General Purpose
Computing on Graphical
Processing Units (GPGPU /
GPGP /GP?)

By Simon J.K. Pedersen
Aalborg University, Oct 2008
VGIS, Readings Course Presentation no. 7

Presentation Outline

Part 1: Introduction
Part 2: GPGPU Environments
Part 3: GPGPU Programming
Part 4: Using CUDA

Part 1: Introduction

s Part 1: Introduction

s Part 2: GPGPU Environments
s Part 3: GPGPU Programming
= Part 4: Using CUDA

Why General Purpose Computing
on Graphical Processing Units

The cheapest available computing power

Increase in CPU frequency has come to an

halt [4]

e GPU computing power is still on the rise, due
to parallelism

CPUs are becoming increasingly parallel

GPU programming (stream processing) IS
the programming paradigm of the multi-
core future

Presenter
Presentation Notes
Nvidia 280GTX 240 ”cores” most cpu’s just two

L imitations to GPGPU

None (the sky Is the limit) ;)
Memory access on current hardware pose
a bottleneck

Thus, best suited for algorithms with high
“arithmetic intensity” = many Iinstructions
Der memaory access.

_acking branching capabilities of the CPU

Development environments are still
relative immature, few debugging/profiling
tools

Computing Power

s \What Is computing power?
e Memory access time
e Clock frequency
e Number of processors
e Number of transistors
e Bit-wise logic
e |Integer arithmetic
e Floating Point Operations per Second (FLOPS)

Computing Power cont

x One common measure Is FLOPS

e Many scientific problems deal with
floating points

e Alternatively use MIPS (Million of
Instructions Per Second)

s Floating point precision (Standard IEEE
754)

e Consumer GPUs at least 24-bit floating point since
DirectX 9.0 [2]

e Industry GPUs recently moved to 64-bit (e.g. AMD
FireStream [1])

Measuring FLLOPS

s Marketing FLOPS vs. Real-life FLOPS
e Typically these do not match
e Marketing FLOPS:

No of Cores * Core Clock Frequency * No of
Floating Point operations Per Clock Freguency

nVidia 280GTX: 240 * 1.296GHz * 3 = 933
GFLOPS

e Assumption: 3 FLOPS, MAD (Multiple Add) +
MUL (Multiplication) per clock.

Measuring FLOPS cont

s Difficult to compare FLOPS
measurements across different
architectures (CELL, CPU, GPU)

= Falr comparisons require
benchmarking

e LINPACK Benchmark
e Solve a N x N system of linear equations
e Architecture differences still a problem

G

[8]

Eama ¥
pAa—
e
|
=
]
.':.:|
ul
—
&4
=
i)
=
'
- —
—
b
—
o |
—
—
et
o
=
—
o
(-
!
=

Development off ELOPS

== ATI
== NVIDIA
-@= [ntel

dual-core

2001 2002 2003 2004 2005 2006

Year

2007

10

Development of FLOPS (nVidia)

nVidia GLOPS development

Adapted from [3]

Fun Facts

s Gears of War:
Modern Cross-
Platformm Game

Game Numeric | Shading
Simulat | Computa
ion tion
Languages | C++, C++ CG,
Scriptin HLSL
g
CPU Budget | 10% 90% n/a
Lines of 250,00 | 250,000 | 10,000
Code 0
FPU Usage | 0.5 5 500
GFLOPS | GFLOPS [GFLOPS

[5]

12

Presenter
Presentation Notes
Modern games can be juggling hundreds of shaders at the same time, but typically a shader is very short a few 100 lines of code. Actually the maximum number of instructions for a vertex shader is 2^16 while until recently it was much less for fragment shaders 512

GPGPU Research Publications

s Many researchers are beginning to
take advantage of GPGPU

s Areas of particular interest
e Flow simulations
e Physics
e [mage Processing
e Ray-tracing

GPGPU Havok FX

s Commercial physics middleware

s Utilize hybrid GPU and CPU for
complex physics calculations
s Speed up 10x:

e Collision detection on 15,000 objects
= CPU (2.9GHz Core Duo 2): 6.2 fps
= GPU (Geforce 8800GTX): 64.5 fps

Presenter
Presentation Notes
Show demo

GPGPU Research Publications 2

= Fast Virus Signature Matching on the
GPU

e Speed up 11x-27x compared to open
soure Clam AV

e Drawbacks:
= Rely on CPU for verification

= At most 64,000 signhatures In database

= Only does part of the scan process (no MD5
hashing)

15

Presenter
Presentation Notes
List of applications from GPU gems 3

GPGPU Research Publications 3

= [he AES Implementation on the GPU
e OpenGL based implementation
e Relies heavily on integer processing

e Speed up 1x-1.7x, for vertex and
fragment shaders

e Openssl CPU based implementation
achieved 55MB/sec compared to
O5MB/sec

16

Part 2: GPGPU Environments

s Part 1: Introduction

s Part 2: GPGPU Environments
s Part 3: GPGPU Programming
s Part 4: Using CUDA

GPGPU Environments

s No standard, each vendor has its own API

s Rapid development within the last few
years (expected to continue)

s GPGPU APIs:
e Shaders (Dx8, 2000)
e RapidMind (early 2006)
« AMD-ATI (CTM (Nov 06), Stream SDK)
e nVidia (CUDA) (Nov 06)
e Apple/Khronos (OpenCL) (Yet to be finalized)

18

Presenter
Presentation Notes
DirectX 8 first to support shaders (vertex+fragment) these where programmable, but not in any high-level language – they only supported assemply, and where not intended for any kind of general purpose GPU programming. But albait this was the beginning of where we are today.

Shader Languages

Languages: GLSL, Cg/HLSL

Programmable Shaders

e Vertex (Position, Color, Texture Coords,
Normals)

e Fragment (Per Pixel)
DirectX 8 (Shader Model 1.1)

DirectX 8.1 (SM 1.2, 1.3, 1.4)

DirectX 9 (SM 2.x)

DirectX 10 (SM 4.0, Geometry Shaders)
DirectX 11 (SM 5.0, GPGPU)

19

Presenter
Presentation Notes
GLSL openGL shading language

Cg/HLSL parallel development compatible – Cg = nvidia, HLSL = microsoft/directx

Geometry shader = creates additional vertexs from the input

(DirectX 11 might prove to be the solution for the Windows environment)

RapidMind Development Platform

Started as a commercialization of
research (Sh) from University of
Waterloo (Canada)

Middleware between high level C++ and
the hardware
Very broad platform support

e Hardware: CELL, GPU (nVidia, AMD
FireSteam Radeon Series), CPU (Intel,
AMD)

e Software: Mac OS X, Windows, Unix
(Ubuntu, Red Hat, Fedora etc.)

Easy to use, special data types and loop
syntax

Commercial product ®

20

Presenter
Presentation Notes
REMEMBER DEMO RT Raytracer on CELL

nVidia CUDA (Common Unified
Device Architecture)

Widespread, 50 million graphic cards sold
capable of running CUDA [9]

Support for Linux and Windows
Widely used In research

High level C syntax-like language
e Exposes the underlying hardware structure

e Skilled programmers able to take full
advantage of the hardware

Shipped with BLAS and FFT libraries

21

Presenter
Presentation Notes
Expose of the underlying hardware structure require the programmer to be familiar with the internals of the GPU to take full advantage of CUDA

BLAS basic linear algebra and fast furier transform

AMD-ATI

CTM (Close to metal)
e First attempt on GPGPU, now discontinued

Current solution: Stream Computing SDK
1.0

e Includes Brook+, APL, ACML, CAL

Brook is a stream programming language
similar to ANSI C for GPGPU

e Access to GPU resources via OpenGL, DirectX,
or CTM

AMD will be supporting OpenCL and
DirectX 11

22

Presenter
Presentation Notes
Brook+ optimized version of the open source brook stream processing API developed at standford university

APL AMD Performance Library various optimization for the firestream stream processing line.

ACML AMD Core Math Library

CAL Compute Abstraction Layer (software development layer providing low level access to the hardware)

OpenCL (Open Computing
Language) [7]

Support CPUs and GPUs and combinations
Profiles for desktop and handheld devices
Open language like OpenGL and OpenAL

Specifications currently being review by
Khronos Group

Proposed by Apple

Already implemented as performance
enhancing technology in Mac OS X (Snow
Leopard)

23

OpenCL cont.

Official support from AMD

Based on a subset of ISO C99

IEEE 754 floating point spec. compliant
Integration with OpenGL (sharing of data)

Built in C data types (vectors, image
types, data type conversions)

Few C restrictions (Recursion, function
points)

24

Presenter
Presentation Notes
AMD officially support OpenCL and Directx 11 (discontinued its own projects).

No functions in C headers

Part 3: GPGPU Programming

s Part 1: Introduction
s Part 2: GPGPU Environments

s Part 3: GPGPU Programming
s Part 4: Using CUDA

Stream| processing/computing 6]

Computational problems that can be split into
parallel identical operations and run
simultaneously

Stream processing uses the SIMD (single
Instruction, multiple data) methodology

The data Is defined as a stream

The collection of operations applied to the stream
Is typically called a kernel function

Uniform streaming i1s when the same kernel is
applied to all elements of the stream

26

Stream Processing on the GPU

s [he host (CPU) sees the GPU as co-
Processor

m Some definitions:
e HoSt memory
e Device (GPU) memory

= [he co-processor cannot access the
host memory

s | he host can transfer data to the
device memory

The CUDA approeach

s [he remaining of the
presentation IS
based on NVIDIA
CUDA

= Maps well to other
GPGPU APIs

= Bottom up walk-

Figure 1-3. Compute Unified Device Architecture Software
through Stack

[10]

28

Presenter
Presentation Notes
Start with the hardware

GPU Hardware vs. CPU

s What makes GPUs different

» Number of transistors and their purpose
e Memory bandwidth CPU 10GB/s, GPU 100GB/s
e Production methods and cycles 6 vs 24months

From NVIDIA CUDA Programming Guide

29

Presenter
Presentation Notes
280GTX 1.4 Billion transistors

Core Duo 4MB L2 Cache 250 Million transistors

GPU Hardware Model

s In the old days, 1-2 year ago

= \ertices, fragments or textures
can constitute the stream

e VVertex and Fragment shaders
can constitute the kernels Pixel

e Each shader unit should produce
the output solely from the input

Triangle

(no additional memory lookups m
or shared data between shader
units) The elements of a

traditional GPU pipeline.
= Feed-forward [10]

30

Presenter
Presentation Notes
New GPUs doesn’t come with separate vertex, fragment or geometry shaders. They just come with floating point cores simply shaders, they can then be configured for different purposes.

ROP = raster operations

GPU Hardware Model cont.

= [0oday

e New abstraction level, unified shaders
or simply steam processors (SP)

e L ocal and global memory

e Possible to read and write from global
memory (gather/scatter)

= An example the Geforce 8800 GTX

31

The Geforce 8800 G T X Hardware
Architecture In detalils

= Unified shader design

s 8 Thread Processing Clusters (TPC)

e Each consist of 2 streaming
multiprocessors (SM)

= Which again consist of 8 streaming
processors (SP) clocked at 1.35GHz

e Texture pipeline providing memory
access

32

Presenter
Presentation Notes
Total 128 FPU working at 1.35GHZ

The Geforce 8800 GT X Hardware
Architecture In details

Global Block Scheduler

TPC 0 G8o

SM Controller 0 SM Controller 1 SM Controller 7

©
*
:
(=1
b
L
O
@

GDDR3 GDDR3 GDDR3 GDDR3 GDDR3 GDDR3
Memory || Memory || Memory || Memaory || Memory || Memory
Controller| | Controller| | Controller | | Controller | | Controller| | Controller

33

The Geforce 8800 G X Hardware
Architecture In detalils

G80 Thread Computing Pipeline
® Processors execute computing threads

® Alternative operating mode specifically for computing
[Host |
[input Azsembler |

Thread Execution Manger Lo — . N
|

| ||

[l
Paralind Data Py
Cache iC

34

The Geforce 8800 G T X Hardware
Architecture In detalils

= [he memory/cache available in a
streaming multiprocessor

e 16KB shared memory
e 64KB of constant memory

s Global memory access Is slooooow

35

Presenter
Presentation Notes
Not much on die memory

CUDA In Details

s Based on revision 1.0 of CUDA

s Geforce 8800 series and newer are
CUDA 1.0 compliant

= First some terminology:
e Kernel
e Grid
e Blocks
e \Warps
e Threads

36

Presenter
Presentation Notes
In hierarchical order

Kernels

= [he general building block off GPGPU
programming

s Used whenever a code section can be
highly parallelized

s Executed on the GPU across multiple
TPC (Thread Processing Clusters)

= A unified kernel is executed N times
In parallel by N different CUDA
threads on different input data

Kernels

Grid 1

Block
(0, 0)

Block "

Serial W:,ﬂ
Code <

7 i
- ¥

/" Grid2

Block
(1,0)

1

Block

(1,1)

1

Block
(2, 0)

Block
L21)

38

Grid

I the number of threads needed by the kernel
exceeds the limit of one thread block several
thread blocks are collected in a grid

Grids are up to 3-dimensional collections of
thread blocks

Maximum number of thread blocks per grid iIs
(28-1)° = 281462092005375!!!

The number of thread blocks in a grid Is
determined from the amount of data not the
architecture of the GPU

Performance should scale with new hardware

39

|

Kernel
1

|

Serial
Code

Grid

Grid 1

Block
(0, 0)

Block-"
(0, 1)

Block
(1,0)

1

Block

(1,1)

1

Block
(2, 0)

Block
L21)

40

Thread Blocks

s Is a collection of threads

s [he maximum number of threads per
block is 512

s Can be 3-dimensional but restricted to
(x =512,y =512, z = 64)

s A thread block Is executed by one
streaming multiprocessor

s [hreads within a block can share data
e By synchronization
e Shared local memory

41

Thread Blocks

CPU

Serial
Code

Grid 1

Block Block Block

(0,0) (1,0) (2,0)

Block-" Block ‘ Block
Serial o4 1N @1
Code - Q b

’ v

" Grid2

Warps

A streaming multiprocessor consists of 8
streaming processors each capable of
executing 1 thread at a time

Warp Is the process of scheduling threads
for processing

The warp size I1s 32, which imply that 32
threads are scheduled at once and
executed within 4 clock cycles

Warps are handled by the hardware
scheduler so no worries ;)

43

Threads

Different from CPU threads

The smallest building blocks of GPGPU
programming

Executed on the streaming processors
E.g. a multiplication of two matrix cells

Each thread has a unique id

The thread of a 2D (D,,D,) thread block at

(X,y) has ID: x + y*D,,

44

Threads

CPU

Serial
Code

Grid 1

Block
(0,0)

Block-”
(0, 1)

Block
(1,0)

Block
(1,1)

1
v

Block
(2,0)

Block
vo(2,1)

45

GPU Pregramming Elow Control

s Avoid when possible

s All threads of a block have to execute all
brances but will only output from those
they are supposed to

Instruction If/endif | If/else/endif | Call Return Loop/end
foJo]]

Cost 4 6 2 2 4

(Cycles)

From GPU Gems 2: Chapter 30

46

Summary of CUDA

The smallest element of the kernel Is the
thread

Threads are collected in thread blocks

For optimal utilization of the
multiprocessors divide the task Iin to a
large number of thread blocks and
organize them in a grid

Branching Is costly
The local memory resources are limited
Avoid global memory access

47

Part 4: Using Cuda

Part 1: Introduction

Part 2: GPGPU Environments
Part 3: GPGPU Programming
Part 4: Using CUDA

CUDA Development Environment

s Hardware Reqguirements:
e NVIDIA Graphics Card 8800 series or newer
e 8X0O0 series: CUDA 1.0
e OXO0O0 series: CUDA 1.1
e 2X0 series: CUDA 1.3

s Software Requirements
e \Windows

e Linux
e Mac OS X (Beta)

49

CUDA Development Environment

s Windows Reqguirements

s [hree Versions 1.0, 1.1, 2.0

e Visual Studio 7 or 8 (Yet no support for
9/2008)

e CUDA Capable Graphic Card Drivers

= All drivers from 169.21 (1.1) and 178.08
(2.0)

e CUDA Toolkit
e CUDA SDK

510)

Presenter
Presentation Notes
2.0 quite new released in august

The Missing Link

s [The SDK contains a simple CUDA
application template to get you started

s The CUDA Programming Guide contains a
simple Matrix multiplication example

s Performance measurements should be
done with high precision timers, check:
http://forums.nvidia.com/index.php?show
topic=73594

51

What to Remember

When to consider GPGPU

e High arithmetic intensity

e Need for a lot of low cost computation power
Use ofi GPGPU requires special program
design

Libraries for common functionalities

e BLAS, FFT, MATLAB plug-in (Jacket)

Most promising APIs:

 CUDA
e OpenCL

52

Presenter
Presentation Notes
Jacket accelereyes.com CUDA implementatation for matlab

Most promising APIs: CUDA (vendor specific ;() OpenCL cross-platform/vendor – but if you are to use GPGPU in two years be sure to see what have happend because it’s an area of rapid development

References

[1] AMD FireStream 9170,
http://ati.amd.com/technology/streamcomputing/product firestream 9170.html

[2] Multiple Pixel Shader Precision Modes,
http://www.beyond3d.com/content/interviews/23/

[3] Mark Harris, GPGPU Lessons Learned, GameDevelopers Conference Presentation
[4] Maghus Ekman et al., An In-Depth Look at Computer Performance Growth
[5] Tim Sweeney, The Next Mainstream Programming Language

[6] AMD Stream Computing FAQ,
http://forums.amd.com/deviorum/messageview.cfm?catid=328&threadid=95060

[7] Aaftab Munshi, Presentation at SIGGRAPH 2008, OpenCL Parallel Computing on
the GPU and CPU

[8] John Owens, University of California Davis, What’s New With GPGPU?

[9] David Luebke, nVidia Corp, CUDA: SCALABLE PARALLEL PROGRAMMING FOR
HIGH-PERFORMANCE SCIENTIFIC COMPUTING

[10] NVIDIA CUDA Programming Guide 1.1

[11] David Kanter, NVIDIA's GT200: Inside a Parallel Processor,
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=2

53

http://ati.amd.com/technology/streamcomputing/product_firestream_9170.html
http://ati.amd.com/technology/streamcomputing/product_firestream_9170.html
http://www.beyond3d.com/content/interviews/23/
http://forums.amd.com/devforum/messageview.cfm?catid=328&threadid=95060
http://forums.amd.com/devforum/messageview.cfm?catid=328&threadid=95060
http://www.realworldtech.com/page.cfm?ArticleID=RWT090808195242&p=2

	General Purpose Computing on Graphical Processing Units (GPGPU / GPGP /GP2)
	Presentation Outline
	Part 1: Introduction
	Why General Purpose Computing on Graphical Processing Units
	Limitations to GPGPU
	Computing Power
	Computing Power cont
	Measuring FLOPS
	Measuring FLOPS cont
	Development of FLOPS
	Development of FLOPS (nVidia)
	Fun Facts
	GPGPU Research Publications
	GPGPU Havok FX
	GPGPU Research Publications 2
	GPGPU Research Publications 3
	Part 2: GPGPU Environments
	GPGPU Environments
	Shader Languages
	RapidMind Development Platform
	nVidia CUDA (Common Unified Device Architecture)
	AMD-ATI
	OpenCL (Open Computing Language) [7]
	OpenCL cont.
	Part 3: GPGPU Programming
	Stream processing/computing [6]
	Stream Processing on the GPU
	The CUDA approach
	GPU Hardware vs. CPU
	GPU Hardware Model
	GPU Hardware Model cont.
	The Geforce 8800 GTX Hardware Architecture in details
	The Geforce 8800 GTX Hardware Architecture in details
	The Geforce 8800 GTX Hardware Architecture in details
	The Geforce 8800 GTX Hardware Architecture in details
	CUDA in Details
	Kernels
	Kernels
	Grid
	Grid
	Thread Blocks
	Thread Blocks
	Warps
	Threads
	Threads
	GPU Programming Flow Control
	Summary of CUDA
	Part 4: Using Cuda
	CUDA Development Environment
	CUDA Development Environment
	The Missing Link
	What to Remember
	References

