Pierre Ducoudray – Julien Plaquevent – Cyril Schmitt VGIS – 2010

BRAIN-COMPUTER INTERFACES

TABLE OF CONTENTS

- Introduction
- A little bit of anatomy
- Why brain/computer interfaces?
- Reading in your brain
 - Invasive technologies
 - Partially-invasive technologies
 - Non-invasive technologies
- Commercial systems
- Coming soon
- Writing to brains: Gero Miesenboeck reengineers a brain

INTRODUCTION

- Communication between brain and an external device
- Began in the 1970s at UCLA
- Goal:
 - Assisting
 - Augmenting
 - Repairing
- The video which creates the buzz:
 - http://www.youtube.com/watch?v=gnWSah4RD2E

• How heavy is your brain?

- 600 g
- 1,3kg
- 2,2kg

Answer: 1,3 kg.... but some of us are more lucky than others

• How many main parts is your brain composed?

- 1
- 2
- 3

Answer: 3

• How many nerve cells are in the brain?

- 100 millions
- 10 billons
- 100 billions

Answer: 100 billions called neurons

• If you have Parkingson's disease, what part of the brain is affected?

- Lower Brain
- Midbrain
- Higher brain

Answer: Midbrain

The brain is divided in three parts

Left Brain

Right Brain

Middle Brain

Left Brain

- Verbal language
- Analytical
- Rational

Right Brain

- Visual
- Non verbal language
- Intuitive

Dancer test

- Those two parts :
 - Are linked together by the Middle Brain
 - 83% of the encephalon mass
 - Control the half opposite part of the body
 - Are composed in several lobes

Frontal Lobe

- Control skilled muscle movements
- Mood
- Planning, future
- Setting goals

Parietal Lobe

- Temperature
- taste
- Touch
- Arithmetic reading

Occipital Lobe

Process visual information

Temporal Lobe

- Hearing
- Memory
- Language

Cerebellum

Governs movements

Pons / Medulla Oblogata

- Respiration
- Heart rate
- Swallowing
- Blood pressure

To come up to human's behaviour

- Cognitive informatics :
 - Psychology
 - Neuro Science
 - Linguistics
 - o A.I

Helpfull for brain-damaged people

- Blindness
- Motor disabilities
- Neural diseases (Parkinson)

User Experience

Let's see some UX rules & the Human cognitive process

• Hicks'law:

$$T=b \cdot \log_2(n+1)$$

- With:
 - T: time to choose the good item
 - b : constant
 - n : number of items of the list

• Brain Computer Interface :

- Save the detection time
- Save the response execution time

READING IN YOUR BRAIN

 Principle: connect a device to the central nervous system and analyze its signals

READING IN YOUR BRAIN

READING IN YOUR BRAIN

- Need lots of experiment
- Need to know the brain better

- Technologies:
 - 1. Invasive
 - 2. Partially-invasive
 - 3. Non-invasive

1. Invasive

- Directly implanted in the grey matter of the brain
- Advantage: highest quality signals
- Disadvantages:
 - Dangerous to implant
 - Scar-tissue over the device
- Two examples:
 - Bring sight to blind
 - Artificial hand to tetraplegic

1. Invasive

Bring sight to blind: Jens Naumann

- Material
 - 68-electrode device in the visual cortex
 - 2 cameras mounted on glasses
- Principle
 - Cameras send signals to the device
 - Device produces phosphenes
- Result
 - The device allows to see grey shades in a limited field of view

1. Invasive

Artificial hand to tetraplegic

- Material
 - BrainGate implanted in right precentral gyrus
 - Artificial hand
- Principle
 - BrainGate detects signals send by the brain
 - Artificial hand moves in function of the signal
- Result
 - BrainGate allows to move the artificial hand as his own

2. Partially-Invasive

- Implanted inside the skull but outside the brain
- Advantage: lower risk of forming scar-tissue
- Disadvantage: produce worse resolution signal
- Principle: Electrocorticography (ECoG)
- Application: play "Space Invaders"

3. Non-Invasive

Electrodes are placed over the head

Advantage: no risk for the patient

• Disadvantage: poor signal resolution

Principle: Electroencephalography (EEG)

3. Non-Invasive

- Fine temporal resolution
- Ease of use
- Portability
- Low set-up cost
- Noise susceptibility
- Slow process: many months of training
- Different types of waves:
 - Mu: motor cortex movement or intent to move
 - Beta: motor cortex movement resisting
 - P300: parietal lobe recognition

3. Non-Invasive

- Two samples in video:
 - http://www.youtube.com/watch?v=K1SujPeqdXY
 - http://www.youtube.com/watch?v=i-WMzoqGAnY&feature=related

BREAK

emotiv

- emotive EPOC
- 299\$

emotiv

- SDK
- From 500\$ to 7 500\$
- OPL language

• Exemple of OPL

```
PROC Main:
   LOCAL bottles%
   LOCAL bottle$(10)
   CLS
   bottles%=99
   bottle$=" bottles"
   PRINT "99 Bottles of Beer"
   PRINT
   WHILE(bottles% > 0)
      PRINT bottles%; bottle$; " of beer on the wall, "
      PRINT bottles%; bottle$; " of beer on the wall."
      PRINT "Take one down and pass it around,"
      bottles%=bottles%-1
      IF(bottles% = 1)
         bottle$=" bottle"
      ENDIF
      IF(bottles% <> 0)
         PRINT "There'll be "; bottles%; bottles%; " of beer on the wall."
      ELSE
         PRINT "There'll be no bottles of beer on the wall."
      ENDIF
      PRINT
   ENDWH
   PAUSE 0
ENDP
```


Send your brain data by OSC

• emotiv products :

Game

GZ_EmotivFinal_hiRes

• emotiv products :

- Accessibility
- Pictures management

COMING SOON

Write by thinking?

 Flashing of rows/columns which contain the desired letter will elicit P300 response at vertex

COMING SOON

- Military research about talk by mind
- Virtual reality

WRITING TO BRAINS

Galvani's frog zombie

Physical limits

1. Gero Miesenbock

- Australian Waynflete
 Professor of Physiology
 at Oxford
- Principal architect of optogenetics

2. Optogenetics

- Ten years old technic
- Interacting with the brain using light

3. Optogenetics actors

- Light-emitting sensors
- Light-driven actuators
- Electrochemical signals

4. Optogenetics technologies

- Use of light responsive proteins encoded in DNA
 - mainly Channelrhodopsin-2 (ChR2) a single-component (1 gene) light-activated cation channel from photosynthetic algae
- Cells grouped anatomically or functionally

5. Optogenetics advantages

- Really fast (about 1 millisecond precision)
- Ability to broadcast to a group of cells
- Non-invasive

6. Dr. Miesenbock's aim

"If we could record the activity of all neurons,

we would understand the brain."

7. First experiment: headless flies flying lideas worth spreading

8. Second experiment: reengineering a brain

8. Second experiment: reengineering a brain

Implant an unpleasant memory in a fruit fly

12-neuron brain circuit for memory formation

9. Interest

- Replacing lost functionalities
- Designing new functionalities
- Functionalities are about perception, action, cognition and memory

Discussion

SOURCES

- http://www.neuroscience.ox.ac.uk/directory/gero-miesenboeck
- http://www.bbci.de/research
- http://www.ted.com/talks/gero_miesenboeck.html
- http://www.guardian.co.uk/science/punctuated-equilibrium/2010/nov/08/1
- http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2064810/
- http://www.wikipedia.com

SOURCES

- http://www.wired.com/wired/archive/10.09/vision.html
- http://curiosity.discovery.com/topic/cognitive-neuroscience/brain-quiz5.htm?answerld=1514
- <u>http://www.paranormalpeopleonline.com/psi-where-does-it-all-come-from/</u>
- http://www.slideshare.net/nitish_kumar/bcippprsntn
- http://www.vulgaris-medical.com/images/neurologie-10/-cerveau-vu-de-trois-quarts-en-dessous-841.html#image
- http://biology.about.com/od/humananatomybiology/a/anatomybrain.htm
- http://www.emotiv.com/store/apps/applications/130/727
- http://www.perthnow.com.au/fun-games/left-brain-vs-right-brain/storye6frg46u-1111114517613?from=mostpop