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Hidden Markov model (HMM)

A statistical model in which the system being modeled is
assumed to be a Markov process with unobserved state.

In a regular Markov model, the state is directly visible to
the observer, and therefore the state transition
probabilities are the only parameters.

In an HMM, the state is not directly visible, but output
dependent on the state is visible.

o Each state has a probability distribution over the possible output
tokens. Therefore the sequence of tokens generated by an HMM
gives some information about the sequence of states.

o The adjective 'hidden’ refers to the state sequence through which
the model passes, not to the parameters of the model.

Wikipedia.org
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Hidden Markov model applications

= In temporal pattern recognition such as speech,
handwriting, gesture recognition, part-of-speech tagging,
musical score following, partial discharges and
bioinformatics.
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Part I: Markov chain

Markov chain

Hidden Markov model

Basic calculations

o How to evaluate an HMM — the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

Continuous and discrete HMMs
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A three-state Markov model

The weather on day t is characterised by a single one of
the three states

Example:A three-state model of
the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny

04 03 0.3
A={a;}=|02 06 02
0.1 01 08

The above stochastic process is considered an
observable Markov model since the output process is a
set of states at each instant of time, where each state
corresponds to an observable event.
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Basic calculations

Example: What is the probability that the weather for eight consecutive
days is "sun-sun-sun-rain-rain-sun-cloudy-sun"?

Solution:
0 = sun sun sun rain rain sun cloudy sun
3 3 3 1 1 3 2 3

P(O|Model) = P[31PI3|31P[331P[131P[1|11P[3|11P(2]31P(3]2]

= Myfydy 99139329

1536 %107

Example:A three-state model of
the weather

State 1: precipitation (rain, snow, hail, etc.)
State 2: cloudy
State 3: sunny

(After Joseph Picone)
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Log-Domain Mathematics

Multiplying many numbers together brings in the risk of
underflow errors.
A solution: Transform everything into the log domain:

linear domain log domain
xY log(xY)=e'09® - log(x) ey X
Xy log( xy) =log (x)+log(y) X+y
X+y logAdd(x,y)=x+log(1+ e¥yx)

logAdd(x,y) computes sum of x and y when both x and y are
already in log domain.

log(x+y)=log(x + B x})
log(x {1+y})
X

log(x) + log(L+2)

|Og(x) + |Og(]_+ e'UQ(Y)—Iog(x))

(Hosom, 2006)
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Log-Domain Mathematics

log-domain mathematics avoids underflow, allows
(expensive) multiplications to be transformed to (cheap)
additions.

Typically used in HMMs where there are a large number of
Multiplications, O(F) where F is the number of frames.

If Fis moderately large (e.g. 5 seconds of speech = 500
frames), even large probabilities (e.g. 0.9) yield small
results:

0.950 =13x1023
0.65500 = 2,8x10-%
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The Markov chain

= Consider a system described at any time t as being in one of
a set of N states indexed by {1,2,...,N}
= Denote the actual state at time t as q;
= So, the first-order Markov chain is
P[qt = J |qt71 = i,qt,z = k,] = P[qt = J |qt71 = I]
= We consider those processes in which the right-side of the

equation above is independent of time, leading to state-
transition probabilities

aij:P[Qt:jlqt_lzi]; 1Si,j§N

04 0.6
with constraints: Example:A three-state model of l 03
.. the weather Ty
a; >0 Vi, i g : 302
]] State 1: precipitation (rain, snow, hail, etc.) o3 g
State 2: cloudy ¥ ¢

N i State 3: sunny 0.3, 0.2
j=1 [ix:]
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Part II: Hidden Markov model

Markov chain

Hidden Markov model

Basic calculations

o How to evaluate an HMM — the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

Continuous and discrete HMMs
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“Hidden” Markov model

Consider the problem of predicting the outcome of a coin toss experiment.
You observe the following sequence:

O = (HHTTTHTTH...H)
What is a reasonable model of the system?

P(H) 1-P(H)
) 1-P(H) } 1-Coin Model
{Observable Markov Model)
»__ P(H) O=HHTTHTHHTTH.
Heads Tails §=112 2121122 1.
822 2-Coins Model
) (Hidden Markov Model)
O=HHTTHTHHTTH..
$§=211 2 221221 2.
P(H) = P4 P(H) =P,
P(T) = 1-P, P(T) = 1-P,
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The Urn-and-Ball model
The Urn-and-Ball Model  doubly stochastic systems
Pred) = by(t) Pred) = by(1) Hidden State:
Pigreen) =bs(2) P(green) =ba(2)
P(blug) = by(3) Plblue) =by3) SUpPpOse we can observe
Pyellow) = bs(4) P(yellow) =bs(4) something that’s affected
by the true state.
3 = {green, blue, green, yellow, red, ..., blue}
How can we determine the appropriate model for the observation
sequence given the system above?
|| e o0
17 m::B'J%M«Mr-&-.,
12
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What is an HMM

Hidden Markov Model:
o more than 1 event associated with each state.
o all events have some probability of emitting at each state.

o given a sequence of outputs, we can’t determine exactly
the state sequence.

o We can compute the probabilities of different state
sequences given an output sequence.

Doubly stochastic (probabilities of both emitting events
and transitioning between states); exact state sequence
is “hidden.”
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Elements of a discrete HMM

N: the number of states

o states, s ={sy,S,...,S\}

o stateattimet, g, € s

M: the number of observation symbols

o observation symbols, v = {v4,v,,...,v), }

o observation attime t, o, € v

A = {a;}: state transition probability distribution

0 a;= PG =5;| q;=5), 1=ijs N

B = {bj(k)}: observation probability distribution in state j
o bik)=P(OFv| q;=s), 1sjs N, 1sksM

7 ={r,}: initial state distribution

For convenience, we use the notation: 1 =(A,B,x)
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Elements of an HMM

+ HMM is specified by:
- states ¢/ o ® @ ©® e

A
901 0.0
008901

- fransition # .
probabiliies a;; @ W TE@TUTE 4,
) 1

P((;",-i qiz 1 ) = C"j);
‘ L0

- emission
distributions b;(x) FR

p(xlg) = b (0) 1A I T

X

0.0 0.0
0.0 0.0

0
0
0
0

+ (initial state probabilities p(qj) =7, )

From Dan Ellis, 2004.
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What is an HMM

an HMM still generates observations, (Hosom, 2006)
each state is still discrete,
observations can still come from a finite set (discrete HMMS).

« the number of items in the set of events does not have to
be the same as the number of states.

* when in state S,
there’s p(e,) of generating event 1,
there’s p(e,) of generating event 2, etc.

pg;(black) = 0.3
Pgr(White) = 0.7

p,(black) = 0.6
ps,(White) = 0.4
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What is an HMM

must know all possible states in advance
must know possible state connections in advance
cannot recognize things outside of model

must have some estimate of state emission probabilities
and state transition probabilities

make several assumptions (usually so math is easier)

if we can find best state sequence through an HMM for
a given observation, we can compare multiple HMMs
for recognition.
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HMM Topologies

Ergodic (fully-connected)

Bakis (left-to-right)

0.6
m, =1.0
n,=0.0
n3=0.0
n, =0.0

*Topology defined by the state transition matrix (If an element of this
matrix is zero, there is no transition between those two states).
*The topology must be specified in advance by the system designer

4 0.1

0.3 0.4

0.
S

01 0.2
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Part I1I: Three HMM calculations

Markov chain

Hidden Markov model

Basic calculations

o How to evaluate an HMM - the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

Continuous and discrete HMMs
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Three basic HMM problems

Scoring: Given an observation sequence O =
{04,0,,...,07 } and a model A = {A, B, T}, how to compute
P(O | A), the probability of the observation sequence?
- The Forward-Backward Algorithm

Matching: Given an observation sequence O =
{04,0,,...,07 } and the model A,how to choose a state
sequence q = {q4,9y,---,q97 } Which is optimum in some
sense? - The Viterbi Algorithm

Training: How to adjust the model parameters A =
{A,B, 1} to maximize P(O| A)? - The Baum-Welch Re-
estimation Procedures
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Problem 1: Scoring

Given O = {0,,0,,...,07 } and A = {A, B,m}, how to
compute P(O | A), the probability of the observation
sequence? (probability evaluation)

o Consider all possible state sequences (N) of length T:
P(O|4)=2P(O]q,4)P(q] 1)

allq

= 2 7 qlbq1 (01)a,4,0,, (0,)- 8y, g, by, (Or)

01,9207

Calculation required = NT-2T
o ForN=5T=100, 2-100 - 5" = 1072 computations!
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The forward algorithm

Consider the forward variable ¢, (i) defined as
(i) = P(0,0,..0,,0, =] 1)
i.e., the probability of the partial observation sequence until
time t and state i at time t, given the model A
We can solve for «, (i) inductively as follows:

1. Initialisation al(i) =”ibi (01)' 1<i<N

2. Induction ] N

()= |:§at (Na; }bj (044,

3. Termination " |
POID) =2 ()

Calculation=T-N2. For N=5,T=100, 2500, instead of 1072

AR B oA G UNIVERSITY Readings in VGIS, Zheng-Hua Tan 22

11



Illustration of forward algorithm

From (Rabiner, 1989)

[
-
= L 9.
(a) by @
a
H 9.
t 141 18 ~N
aylil @y 4 qldd ; é I: '}
OBSERVATION, t
Fig. 4. (a) lllustration of the sequence of operations
required for the computation of the forward variable o . () L
by Implementation of the computation of e/} in terms of
a [attice of observations t, and states i.
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The backward algorithm

Similarly, consider the backward variable g, (i) defined as
ﬂt ()= P(0t+10t+2"'0T | g, = i,4)
i.e., the probability of the partial observation sequence from
time t +1 to the end, given state i at time t and model A

We can solve for /(i) inductively as follows:
1. Initialisation B.(i)=1 1<i<N

2. Induction t=T-1T7-2,...1

A.(0) = z ab, (00 (i),

3. Termination
P(O[4) = éﬂibi (0,)5.(i)

Again, calculation=N2T.

(]

Butid By ath

AALBORG UNIVERSITY Readings in VGIS, Zheng-Hua Taig.s. iitustration of the sequence of oy
for ard var

perations req
the computation of the backward variable 3,4/).
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Problem 2: Matching

Given O = {0,,0,,...,07 },how to choose a state
sequence g = {q4,95---,97 } wWhich is optimum in
some sense? (“Optimal” state sequence)

State
A

6 JE LT LTI ERRRPECRI LR T IE A EREEPORR .

2 e ... branens frnnen i

i Speech
B Frame

(Time)

Trellis diagram for an Isolated Word Recognition task.
From (Young et al. 1997, p. 10)

1 2 3 4 5 6
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Finding optimal state sequence

One optimality criterion is to choose the states g; that are
individually most likely at each time ¢

o Define the probability of being in state i at time ¢, given the
observation sequence O, and the model A

. . P(O,q, =i|4) P(O,q, =i|4)
7t(|)=P(qt:||01/1): =N
POID S, =i4)

Since P(0,q, =i|A) =, ()4, (i) =
We have y, (i) = M
2 ®A,0)

1=
o The individually most likely state g, at time t is
" =argmax[y, (i
0 ngiSN[yt( )]
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Finding optimal state sequence (cont’d)

The individual optimality criterion has the
problem that the optimum state sequence may
not obey state transition constraints -2

The “optimal” state sequence may not even be a
valid sequence (a;=0 for some / and j)

Another optimality criterion is is to find the single
best state sequence (path), i.e., to maximize
P(q , O|A) >

The Viterbi algorithm — a method based on
dynamic programming
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The Viterbi algorithm

To find the best path q = {q4,95,...,97}, for given O
= {04,0,,...,07 }, we define the best score (highest
probability) along a single path, at time t,

6(1)= max P(0,0,..0;4, 0 =1,0,0,..0, | 1)
01,92 0t-1

which accounts for the first t observations and ends
in state i.

Then 5 (i) ~[maxa,(Da, 15, (0,.)

AALBORG UMIVERSITY Readings in VGIS, Zheng-Hua Tan 28

14



The Viterbi algorithm (cont’d)

Initialisation s (i)=zb (0,), 1<i<N
(i) =0
Recursion
o.(]) :E%[@_l(i)aij]bj (0,), 2<t<T 1<j<N
v, (1) :arglrg%[étfl(i)aij], 2<t<T 1<j<N
Termination
P =max[4; (i)]
dr =argmax[s; (i)]
Path (state sequence) backtracking
G =W (Gr.), t=T-1T-2,..1
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The Viterbi algorithm (cont’d)

From Joseph Picone

The Viterbi algorithm can also be used to find the best state sequence. Note
that the principal difference is that we model the overall sequence
probability by the probability of the single best path:

Wr-1) i) Hr+1)
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The power of recursive equation

Computing factorials n!
Method 1.simply caculate n!for each n
Method 2. use n'=n(n-1)!
if F(n)=nlthen
F(n)=nF(n-1)forn>1
(Recursive Equation)
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Problem 3: Training

How to tune the model parameters A = {A,B, T} to
maximize P(O| A)? - a learning problem

o No efficient algorithm for global optimisation

o Effective iterative algorithm for local optimisation: the
Baum-Welch re-estimation

Baum-Welch
= forward-backward algorithm (Baum, 1972)

o is a special case of EM (expectation-maximization)
algorithm

o computes probabilities using current model A;
o refines A to 4 such that P(O] A) is locally maximised
o uses aand g from forward-backward algorithm

O
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Baum-Welch re-estimation

Define &:(i. ), the probability of being in state i at time
t, and state j at time t+1, given A and O, i.e.

&, 1) =P, =00, = |0,2)
_P(a,=1,9.,,=1,0/2)

| |
PO14) ]
|
i i S | 5)
1)a..n. |
_ at( )a'JbJ (0t+1)ﬂt+1(1) ° |“Iibjl°I+l]I
M |
P(O14) ; | |
. - |
o, ()a;b;(0.,1) B.1 (1) an | | Bt
T N N -4 t REX t+2
2.2 a.()a;b;(0,,,) ., (J) ' !
i=1 j=1 Fig. 6. lllustration of the sequence of operations required
for the computation of the joint event that the system is in
state 5; at time ¢ and state 5; at time t + 1.
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Baum-Welch Re-estimation (cont’d)

Recall that 7:(i) is defined as the probability of
being in state i at time t, given the entire
observation sequence and the model, so
N N
7)) =P =i10,2) = P(q =i, = j10,2) = 3 &(i, ])

i=t j=1

Sum y.(i)and <. (i, j)over t, we have
T-1
Z 7: (i) = expected number of transitions from state i in O
t=1

T
(Z 7 (i) = the expected number of times that state i is visitied.)

t=1
T-1
Z; (i, j) = expected number of transitions from state i to state jin O
t=1
AR B oA G UNIVERSITY Readings in VGIS, Zheng-Hua Tan 34
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Baum-Welch re-estimation formulas

7; =expected frequency (number of times) in state i
attime (t =1) = »,(i)
_ _ expected number of transitions from state i to state j
W expected number of transitions from state i

T-1
pRA))
=43
270
=1

expected number of timesin state j and observing symbol v,
expected number of timesin state j

]
A)
2 > P0.6 =i]4)-5(0.v)

b (k)=

- 1 0, =V,
S.t.0g =V -1 t k
S 5(0“\/'():{0 otherwise
> n() D> P(0,q,=i]2)
t=1 t=1
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Parameter re-estimation process

Compute ¢, 8,and & 3

Estimate Z = {K1 §} from é: Forward/Backward

— Algorithm
Replace 1 with 2 L
If nOt Converged gO tO 2 Update HMM Parameters

It can be shown that

P(O|A)>P(O|A) unless A =4

Estimated HMM
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Basic operations in HMMs

For an observation sequence O = O,...Oy, the three basic HMM
operations are:

Problem Algorithm ComQIexity
Evaluation: Forward-Backward | (O (TNZ)
Calculating P(g,=S,| 0,0,...0,)
Inference: Viterbi Decoding O(TNZ)
Computing Q" = argmax, P(Q|0)
Learning: Baum-Welch (EM) | O (TN2 )
Computing A" = argmax, P(O|4)

T = # timesteps, N = # states \j

(Andrew Moore)
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Part VI: Continuous and discrete HMMS

= Markov chain

= Hidden Markov model

» Basic calculations
o How to evaluate an HMM — the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

= Continuous and discrete HMMs
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Vector quantization

Vector Quantization (VQ) is a method of automatically partitioning a
feature space into different clusters based on training data.

Given a test point (vector) from the feature space, we can determine
the cluster that this point should be associated with.

A “codebook” lists central locations of each cluster, and gives each
cluster a name (usually a numerical index).

This can be used for data reduction (mapping a large number
of feature points to a much smaller number of clusters), or for
probability estimation.

Requires data to train on, a distance measure, and test data.
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Vector quantization — an example

Given the following data points, create codebook of 4 clusters,
with initial code word values at (2,2), (4,6), (6,5), and (8,8)

0123456789 0123456789
(Hosom, 2006)
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0123456789

0123456789
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Vector quantization

« Features <> observations, probability of feature = b;(o,)

» However, quantization error can arise when modeling a
continuous signal (feature space) with discrete units (clusters)

p()

» What happens to p(x) if feature space moves back and forth
between bins 3 and 4? What about between bins 5 and 6?

« In addition, initialization can influence the location and

histogram counts of the final clusters... want more robustness
(Hosom, 2006)
41
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Continuous probability distribution

 What we want is a smooth, robust estimate of p(x) (and b;(oy))!!

* How about this:

p()

* Now, small movement along x axis has smooth, gradual effect
on p(x).

« Still a question about initialization...

(Hosom, 2006)
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Continuous probability distribution

» One way of creating such a smooth model is to use a mixture
of Gaussian probability density functions (p.d.f.s).
* The detail of the model is related to the number of Gaussian
components
* This Gaussian Mixture Model (GMM) is characterized by
(a) the number of components,
(b) the mean and standard deviation of each component,

(c) the weight (height) of each component

p()

= . _—

» One remaining question: how to compute probabilities from p.d.f.

at one point (ﬁingle X value) (Hosom, 2006)
Readings in VGIS, Zheng-Hua Tan 43
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Gaussian mixture models

* Typical HMMs for speech are continuous-density HMMs
* Use Gaussian Mixture Models (GMMs) to estimate probability
of “emitting” each observation given the speech category (state).

probability

feature value

* Features <> observations, probability of feature = b;(o,)

(Hosom, 2006)
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Continuous density HMMs

Replaces the discrete observation probabilities,
b/(k), by a continuous PDF (probability density
function) b(x)

The PDF b(x) is often represented as a mixture
of Gaussians:

M
C, is the mixture weight,c, >0,and >.c; =1
k=1

M
bj(x):ZCjKN[X,,UJ-k,ij] 1SJ§N
=\
N is the normal The mean and covariance matrix

density associated with state j and mixture k
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Continuous vs discrete HMMs

Comparing continuous (GMM) and discrete (VQ) HMMs:

* Continuous HMMs:
o assume independence of features for diagonal matrix
o require large number of components to represent arbitrary
function
o large number of parameters = slow, can’t always
train well
o small number of components may not represent speech well

* Discrete HMMs:
o quantization errors at boundaries
o relies on how well VVQ partitions the space
o sometimes problems estimating probabilities when
unusual input vector not seen in training
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Speech recognition system

Acoustic Language
models models

Feature Decoder | Words Apslitestien
extraction (search)

Speech Data Transcription

| Training Tools |

i R
o600 BBY. B85

i b

| Recogniser |

Unknown Speech Transcription
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Training and test procedures for IWR

From (Young et al. 1996) . ruining

Training Examples

one two three

. onoooo | oooo |oooooc
_ o » pooo | ooooo |ooooo
Y Val » 00000 | 0oooo|ooooo

| Traming Tools ‘
Estimate
b comee | ]
oBB%. SOB5. JBBE, — W, M, M,

t P4

| Recogniser ‘

(b) Recognition

Unknown Speech Transcription Unknown O = D D D D D D
| PIO|M,) P(O|M, } P{O|M;) |

Choose Max
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HMMs for speech

» Example of using HMM for word “yes” on an utterance:

= = ——-
Bl

04 07 O3] 04|05 Ogf 07| Og P29

0.6 Qo.a Qo.s Qo.g 1.0
Sil )04 Q//0.7 @0.5 @0-2 Sil

b5|l(01)0'6b5|l(02)0'6bS|I(03)0'6b5|l(04)0'4by(05)0'3by(oﬁ)o'sby(07)0'7 e
observationJ state_] (Hosom, 2006)

Summary

Markov chain

Hidden Markov model

Basic calculations

o How to evaluate an HMM - the forward algorithm
o How to decode an HMM - the Viterbi algorithm

o How to estimate HMM parameters — Baum-Welch
Algorithm

Continuous and discrete HMMs
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