Demo

Thomas Ægidiussen Jensen Henrik Anker Rasmussen François Rosé

November 1, 2010

Table of Contents

Introduction

CUDA

CUDA Programming

Kernels

Demo

Future

Getting Started

Summary

Motivation

- ► Humans want more!
- Increasing demands for computational power
 - Simulations (fluid, physics, etc.)
 - ► Entertainment (game, movies, etc.)

However:

- The limit of CPU frequency is reached
- The limit of power consumption is reached

Motivation (cont'd)

Motivation (cont'd)

- We just start using multi-processors
- or multi-cores
 - AMD Phenom II X2
 - Intel Core Duo
- Why not use many cores?

Fortunately, it has already been done

- and is already consumer prized

Graphics processing unit (GPU)

A specialized hardware for 3D and 2D graphics rendering

3D rendering operations:

- Floating point operations
- Matrix/vector calculations

As a consequence of this:

- A GPU is highly parallelized
- Optimized for floating point operations

Graphics processing unit (GPU) (cont'd)

Figure: CPU vs GPU

- More transistors used for data processing
- Less transistors used for caching and flow control

GPGPU

- ► A GPU's properties makes it suited for other things than graphics
 - Image processing
 - Physics simulation
 - ▶ Fluid simulation
 - Ray-tracing (light simulation)
 - ...anything suited to be calculated in parallel

This is what General-Purpose computing on Graphics Processing Unit is all about

Examples of GPGPU Usage - FastHOG

- Library developed by Prisacariu and Reid from Oxford
- ► HOG: Histogram of Oriented Gradients
- Used for human detection
- Used in our project
- ▶ 67x speed improvement
 - Using two GeForce GTX 285

Examples of GPGPU Usage - GSM decrypting

- Karsten Nohl: German GSM expert
- Recorded a GSM phone call using "GSM catcher"
- Crack the key using ATI graphics card in 30 seconds
- Using a rainbow table
- Was able to decode the call and play it

Three widely used programming APIs

- Firestream (AMD)
- Cuda (nVidia)
- OpenCL (Khronos Group)

Facts About CUDA

- A short for Compute Unified Device Architecture
- Introduced in November 2006 by nVidia
- GPGPU API for nVidia graphic cards
- Supports all GFX cards with G80 GPUs or better
- Compute capability is a expression for how good a device is for CUDA
- ▶ Looks like C/C++
- SDKs for Windows, Linux and Mac OS X
- Scalable programming model

CUDA - Kernels

- Kernels are CUDA functions
- Defined like normal C functions
- when called,
 - Executed on the GPU
 - Started N times
 - ► In N separate threads
- Built in variable to identify which thread it is executed as
- Used to manage the dividing of a task

CUDA - Blocks

- ► Threads are grouped into M blocks
- Organized as 1D, 2D or 3D
- Max 1024 threads in each block
- Threads within a block can cooperate through shared memory
- ► Threads have built-in synchronization functions

Figure: Block of threads

CUDA - Thread Hierarchy

- Blocks are grouped into a grid
- Organized as 1D or 2D
- A block cannot depend on other blocks
- In practice, a block is scheduled and executed in warps of 32 threads.

Figure: Thread Hierarchy

CUDA - Scalability

- Encourage to split the tasks into smaller parts called blocks
- ► Each block can be executed in any order

CUDA - Memory Hierarchy

- ► Each thread have some local memory
- The threads within a block have shared memory
- Close to the cores and therefore fast memory
- Shared memory lasts as long as the block

Figure: Thread and block memory hierarchy

CUDA - Memory Hierarchy

- All threads have access to the global memory space
- The threads have two read only memory spaces
 - Constant memory
 - ► Texture memory
- The transfer from host memory to the global memory is slow

Figure: Global memory

Similar to C/C++, although some restrictions

- Only GPU memory can be accessed
- No variable number of arguments
- No static variables
- No recursion
- No dynamic polymorphism

CUDA Programming (cont'd)

Main flow

- 1. Data is allocated and created on host (CPU) memory
- 2. Device (GPU) memory is allocated
- 3. Data is transferred from host to device memory
- 4. Data is processed in many parallel threads on device
 - ► Kernels launched in 1,000s or 10,000s of threads
- 5. Results are transferred back to host and data is freed

CUDA Programming (cont'd)

Memory types

- Shared memory
 - ▶ Threads within same block can cooperate
- Global memory
 - Accessible by all threads

Built-in variables and functions in device code

Launching a kernel

```
dim3 grid_dim (100,50); // 5000 thread blocks dim3 block_dim (4,8,8); // 256 threads per block my_kernel <<< grid_dim , block_dim >>> (data);
```

CUDA Programming (cont'd)

Example of thread access

Indexes are multi-dimensional

- ▶ Block: 1D or 2D
- ► Thread: 1D, 2D or 3D
- Simplifies memory addressing when processing multi-dimensional data
 - Image processing

Demo

- Kernels are declared with a qualifier
 - __global__ : launched by CPU (cannot be called from GPU)
 - __device__ : called from other GPU functions (cannot be called by the CPU)
 - __host__ : can be called by CPU(__host__ and __device__ qualifiers can be combined)

CUDA Programming (cont'd)

Simplified code (int data)

```
int main()
memSize = numBlocks*numThreadsPerBlock*sizeof(int);
h_a = (int*)malloc(memSize);
cudaMalloc(&d_a, memSize);
cudaMemcpy(d_a, h_a, memSize, cudaMemcpyHostToDevice);
myKernel <<< grid_dim , block_dim >>> (d_b , d_a );
cudaMemcpy(h_a, d_b, memSize, cudaMemcpyDeviceToHost);
```

Demo

Simple CUDA Kernel

```
__global__ void v_add(float* A, float* B, float* C)
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];
int main()
// Allocation and initialization code
// Launch kernel
v_add \ll grid_dim, block_dim \gg (d_A, d_B, d_C);
// Result is transferred to host and data is freed
 . . . }
```

Optimization

Various simple methods for optimizing CUDA code

- Minimize transfers between host and device
 - ▶ 4GB/s peak PCle bandwith vs. 76GB/s peak (Tesla C870)
- Group transfers
 - One large transfer better than many small
- ightharpoonup Shared memory is ${\sim}100{\rm x}$ faster than global memory
 - Cache data to reduce global data access
- Maximize global memory bandwich
 - Coalescing maximizing throughput (some restrictions)

Often rather do extra computations on GPU to avoid transfers

Break

More optimization after the break!

Coalescing

- Minimize number of bus transactions
- ► A coordinated read by a half-warp (16 threads)
- ► The half-warp must fulfill some requirements
- Different requirements for different compute capabilities

Uncoalesced access

Permuted Access by Threads

Misaligned Starting Address (not a multiple of 64)

Coalesced access

Some Threads Do Not Participate

Coalescing

- ► Compute capability <1.2
 - Size of the words read by threads must be 4, 8 or 16B
 - ▶ Global memory region must be contigous and 64, 128 or 256B
 - Threads must access words in a sequence
 - ► The kth thread in the half-warp must access the kth word
 - Although not all threads have to participate
- Compute capability 1.2 and 1.3
 - ▶ Almost the same requirements
 - Threads can access words in any order
- Compute capability 2.x ommitted

Shared memory should be used as much as possible

- ► Reduce slow host-device transfers
- Avoids non-coalesced access
- Memory is divided into banks
 - ► Each bank can service one address per cycle
 - ▶ Bank conflict: Multiple simoultaneous access to the same bank
 - Workarounds

Keep the hardware busy to hide latencies

- # of blocks > # of multiprocessors
 - ▶ All multiprocessors should have at least one block to execute
- ▶ # of blocks / # of multiprocessors > 2
 - Multiple blocks can run at the same time on a multiprocessor
- # of blocks > 100
 - Scale to future devices
 - 1,000 should scale across multiple generations

Number of threads per block

- Rules of thumb
 - Should be a multiple of warp size (32)
 - Minimum is 64 threads per block
 - ▶ 192 or 256 is usually the best choice
 - ➤ Too many threads can cause kernel launches to fail (not enough registers per thread)
- Depends on application and HW
 - Experiments might be necessary

Optimization (cont'd)

Summary

- Make efficient parallelism
- Use shared memory as much as possible
- Avoid (reduce) bank conflicts
- Use coalesced memory access
- Make use of other memory spaces (texture, constant)

Kernel Performance

Results of optimization

- ▶ A kernel that reads a float, increments it and writes back
 - ► Uncoalesced access: 3,494µs
 - ▶ Coalesced: $356\mu s$
- "Performance for 4M element reduction"
 - parallel reduction by kernel decomposition (CUDA Technical Training Volume II, Nvidia)

	Time (222 ints)	Bandwidth	Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s	
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x

Demo

Future of GPGPU

- Early efforts: GPGPU for its own sake
 - Challenge of achieving non-graphics computation on GPU
 - No effort on well-optimized CPU analogs
- The bar is now high
 - Go beyond simple porting
 - Demonstrate general principles and techniques
 - Find new uses of the hardware
- Emergence of high-level languages
 - Leap forward for GPU developers
 - Same for non-graphics developers

Future of GPGPU (cont'd)

- Current and future uses
 - ► The search for extra-terrestrial intelligence (SETI)
 - Accelerated encryption, compression
 - Accelerated interconversion of video file formats
- First generation of data-parallel coprocessors
 - Rapid growth curve
 - Advantages of parallel computing
- Find the right balance between:
 - Improved generality
 - Increasing performance
- New and interesting opportunities
 - Sony Playstation 3
 - ► Cell processor + GPU with high-bandwidth bus

CPU/GPU Hybrid

- What is AMD Fusion?
 - Merger of AMD and ATI
 - ▶ Integrated CPU and GPU in one unit = APU
 - Multi-core microprocessor architecture
 - Different clocks for graphics and central processing cores
- Llano specifications
 - DirectX 11 compliant
 - ► PCle 2.0 controller
 - DDR3-1600 memory controller
 - ▶ 1MB L2 cache per core
- Better than current integrated graphics processors on laptops
- ▶ Should be commercially available starting 2011

CPU/GPU Hybrid (cont'd)

- Give this new technology some time
 - Hardware is always faster than software
 - ▶ For ex: the 64-bit transition has been very slow and gradual
- Powerful enough for high-end uses?
 - Separate GPUs evolve rapidly
 - Integrated GPUs for extended periods
 - Hybrid architectures won't be able to keep up

- ► What do you need?
 - ► CUDA-enabled GPU (list here)
 - Driver for your device
 - CUDA software (free here)
 - Microsoft Visual Studio / Supported Linux version
- Install the CUDA software:
 - CUDA Toolkit: tools to build and compile
 - GPU Computing SDK: sample projects and source codes
- ► Test your installation with the samples
- ► For tips: CUDA Programming Guide

Getting Started with Jacket

- What is Jacket?
 - Developed by AccelerEves
 - Accelerates MatLab code on CUDA-enabled GPUs
 - Family of products:
 - Jacket SDK (Development kit
 - Jacket MGL (Multi-GPU support)
 - Jacket Graphics Library
- What do you need?
 - CUDA-enabled GPU
 - Driver for your device
 - Matlab license (R2006B or greater)

Getting Started with Jacket (cont'd)

- ► How does it work?
 - Tag your data as GPU-data
 - ▶ A = rand(n)
 - ► A = gsingle(rand(A)) or A = grand(n)
 - Jacket-specific functions
 - Declaring inputs and outputs
 - Allocating memory to them
 - Calling the CUDA kernel
 - Graphics Library
 - Improves visualizations
 - Included with all Jacket licenses
 - Specific GPU function: gplot, gsurf,...
- Documentation is available here

- GPGPU = General-Purpose computing on Graphics Processing Units
 - Why: increasing demand for computational power
 - Example: physics simulations
- CUDA = Compute Unified Device Architecture
 - ► Specific terminology : kernel, grid, blocks...
 - Different programming concepts
 - How to make a simple kernel
 - Optimizing this kernel
 - Optimizing this kerne

What to remember

- GPGPU has a bright future
 - ▶ Enables you to improve your existing code
 - New architectures are arriving (CPU/GPU Fusion)
- ► To get started, check out:
 - The CUDA toolkits from nVidia (free!)
 - OpenCL (free!)
 - Jacket for MatLab from Accelereyes (only 999\$..)

References

- ▶ John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron Lefohn and Timothy J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware
- Jared Hoberock and David Tarjan, Stanford University: Lecture 1: Introduction to Massively Parallel Computing
- Jared Hoberock and David Tarjan, Stanford University:
 Lecture 2: GPU History and CUDA Programming Basics

References (cont'd)

- nVidia. CUDA C Getting Started Guide For Microsoft Windows
- nVidia. CUDA C Programming Guide
- nVidia. CUDA Technical Training Volume I: Introduction to CUDA Programming
- nVidia: CUDA Technical Training Volume II: CUDA Case Studies

References (cont'd)

Further reading (most of the references can be found here):

nVidia. GPU Computing Developer Home Page. http://developer.nvidia.com/object/gpucomputing.html