

TABLE OF CONTENTS

- Introduction
- Methods
 - Key-frame extraction
 - · Automatic visual indexing
 - Shot boundary detection
 - Video OCR
- Index in motion
- Image processing algorithms

TABLE OF CONTENTS

- Types of knowledge
- Indexing tools
- Incremental galleries
- Video searching

- Browsing, searching and manipulating video documents
 - → Index describing the video content is required.
- Until now → Carried out by documentalists
- Manual indexing → Expensive and time consuming task.

INTRODUCTION

 Therefore, Automatic Classification of video contest is necessary ->

Video Index: "The process of automatically assigning content-based labels to video documents"

- "Raw" video streams → Structured and indexed database-driven information entities
- · Maximize effectiveness of Web Contents.
- One of the major applications being recently addressed in international market.

INTRODUCTION

- THE PROPERTY OF THE PARTY OF TH
- Video indexing is comparable to text indexing or bookmarking.
- However, implementation is very different and much more difficult than the query mechanism for a textual database.

- In a video document, three information channels are considered:
 - Visual modality.
 - Auditory modality.
 - Textual modality.

INTRODUCTION

- Two main techniques of Video Indexing:
 - Scene change detection technique can be applied for:
 - · Scene Browsing.
 - Automatic and intelligent video indexing of video sequences for video databases.
 - Content-based indexing mechanisms such as:
 - · Object texture, shape, color, motion, etc.

- Video usually contains an enormous amount of visual information → Very important indexing consideration.
- Only keep a representative image from a long scene →
 This process is called "Keyframe extraction".

KEY-FRAME EXTRACTION

 Algorithm that provides summarization of a video by selecting a small number of frames, able to catch the visual and semantic properties of a video or video-shot.

Manufanahanaha

Problem:

 Redundancy clutter → Most used systems today rely on the power of human observation to validate out coming data.

KEY-FRAME EXTRACTION

- In short:
 - An efficient and modular methodology for video indexing, presents a technological challenge.

AUTOMATIC VISUAL INDEXING

- QBIC (Query By Image Content)
 - Indexing method based on color, texture, shape etc.
 - Still images → Each video clip is segmented into small units
 (shots) then one or more keyframes in each unit are selected.
 - Each keyframe is automatically indexed using its visual characteristics.

AUTOMATIC VISUAL INDEXING

- · Problems:
 - One clip usually contains more than one keyframe.
 - The number & density of keyframes in a clip can be problematic :
 - · Long video.
 - · Short clip.

OTHER METHODS

- Other supplementary methods for digital video libraries include:
 - Shot Boundary Detection.
 - Keyframe extraction.
 - Speech recognition (Using Sphinx speech recogniser).
 - Face detection.
 - Video OCR
 - Image search based on color histogram features.

SHOT BOUNDARY DETECTION TO THE PARTY OF THE

- Major techniques used for shot boundary detection:
 - Pixel differences.
 - Statistical differences.
 - Edge differences.

SHOT BOUNDARY DETECTION THE THE PARTY OF THE

• Major techniques used for shot boundary detection:

Motion vectors.

- Histogram comparisons.

Manufamaham

VIDEO OCR

- OCR Optical Character Recognition
 - Mechanical or electronic translation of scanned images.
 - Search engine.
 - Field of research in pattern recognition, artificial intelligence and computer vision.

VIDEO OCR

What kind of text occurrences should be considered?

OverlayText

VIDEO OCR

- In what kind of media data?
 - Treating video as a set of independent images.
 - Same text line occurs in videos for some time → Multiple instances of the same text line → Better detection.
- Font Attributes

VIDEO OCR

Usages:

- Video Indexing: Tolerates pixel errors in the localization and segmentation steps.
- For object-based video encoding: Minimize the errors in pixel classification.
- Visual removal of text from videos → Automatic translation into another language.

VIDEO OCR - DEMOS

- http://www.youtube.com/watch?v=fn1ZJ0HeeOc&NR=1
- http://www.youtube.com/watch?v=zkjBqea8RPM&NR=1
- http://www.youtube.com/watch?v=BLG28-xNoMU&NR=1
- Software: OpenCV
 - Library of programming functions for real time Computer Vision

INDEX IN MOTION

- The user can query by video clips' moving characteristics.
- · Techniques:
 - Feature extraction.
 - Object tracking across frames.
- Early stage: Small number of experimental systems.

IMAGE PROCESSING ALGORITHMS

- Camera Motion Estimation and Compensation:
 - Recover parametric estimates of the camera motion between consecutive frames in the video.
 - · Parameters used:
 - to locate independently moving objects
 - to label the sequence in terms of camera motion operations.

IMAGE PROCESSING ALGORITHMS

Object Segmentation and Tracking Techniques:

- Objects of interest are segmented from the background based on color or motion attributes.
- Tracked from across the different frames.

IMAGE PROCESSING ALGORITHMS

Line Detection:

- Used to detect structures of interest in the scene.
- The algorithms incorporate operations like edgedetection, edge-linking and edge-thinning.

TYPES OF KNOWLEDGE

Physical Knowledge:

Includes constraints derived from the physical environment.

Cinematic Knowledge:

 Includes the details on how the particular event is filmed and produced.

TYPES OF KNOWLEDGE

Semantic Knowledge:

 Includes the knowledge about the actual sport, the temporal structure of the game, the rules of the games and other high level information about the sport.

Key-frame detection

 Is based on the similarity measures. A key-frame is a frame which contains the most information and is the most distinct from the other frames within a shot.

INDEXING TOOLS

Key-frame detection

- Two functions are used:
 - the "utility function": based on the entropy of the color distribution
 - the "frame distance function": based on the Bhattacharyya distance.

Motion characterization

- Motion characterization is based on which calculates
 the optic flow on automatically detected salient points.
- Visual interface provides
 local information through
 intensity and direction
 motion maps.

INDEXING TOOLS

Key-face detection

 Useful for automatic cast summarization and automatic extraction of face image training sets for face recognition.

Key-face detection

- Two main steps:
 - frontal face detection: detected on each frame with a cascade of boosted classifiers
 - face image dissimilarity assessment: checks if the currently processed frame contains a face image similar to the last detected image face.

INDEXING TOOLS

Face recognition

- Face candidates are detected on each frame.
- Spatial likelihood is assigned to each face candidates detected. The likelihood is used to increase face recognition performance in complex scenes.
- Face recognition of a face candidate is done with an Hidden Markov Model encoding procedure.

Facial characterization

- Provides information regarding the facial expression of almost frontal faces.
 - Face feature detection
 - Face normalization: consists in using the position of features to scale and orient the face image according to a normalized pose.

INDEXING TOOLS

Facial characterization

- Facial expression recognition: seven basic emotions (anger, disgust, fear, happiness, sadness, neutral and surprise)
- Emotions are detected globally on a frame by
 frame basis

Text spotting

- Scanning the frame with a variable-size window.
- First stage: simple classifier that discards as many false alarms as possible.
- Second stage: the output of the cascade is a decision map showing regions of interest that may contain text, and on which a commercial OCR will be applied.

INCREMENTAL GALLERIES

Personal gallery is adapted by

- updating an entry of the gallery with the input (known person case)
- adding the input as a new entry of the gallery (unknown person case)

VIDEO SEARCHING

- Searching by person, event, topic, date...
- Inconvenients:
 - Very high cost of maintenance with big and dynamic databases.
 - Creation of a hierarchy of categories which makes easy localization of documents to a large number of users.

REFERENCES

- www.daedalus.gr/prdinfo1.html
- www.ieee.org/
- <u>ieeexplore.ieee.org</u>
- Una panorámica de las Telecomunicaciones (Anibal R. Figueiras)

REFERENCES

Related Papers:

- Application of Content-Based Video Indexing to Computer-Assisted Descriptive Video
- Automatic Video Indexing with Incremental Gallery Creation
- Semantic Video Indexing: Approach and Issues
- A Web-Enabled Video Indexing System
- Automatic Text Segmentation and Text Recognition for Video Indexing