ntroduction

Camera Models

Camera Calibration

References

Camera Calibration

Readings in Vision, Graphics and Interactive Systems

Christian Lindequist Larsen

October 16, 2009

Christian Lindequist Larsen (VGIS9)

Camera Calibration

October 16, 2009 1 / 41

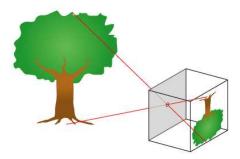
Agenda	Introduction	Camera Models	Camera Calibration
	0000000	00000000000000	000000000000

References

Introduction

Camera Models

Camera Calibration



Introduction •000000 Camera Models

Camera Calibration

References

A Picture Says More Than a Thousand Words

enda

Introduction 000000 Camera Models

Camera Calibration

References

What is Camera Calibration?

• Camera calibration "is the process of finding the true parameters of the camera that produced a given photograph or video," *Wikipedia*

Introduction 000000 Camera Models

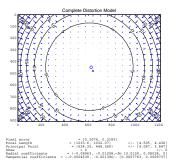
Camera Calibration

What is Camera Calibration?

- Camera calibration "is the process of finding the true parameters of the camera that produced a given photograph or video," *Wikipedia*
- Two sets of parameters are determined:
 - Intrinsic parameters
 - Extrinsic parameters

Introduction

Camera Models


Camera Calibration

References

Camera Calibration Parameters

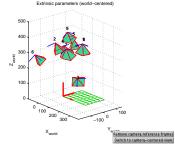
Intrinsic parameters

- how does the camera depict the scene?

Introduction

Camera Models

Camera Calibration


References

Camera Calibration Parameters

Intrinsic parameters

- how does the camera depict the scene?

• Extrinsic parameters - where is the camera located?

Introduction

Camera Models

Camera Calibration

References

Motivation and Applications

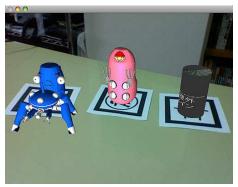
- Calibration is necessary whenever we want to measure anything accurately from images.
- Accurate measurements are vital for many computer vision systems.

Camera Models

Camera Calibration

Motivation and Applications

- Calibration is necessary whenever we want to measure anything accurately from images.
- Accurate measurements are vital for many computer vision systems.
- Applications include:
 - Augmented reality
 - Robots picking up objects
 - Aerial photography

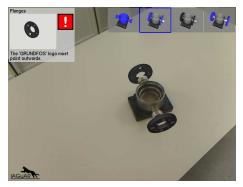

Introduction 0000000 Camera Models

Camera Calibration

References

Augmented Reality

ARToolKit


Introduction 0000000 Camera Models

Camera Calibration

References

Augmented Reality

Interactive Assembly Guide using Augmented Reality

Introduction 000000 Camera Models

Camera Calibration

References

Robots Picking Up Objects

Bin Picking

Ag			

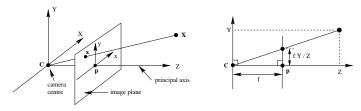
ntroductior

Camera Models

Camera Calibration

References

Camera Models



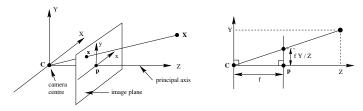
ntroduction

 Camera Calibration

References

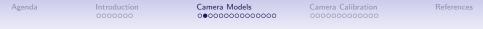
Basic Pinhole Model

- Central projection of points in space onto the image plane.
- Centre of projection is $\mathbf{C} = \mathbf{0}$, and image plane is Z = f.

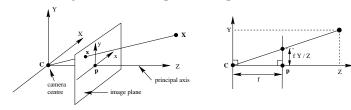


Camera Models

Camera Calibration


References

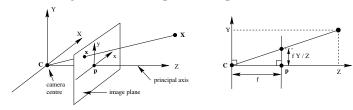
Basic Pinhole Model



- Central projection of points in space onto the image plane.
- Centre of projection is $\mathbf{C} = \mathbf{O}$, and image plane is Z = f.
- A point in space X = [X Y Z]^T is mapped to the image plane at the intersection with the line from C to X. By similar triangles

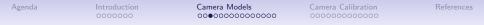
$$\mathbf{X} = [X \ Y \ Z]^{\mathsf{T}} \mapsto [fX/Z \ fY/Z]^{\mathsf{T}} = \mathbf{x}.$$

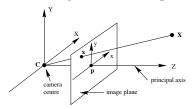
Central Projection using Homogeneous Coordinates

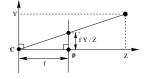


• Representing world and image coordinates by homogeneous vectors, this becomes a linear mapping:

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX \\ fY \\ Z \end{bmatrix} = \begin{bmatrix} f & & 0 \\ f & f & 0 \\ & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$


Central Projection using Homogeneous Coordinates

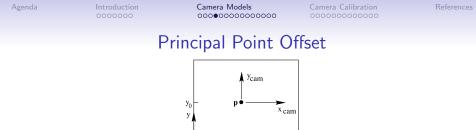

• Representing world and image coordinates by homogeneous vectors, this becomes a linear mapping:


$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX \\ fY \\ Z \end{bmatrix} = \begin{bmatrix} f & 0 \\ f & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

• In homogeneous coordinates $[fX \ fY \ Z]^{\mathsf{T}} \sim [fX/Z \ fY/Z \ 1]^{\mathsf{T}}$.

Central Projection using Homogeneous Coordinates

• With $\mathbf{X} = [X \ Y \ Z \ 1]^{\mathsf{T}}$, and $\mathbf{x} = [fX \ fY \ Z]^{\mathsf{T}}$, we have the *camera* projection matrix


$$\mathsf{P} = \begin{bmatrix} f & & 0 \\ & f & 0 \\ & & 1 & 0 \end{bmatrix} = \mathsf{diag}(f, f, 1)[\mathsf{I} | \mathbf{0}].$$

• The mapping from world to image coordinates is now simply

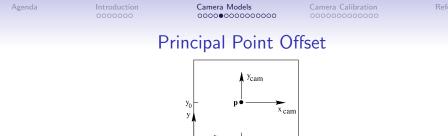
$$\mathbf{x} = \mathsf{P}\mathbf{X}$$

Christian Lindequist Larsen (VGIS9)

Camera Calibration

x x₀

• In general the origin of coordinates in the image plane is not the principal point, $\mathbf{p} = [p_x \ p_y]^T$. Thus there is a mapping

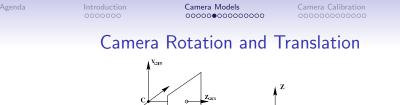

$$[X \ Y \ Z]^{\mathsf{T}} \mapsto [fX/Z + p_x \ fY/Z + p_y]^{\mathsf{T}}.$$

• Expressed in homogeneous coordinates, this becomes:

$$\begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \mapsto \begin{bmatrix} fX + Zp_x \\ fY + Zp_y \\ Z \end{bmatrix} = \begin{bmatrix} f & p_x & 0 \\ f & p_y & 0 \\ & 1 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Christian Lindequist Larsen (VGIS9)

Camera Calibration


• Letting $P = K[I | \mathbf{0}]$, where K is the camera calibration matrix

x x₀

$$\mathcal{K} = egin{bmatrix} f & p_x \ & f & p_y \ & 1 \end{bmatrix},$$

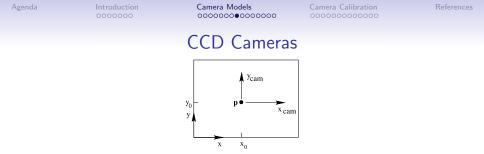
- the mapping from camera space $\boldsymbol{X}_{\mathsf{cam}}$ to image coordinates \boldsymbol{x} becomes:

$$\mathbf{x} = \mathsf{P}\mathbf{X}_{\mathsf{cam}} = \mathsf{K}[\mathsf{I} \,|\, \mathbf{0}\,]\mathbf{X}_{\mathsf{cam}}$$

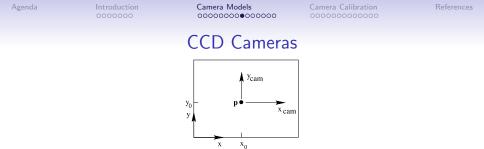
- X_{um} X_{um} X_t
- Points are expressed in the *world coordinate frame*, which is related to the *camera coordinate frame* via a rotation R $(3 \times 3 \text{ matrix})$ and a translation **t**.
- In homogeneous coordinates, this becomes:

$$\mathbf{X}_{\mathsf{cam}} = \begin{bmatrix} \mathsf{R} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X}$$

Zcam


• This leads to a camera projection matrix of the form

 $\mathsf{P}=\mathsf{K}[\,\mathsf{R}\,|\,\boldsymbol{t}\,].$


0

• A direct mapping from world to image coordinates is now

$$\mathbf{x} = \mathsf{P}\mathbf{X} = \mathsf{K}[\mathsf{R} \,|\, \mathbf{t}\,]\mathbf{X}.$$

- In the previous slides, image coordinates were assumed to have equal scale on both axes.
- CCD cameras may have non-square pixels, and if image coordinates are measured in pixels, this changes the calibration matrix.

• Let m_x and m_y be the number of pixels per unit distance in the x and y directions, then

$$\mathsf{K} = \begin{bmatrix} \alpha_x & x_0 \\ & \alpha_y & y_0 \\ & & 1 \end{bmatrix},$$

where $\alpha_x = f m_x$, and $\alpha_y = f m_y$ represent the focal length in pixel dimensions. Similarly $x_0 = m_x p_x$, and $y_0 = m_y p_y$ represent the principal point in pixel dimensions.

ntroduction

Camera Models

Camera Calibration

References

Finite Projective Camera

• For added generality, a skew parameter s is included, and finally

$$\mathsf{K} = \begin{bmatrix} \alpha_x & \mathbf{s} & \mathbf{x}_0 \\ & \alpha_y & \mathbf{y}_0 \\ & & 1 \end{bmatrix}.$$

- If pixels in the CCD array are skewed, s ≠ 0 meaning the x- and y-axes are not perpendicular.
- In general s = 0 for CCD cameras.

- A real camera may also have lens distortion, which can not be described by the camera projection matrix.
- This distortion is described by 5 distortion coefficients represented as a column vector **d**.

- A real camera may also have lens distortion, which can not be described by the camera projection matrix.
- This distortion is described by 5 distortion coefficients represented as a column vector **d**.
- Letting $\mathbf{X}_{cam} = [X_c \ Y_c \ Z_c]^T$, we have the normalized (pinhole) image projection:

$$\mathbf{x}_n = \begin{bmatrix} X_c/Z_c \\ Y_c/Z_c \end{bmatrix} = \begin{bmatrix} x_n \\ y_n \end{bmatrix}$$

Lens Distortion

• With $r^2 = x_n^2 + y_n^2$, the distorted normalized image coordinate becomes:

$$\mathbf{x}_d = \begin{bmatrix} x_d \\ y_d \end{bmatrix} = (1 + d_1 r^2 + d_2 r^4 + d_5 r^6) \mathbf{x}_n + \mathbf{d} \mathbf{x},$$

• where **dx** is the tangential distortion vector:

$$\mathbf{dx} = \begin{bmatrix} 2d_3x_ny_n + d_4(r^2 + 2x_n^2) \\ d_3(r^2 + 2y_n^2) + 2d_4x_ny_n \end{bmatrix}$$

Lens Distortion

• Finally, the pixel coordinate $\mathbf{x}_{\rho} = [x_{\rho} \ y_{\rho}]^{\mathsf{T}}$ of the projection of $\mathbf{X}_{\mathsf{cam}}$ when distortion is applied is:

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \mathsf{K} \begin{bmatrix} x_d \\ y_d \\ 1 \end{bmatrix}$$

In other words,

$$\mathbf{x}_{p} = \begin{bmatrix} \alpha_{x}x_{d} + s y_{d} + x_{0} \\ \alpha_{y}y_{d} + y_{0} \end{bmatrix}$$

٠

Introduction 0000000 Camera Models

Camera Calibration

Summary of Camera Models

• For *finite projective cameras* points in space **X** are mapped onto image coordinates **x** through the linear transformation

$$\mathbf{x} = \mathsf{P}\mathbf{X},$$

where P is the 3×4 camera projection matrix.

• Defining the camera calibration matrix

$$\mathsf{K} = \begin{bmatrix} \alpha_x & \boldsymbol{s} & \boldsymbol{x}_0 \\ & \alpha_y & \boldsymbol{y}_0 \\ & & 1 \end{bmatrix},$$

we can express P as:

 $\mathsf{P}=\mathsf{K}[\,\mathsf{R}\,|\,\mathbf{t}\,],$

where R and \mathbf{t} are the rotation and translation transforming points from world to camera space.

Christian Lindequist Larsen (VGIS9)

Camera Calibration

ntroduction

Camera Models

Camera Calibration

References

Summary of Camera Models

- The *intrinsic* parameters of the camera are:
 - the calibration matrix K, and
 - the lens distortion parameters d_i , $i = 1, 2, \ldots, 5$.
- The *extrinsic* parameters are:
 - the rotation matrix R, and
 - the translation vector t.

ntroduction

Camera Models

Camera Calibration

References

Camera Calibration

Camera Calibration Toolbox for Matlab

- Recall that we want to find the true parameters of the camera, i.e. the intrinsic and extrinsic parameters.
- This process is greatly simplified using the Camera Calibration Toolbox for Matlab.
- The following is a minimal introduction on how to use the toolbox. Really good tutorials are available on its homepage.

🛃 Camera Calibration Toolbox - Standard Version 📃					
Image names	Read images	Extract grid corners	Calibration		
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners		
Add/Suppress images	Save	Load	Exit		
Comp. Extrinsic	Undistort image	Export calib data	Show calib results		

ntroductior

Camera Models

Camera Calibration

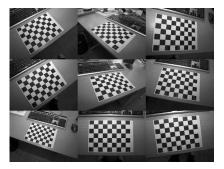
References

Intrinsic Calibration

Steps involved:

- 1. Load input images with calibration pattern.
- 2. Extract grid corners on all images.
- 3. Compute calibration parameters.
- 4. Inspect the result.

ntroduction


Camera Models

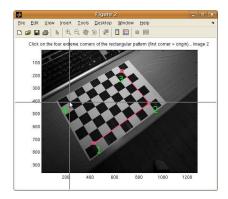
Camera Calibration

References

Loading Calibration Images

- Best results are achieved with more images, e.g. 20, of the calibration pattern from different angles.
- Images are loaded using the *Image names* button in the GUI of the calibration toolbox.
- In this example 9 images are loaded.

ntroduction


Camera Models

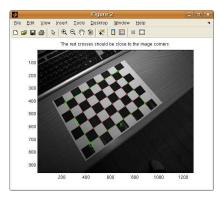
Camera Calibration

References

Extracting Grid Corners

- Press *Extract grid corners* in the GUI.
- Click the four extreme grid corners (first click defines the origin).

ntroductior


Camera Models

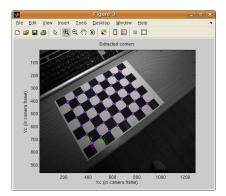
Camera Calibration

References

Extracting Grid Corners

- Press *Extract grid corners* in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.

ntroductior


Camera Models

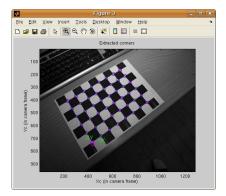
Camera Calibration

References

Extracting Grid Corners

- Press *Extract grid corners* in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.
- Optimized corner locations are found.

ntroductior


Camera Models

Camera Calibration

References

Extracting Grid Corners

- Press *Extract grid corners* in the GUI.
- Click the four extreme grid corners (first click defines the origin).
- Guessed corner locations are marked.
- Optimized corner locations are found.
- Repeat for all images.

Camera Models

Camera Calibration

Computing Calibration Parameters

• Press the *Calibration* button in the GUI to start calibration.

Aspect ratio optimized (est_aspect_ratio = 1) -> both components of fc are estimated or Principal point optimized (center_optim=1) - (OEFAULT). To reject principal point, est Skew not optimized (est_alpha=0) - (DEFAULT) Distortion not fully estimated (defined by the variable est_dist):

Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT) . Initialization of the principal point at the center of the image. Initialization of the intrinsic parameters using the vanishing points of planar patter

Initialization of the intrinsic parameters - Number of images: 9

Calibration parameters after initialization:

 Focal Length:
 fc = [1007.79386]

 Principal point:
 cc = [639.5000 479.50000]

 Skew:
 alpha.c = [0.00000]

 Sistortion:
 kc = [0.00000 0.00000 0.00000 0.00000 0.00000]

Main calibration optimization procedure - Number of images: 9 Gradient descent iterations: 1...2...3...4...5...6...7...8...9...10...11...12...13...1 Estimation of uncertainties...done

Calibration results after optimization (with uncertainties):

Focal Length: fc = [1033.59588 1032.05788] c [4.50528 4.43636] Principal point: cc = [624.24952 448.25889] c [4.0874 3.8468] Skew: alpha_c = [0.00000] c [0.00000] → angle of pixel axes = 90.0 Distortion: kc = [-0.03963 -0.01208 -0.00045 -0.00139 0.00000] c] Pixel error: err = [0.20743 0.21826]

Note: The numerical errors are approximately three times the standard deviations (for

Christian Lindequist Larsen (VGIS9)

Camera Calibration

October 16, 2009 31 / 41

Camera Models

Camera Calibration

References

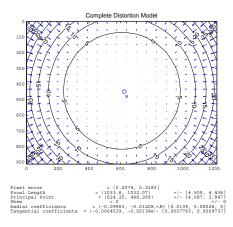
Calibration Results

- After calibration, the intrinsic parameters of the camera are available.
- The variable KK contains the camera calibration matrix:

$$\mathsf{KK} = \begin{bmatrix} 1033.6 & 0 & 624.25 \\ 0 & 1032.1 & 448.27 \\ 0 & 0 & 1 \end{bmatrix}$$

• The distortion coefficients are available in kc:

$$\mathbf{kc} = \begin{bmatrix} -0.0996 & -0.0121 & -0.0005 & -0.0014 & 0 \end{bmatrix}^{\mathsf{T}}$$


Camera Models

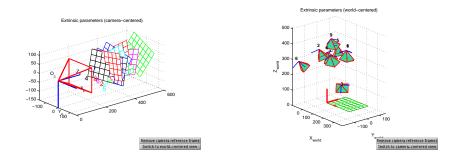
Camera Calibration

References

Calibration Results

• Visualizing the effect of distortions on the pixel image (run the script *visualize_distortions* from the Matlab prompt):

Camera Calibration


Camera Models

Camera Calibration

References

Calibration Results

• Visualization of extrinsic parameters for calibration images (press *Show extrinsic* in the GUI):

ntroductior


Camera Models

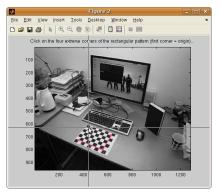
Camera Calibration

References

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the *Comp. extrinsic* button in the GUI.

ntroductior


Camera Models

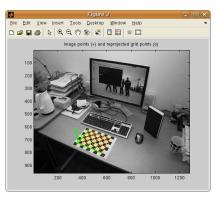
Camera Calibration

References

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the *Comp. extrinsic* button in the GUI.
- As before, click the four extreme corners of the grid.

ntroduction


Camera Models

Camera Calibration

References

Extrinsic Calibration

- Once the intrinsic parameters of the camera have been found, extrinsic parameters can be computed for other images from the same camera.
- Press the *Comp. extrinsic* button in the GUI.
- As before, click the four extreme corners of the grid.
- The result is shown as an overlay on the image.

Camera Models

Camera Calibration

References

Extrinsic Calibration

- Recall that the extrinsic parameters are a rotation matrix R, and a translation vector $\boldsymbol{t}.$
- The variable Rc_ext now contains the rotation matrix:

$$\mathsf{Rc_ext} = \begin{bmatrix} 0.9145 & 0.4046 & 0.0093\\ 0.2263 & -0.4921 & -0.8406\\ -0.3355 & 0.7708 & -0.5415 \end{bmatrix}$$

• The translation vector is available in **Tc_ext**:

$$\mathbf{Tc_ext} = [-250.2 \ 267.5 \ 980.4]^{\mathsf{T}}$$

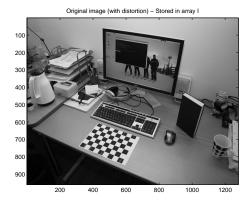
Complete Calibration of a Single Camera

- Having computed both the intrinsic and extrinsic parameters of the camera, the mapping between world and image coordinates is known.
- Using the finite projective camera model, the camera projection matrix of the calibrated camera becomes:

$$\mathsf{P} = \mathsf{K}[\mathsf{R} \,|\, \mathbf{t}\,]$$

• Disregarding lens distortion, the world coordinate **X** is mapped to the image coordinate **x** by the linear transformation

$$\mathbf{x} = \mathsf{P}\mathbf{X}.$$

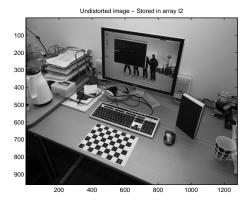

Camera Models

Camera Calibration

References

Image Rectification

• Using the toolbox, images can be rectified (undistorted). Here is an example:


Camera Models

Camera Calibration

References

Image Rectification

• Using the toolbox, images can be rectified (undistorted). Here is an example:

Summary of Camera Calibration

- Estimation of the true parameters of a camera.
- Intrinsic parameters are computed based on a set of calibration images.
 - Camera calibration matrix is stored in KK.
 - Distortion coefficients are stored in **kc**.
- Afterwards extrinsic parameters can be calculated for other images from the same camera.
 - Rotation matrix is stored in Rc_ext.
 - Translation is stored in **Tc_ext**.

Agenda				

Camera Models

Camera Calibration

References

Any questions?

- Multiple View Geometry in Computer Vision (2nd Edition), *Richard Hartley and Andrew Zisserman*, chapters 6 and 9.
- Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/
- Camera Resectioning (Calibration), *Wikipedia*, http://en.wikipedia.org/wiki/Camera_calibration