation matrix is stored in Rc_ext.
- Translation is stored in Tc_ext.

Any questions?

References

- Multiple View Geometry in Computer Vision (2nd Edition), Richard Hartley and Andrew Zisserman, chapters 6 and 9.
- Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/
- Camera Resectioning (Calibration), Wikipedia, http://en.wikipedia.org/wiki/Camera_calibration

