
Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

General-purpose computing on graphics
processing units (GPGPU)

Thomas Ægidiussen Jensen
Henrik Anker Rasmussen

François Rosé

November 1, 2010

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Table of Contents

Introduction

CUDA

CUDA Programming

Kernels

Demo

Future

Getting Started

Summary

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Motivation

◮ Humans want more!

◮ Increasing demands for computational power
◮ Simulations (fluid, physics, etc.)
◮ Entertainment (game, movies, etc.)

However:

◮ The limit of CPU frequency is reached

◮ The limit of power consumption is reached

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Motivation (cont’d)

Figure: Power frequency and transistors
Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Motivation (cont’d)

◮ We just start using multi-processors

◮ or multi-cores
◮ AMD Phenom II X2
◮ Intel Core Duo

◮ Why not use many cores?

Fortunately, it has already been done
- and is already consumer prized

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Graphics processing unit (GPU)

◮ A specialized hardware for 3D and 2D graphics rendering

3D rendering operations:

◮ Floating point operations

◮ Matrix/vector calculations

As a consequence of this:

◮ A GPU is highly parallelized

◮ Optimized for floating point operations

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Graphics processing unit (GPU) (cont’d)

Figure: CPU vs GPU

◮ More transistors used for data processing

◮ Less transistors used for caching and flow control

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

GPGPU

◮ A GPU’s properties makes it suited for other things than
graphics

◮ Image processing
◮ Physics simulation
◮ Fluid simulation
◮ Ray-tracing (light simulation)
◮ ...anything suited to be calculated in parallel

This is what General-Purpose computing on Graphics Processing
Unit is all about

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Examples of GPGPU Usage - FastHOG

◮ Library developed by Prisacariu and Reid from Oxford

◮ HOG: Histogram of Oriented Gradients

◮ Used for human detection

◮ Used in our project

◮ 67x speed improvement
◮ Using two GeForce GTX 285

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Examples of GPGPU Usage - GSM decrypting

◮ Karsten Nohl: German GSM expert

◮ Recorded a GSM phone call using ”GSM catcher”

◮ Crack the key using ATI graphics card in 30 seconds

◮ Using a rainbow table

◮ Was able to decode the call and play it

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Programming GPGPU

Three widely used programming APIs

◮ Firestream (AMD)

◮ Cuda (nVidia)

◮ OpenCL (Khronos Group)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Facts About CUDA

◮ A short for Compute Unified Device Architecture

◮ Introduced in November 2006 by nVidia

◮ GPGPU API for nVidia graphic cards

◮ Supports all GFX cards with G80 GPUs or better

◮ Compute capability is a expression for how good a device is
for CUDA

◮ Looks like C/C++

◮ SDKs for Windows, Linux and Mac OS X

◮ Scalable programming model

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Kernels

◮ Kernels are CUDA functions

◮ Defined like normal C functions

◮ when called,
◮ Executed on the GPU
◮ Started N times
◮ In N separate threads

◮ Built in variable to identify which thread it is executed as

◮ Used to manage the dividing of a task

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Blocks

◮ Threads are grouped into M blocks

◮ Organized as 1D, 2D or 3D

◮ Max 1024 threads in each block

◮ Threads within a block can
cooperate through shared memory

◮ Threads have built-in
synchronization functions Figure: Block of threads

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Thread Hierarchy

◮ Blocks are grouped into a
grid

◮ Organized as 1D or 2D

◮ A block cannot depend on
other blocks

◮ In practice, a block is
scheduled and executed in
warps of 32 threads.

Figure: Thread Hierarchy

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Scalability

◮ Encourage to split the tasks
into smaller parts called
blocks

◮ Each block can be executed
in any order

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Memory Hierarchy

◮ Each thread have some local memory

◮ The threads within a block have shared
memory

◮ Close to the cores and therefore fast
memory

◮ Shared memory lasts as long as the block

Figure: Thread and
block memory
hierarchy

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA - Memory Hierarchy

◮ All threads have access to
the global memory space

◮ The threads have two read
only memory spaces

◮ Constant memory
◮ Texture memory

◮ The transfer from host
memory to the global
memory is slow

Figure: Global memory

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming

Similar to C/C++, although some restrictions

◮ Only GPU memory can be accessed

◮ No variable number of arguments

◮ No static variables

◮ No recursion

◮ No dynamic polymorphism

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Main flow

1. Data is allocated and created on host (CPU) memory

2. Device (GPU) memory is allocated

3. Data is transferred from host to device memory

4. Data is processed in many parallel threads on device
◮ Kernels launched in 1,000s or 10,000s of threads

5. Results are transferred back to host and data is freed

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Memory types

◮ Shared memory
◮ Threads within same block can cooperate

◮ Global memory
◮ Accessible by all threads

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Built-in variables and functions in device code

dim3 gr idDim ; // Gr i d d imens ion
dim3 blockDim ; // Block d imens ion
dim3 b l o c k I d x ; // Block i ndex
dim3 th r e a d I d x ; // Thread i ndex
vo i d s y n c h t h r e a d s () ; // Thread synch w i t h i n b l o ck

Launching a kernel

dim3 g r i d d im (1 0 0 , 5 0) ; // 5000 th r ead b l o c k s
dim3 b l o ck d im (4 , 8 , 8) ; // 256 t h r e a d s pe r b l o ck
my ke rne l <<< g r i d d im , b l o ck d im >>> (data) ;

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Example of thread access

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Indexes are multi-dimensional

◮ Block: 1D or 2D

◮ Thread: 1D, 2D or 3D

◮ Simplifies memory addressing when processing
multi-dimensional data

◮ Image processing

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

◮ Kernels are declared with a qualifier
◮

−−
global

−−
: launched by CPU

(cannot be called from GPU)

◮
−−

device
−−

: called from other GPU functions
(cannot be called by the CPU)

◮
−−

host
−−

: can be called by CPU
(
−−

host
−−

and
−−

device
−−

qualifiers can be combined)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CUDA Programming (cont’d)

Simplified code (int data)

i n t main ()
{
memSize = numBlocks∗numThreadsPerBlock ∗ s i z e o f (i n t) ;

h a = (i n t ∗) ma l l o c (memSize) ;
cudaMal loc(&d a , memSize) ;

cudaMemcpy(d a , h a , memSize , cudaMemcpyHostToDevice) ;
myKernel<<<g r i d d im , b lock d im>>>(d b , d a) ;
cudaMemcpy(h a , d b , memSize , cudaMemcpyDeviceToHost) ;

}

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Simple CUDA Kernel

g l o b a l vo i d v add (f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C)
{
i n t i = th r e a d I d x . x + blockDim . x ∗ b l o c k I d x . x ;
C [i] = A[i] + B[i] ;

}

i n t main ()
{
// A l l o c a t i o n and i n i t i a l i z a t i o n code
. . .
// Launch k e r n e l
v add<<<g r i d d im , b lock d im>>>(d A , d B , d C) ;

// Re s u l t i s t r a n s f e r r e d to ho s t and data i s f r e e d
. . . }

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization

Various simple methods for optimizing CUDA code

◮ Minimize transfers between host and device
◮ 4GB/s peak PCIe bandwith vs. 76GB/s peak (Tesla C870)

◮ Group transfers
◮ One large transfer better than many small

◮ Shared memory is ∼100x faster than global memory
◮ Cache data to reduce global data access

◮ Maximize global memory bandwich
◮ Coalescing - maximizing throughput (some restrictions)

Often rather do extra computations on GPU to avoid transfers

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Break

More optimization after the break!

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Coalescing

◮ Minimize number of bus transactions

◮ A coordinated read by a half-warp (16 threads)

◮ The half-warp must fulfill some requirements

◮ Different requirements for different compute capabilities

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

◮ Uncoalesced access

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

◮ Coalesced access

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Coalescing

◮ Compute capability <1.2
◮ Size of the words read by threads must be 4, 8 or 16B
◮ Global memory region must be contigous and 64, 128 or 256B
◮ Threads must access words in a sequence

◮ The kth thread in the half-warp must access the kth word
◮ Although not all threads have to participate

◮ Compute capability 1.2 and 1.3
◮ Almost the same requirements
◮ Threads can access words in any order

◮ Compute capability 2.x ommitted

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Shared memory should be used as much as possible

◮ Reduce slow host-device transfers

◮ Avoids non-coalesced access

◮ Memory is divided into banks
◮ Each bank can service one address per cycle
◮ Bank conflict: Multiple simoultaneous access to the same bank
◮ Workarounds

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Keep the hardware busy to hide latencies

◮ # of blocks > # of multiprocessors
◮ All multiprocessors should have at least one block to execute

◮ # of blocks / # of multiprocessors > 2
◮ Multiple blocks can run at the same time on a multiprocessor

◮ # of blocks > 100
◮ Scale to future devices
◮ 1,000 should scale across multiple generations

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Number of threads per block

◮ Rules of thumb
◮ Should be a multiple of warp size (32)
◮ Minimum is 64 threads per block
◮ 192 or 256 is usually the best choice
◮ Too many threads can cause kernel launches to fail

(not enough registers per thread)

◮ Depends on application and HW
◮ Experiments might be necessary

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Optimization (cont’d)

Summary

◮ Make efficient parallelism

◮ Use shared memory as much as possible

◮ Avoid (reduce) bank conflicts

◮ Use coalesced memory access

◮ Make use of other memory spaces (texture, constant)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Kernel Performance
Results of optimization

◮ A kernel that reads a float, increments it and writes back
◮ Uncoalesced access: 3, 494µs
◮ Coalesced: 356µs

◮ ”Performance for 4M element reduction”
- parallel reduction by kernel decomposition
(CUDA Technical Training Volume II, Nvidia)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Demo

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Future of GPGPU

◮ Early efforts: GPGPU for its own sake
◮ Challenge of achieving non-graphics computation on GPU
◮ No effort on well-optimized CPU analogs

◮ The bar is now high
◮ Go beyond simple porting
◮ Demonstrate general principles and techniques
◮ Find new uses of the hardware

◮ Emergence of high-level languages
◮ Leap forward for GPU developers
◮ Same for non-graphics developers

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Future of GPGPU (cont’d)

◮ Current and future uses
◮ The search for extra-terrestrial intelligence (SETI)
◮ Accelerated encryption, compression
◮ Accelerated interconversion of video file formats

◮ First generation of data-parallel coprocessors
◮ Rapid growth curve
◮ Advantages of parallel computing

◮ Find the right balance between:
◮ Improved generality
◮ Increasing performance

◮ New and interesting opportunities
◮ Sony Playstation 3
◮ Cell processor + GPU with high-bandwidth bus

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CPU/GPU Hybrid

◮ What is AMD Fusion?
◮ Merger of AMD and ATI
◮ Integrated CPU and GPU in one unit = APU
◮ Multi-core microprocessor architecture
◮ Different clocks for graphics and central processing cores

◮ Llano specifications
◮ DirectX 11 compliant
◮ PCIe 2.0 controller
◮ DDR3-1600 memory controller
◮ 1MB L2 cache per core

◮ Better than current integrated graphics processors on laptops

◮ Should be commercially available starting 2011

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

CPU/GPU Hybrid (cont’d)

◮ Give this new technology some time
◮ Hardware is always faster than software
◮ For ex: the 64-bit transition has been very slow and gradual

◮ Powerful enough for high-end uses?
◮ Separate GPUs evolve rapidly
◮ Integrated GPUs for extended periods
◮ Hybrid architectures won’t be able to keep up

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Getting Started with CUDA

◮ What do you need?
◮ CUDA-enabled GPU (list here)
◮ Driver for your device
◮ CUDA software (free here)
◮ Microsoft Visual Studio / Supported Linux version

◮ Install the CUDA software:
◮ CUDA Toolkit: tools to build and compile
◮ GPU Computing SDK: sample projects and source codes

◮ Test your installation with the samples

◮ For tips: CUDA Programming Guide

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

http://www.nvidia.com/object/cuda_gpus.htm
 http://developer.nvidia.com/object/cuda_3_2_toolkit_rc.html
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Getting Started with Jacket

◮ What is Jacket?
◮ Developed by AccelerEyes
◮ Accelerates MatLab code on CUDA-enabled GPUs
◮ Family of products:

◮ Jacket SDK (Development kit
◮ Jacket MGL (Multi-GPU support)
◮ Jacket Graphics Library

◮ What do you need?
◮ CUDA-enabled GPU
◮ Driver for your device
◮ Matlab license (R2006B or greater)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

Getting Started with Jacket (cont’d)

◮ How does it work?
◮ Tag your data as GPU-data

◮ A = rand(n)
◮ A = gsingle(rand(A)) or A = grand(n)

◮ Jacket-specific functions
◮ Declaring inputs and outputs
◮ Allocating memory to them
◮ Calling the CUDA kernel

◮ Graphics Library
◮ Improves visualizations
◮ Included with all Jacket licenses
◮ Specific GPU function: gplot, gsurf,...

◮ Documentation is available here

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

http://wiki.accelereyes.com/wiki/index.php/Jacket_SDK

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

What to remember

◮ GPGPU = General-Purpose computing on Graphics
Processing Units

◮ Why: increasing demand for computational power
◮ Example: physics simulations

◮ CUDA = Compute Unified Device Architecture
◮ Specific terminology : kernel, grid, blocks...
◮ Different programming concepts
◮ How to make a simple kernel
◮ Optimizing this kernel

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

What to remember

◮ GPGPU has a bright future
◮ Enables you to improve your existing code
◮ New architectures are arriving (CPU/GPU Fusion)

◮ To get started, check out:
◮ The CUDA toolkits from nVidia (free!)
◮ OpenCL (free!)
◮ Jacket for MatLab from Accelereyes (only 999$..)

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

References

◮ John D. Owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Krüger, Aaron Lefohn and Timothy J. Purcell. A
Survey of General-Purpose Computation on Graphics
Hardware

◮ Jared Hoberock and David Tarjan, Stanford University:
Lecture 1: Introduction to Massively Parallel Computing

◮ Jared Hoberock and David Tarjan, Stanford University:
Lecture 2: GPU History and CUDA Programming Basics

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

References (cont’d)

◮ nVidia. CUDA C Getting Started Guide For Microsoft
Windows

◮ nVidia. CUDA C Programming Guide

◮ nVidia. CUDA Technical Training Volume I: Introduction to
CUDA Programming

◮ nVidia: CUDA Technical Training Volume II: CUDA Case
Studies

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

Introduction CUDA CUDA Programming Kernels Demo Future Getting Started Summary

References (cont’d)

Further reading (most of the references can be found here):

◮ nVidia. GPU Computing Developer Home Page.
http://developer.nvidia.com/object/gpucomputing.html

Thomas Ægidiussen Jensen, Henrik Anker Rasmussen, François Rosé

General-purpose computing on graphics processing units (GPGPU)

http://developer.nvidia.com/object/gpucomputing.html

