Multi-Modal User Interaction
Fall 2008

Lecture 4: Language Modeling

Zheng-Hua Tan

Department of Electronic Systems
Aalborg University, Denmark
zt@es.aau.dk

‘a Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008

Part I: Introduction

= Introduction
o Lexicon
o Finite state grammar
o n-gram
= Rule grammar recogniser
o BNF format
o Java Speech Grammar Format
o JSGF examples for Sphinx 4

‘a Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008

Speech recognition system

v(r) 0 W'
'l '.|*f‘u.-'u'f'-vw-‘ > S > ASR Application
P Extraction | ; Decoder ;
i 7 Y K .
Speech - i - . v
Signal : §LM Language Modell
AISF;?;}C\ Lexicon\ Lal\%gzlge Generation
§ —-——
""""" Text
Front-End
Search
Space
‘@ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 3

Pronunciation dictionary (lexicon)

SAMPA (Speech Assessment Methods

Phonetic Alphabet) is a machine-readable
phonetic alphabet.

Danish
Aalborg QIlbQ:
café kafe:
Paris PARI:S
tak tAg

‘@ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 4

Language modelling for speech recognition

e Speech recognizers seek the word sequence W which is most
likely to be produced from acoustic evidence A

P(W|A) = m[lléleP(WIA} oc mVEXP(AIL'V}P(W)

e Speech recognition involves acoustic processing, acoustic
modelling, language modelling, and search

e Language models (LMs) assign a probability estimate P(W) to
word sequences W = {wy,..., wu} subject to

S PW) =1
w

e Language models help guide and constrain the search among

.___Iélternatlve word hypotheses during recognition (Glass, 2003)

‘@ Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 5

Types of grammar

Finite-state and phrase structure

o take the form of rules with a left-hand and right-
hand side

n-gram
o based on probabilities of word combinations
e.g. bigrams, trigrams

‘@ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 6

Finite state grammar (networks)

Language space defined by word network or
graph
o

three

sent-start

.H‘|

Dy

sent-end

‘oung

‘« Fig. 3.1 Grammar for Voice Dialling

Word-pair grammars

show — me | me — all | the — flights
— the — restaurants

Language space defined by lists of legal word-pairs
Can be implemented efficiently within Viterbi search
Finite coverage can present difficulties for ASR

Bigrams define probabilities for all word-pairs and can produce a
nonzero P(W) for all possible sentences

(Glass, 2003)

‘« Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 8

Language model impact

e Resource Management domain

e Speaker-independent, continuous-speech corpus
e Sentences generated from a finite state network
e 997 word vocabulary

Word-pair perplexity ~ 60, Bigram ~ 20

L]

Error includes substitutions, deletions, and insertions

No LM | Word-Pair

Bigram

% Word Error Rate | 29.4 6.3

4.2

(Lee, 1988)

‘« Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008

n-gram language models

Probability of the sentence S = w; w,
P(S) = P(wy w; ... wg)=

...WQI

P (W) P(Wo|wq)P(Wslw,y Wy)...P(Wolwy W, ... Wg)

Conditional word probability:

P(Wglwy W, ... Wo.q) » P(Wg|Wonsq - Wo.1)

where N is a constant:
o Unigram (N=1)

o Bigram (N=2)

o Trigram (N=3)

‘« Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008

10

n-gram language models

e n-gram models use the previous n — 1 words to represent the
history ¢(h;) = {Wi-1,..., Wi-(n-1)}

¢ Probabilities are based on frequencies and counts

c(wiwows)

e.g., flwslwiwz)= c(wywa)

s Trigrams used for large vocabulary recognition in mid-1970’s and
remain the dominant language model

Google Web 1T 5-gram Corpus!
2006

‘@ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 1

Part II: Rule grammar recogniser

= Introduction
o Lexicon
o Finite state grammar
o n-gram
= Rule grammar recogniser
o BNF format
a VoiceXML
o Java Speech Grammar Format
o JSGF examples for Sphinx 4

‘@ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 12

Rule grammar recogniser

Grammars determine what the recognizer
should listen for and describe the utterances
a user may say

Rule grammar recogniser, i.e. command and
control recogniser

Grammar formats

a BNF

o VoiceXML

o JSGF

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008

13

Grammar in the BNF format

BNF (Backus-Naur Format)
[.] optional
{.} zero or more
(.) block (grouping)
<.> loop (one or more)
.| alternative (or)

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008

14

BNF grammar — an example

> cat grammar.bnf

$dir = up | down | left | right;
$mcmd = move $dir | top | bottom;
$item = char | word | line | page;
$dcmd = delete [$item];

$icmd = insert;

$ecmd = end [insert];

$cmd = $memd | $demd | $icmd | $ecmd;

$noise = sil | £il | spk;
({$noise} < $cmd {$noise} > quit {$noise})

HTK supports it.

—>

15

{ﬁé?

VoiceXML

Voice Extensible Markup Language
(VoiceXML)

The VoiceXML 2.0 specification includes a
set of built-in grammars as a convenience to
enable developers to get started writing more
complex VoiceXML applications quickly.

‘« Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 16

VoiceXML example

Asks the user for a choice of drink and then submits it to a server
script

<?xml version="1.0" encoding="UTF-8"?>

<vxml xmins="http://www.w3.0rg/2001/vxml"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.w3.0rg/2001/vxml
http://www.w3.0org/TR/voicexml20/vxml.xsd"
version="2.0">
<form>

<field name="drink">

<prompt>Would you like coffee, tea, milk, or nothing?</prompt>
<grammar src="drink.grxml" type="application/srgs+xml"/>

</field>
<block>
<submit next="http://www.drink.example.com/drink2.asp"/>
</block>
<f/form>
</vxml>
‘« Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008

17

Built-in grammars in VoiceXML

Date

o May fifth

o the thirty first of December two thousand
o March

0 yesterday
o today

o tomorrow

‘« Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008

18

Built-in grammars in VoiceXML

Time

one o’clock

five past one

three fifteen

seven thirty

half past eight

oh four hundred hours
sixteen fifty

twelve noon

midnight

O O O 0O 0D 0D 0D 0O O

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 19

Java Speech Grammar Format

Java Speech Grammar Format (JSGF)

Is a platform-independent, vendor-
independent textual representation of
grammars for use in speech recognition.

adopts the style and conventions of the Java
programming language in addition to use of
traditional grammar notations.

‘fL Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 20

10

Grammar names and declaration

Each grammar has a unique name that is
declared in the grammar header

Grammar’'s name must be declared as the
first statement of that grammar:
grammar grammarName

o simple grammar name e.g.
grammar robot;

o full grammar name (=package name + simple
grammar name) e.g.

grammar com.acme.politeness;

‘f‘ Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 21

Rulename

Grammar is composed of a set of rules that define
what may be spoken. Rules are combinations of
speakable text and references to other rules.

Each rule has a unigue rulename:

Rulename can be written in most of the world’s living
languages

o Chinese, Japanese, Korean, European languages...
Case sensitive

o <name> and <Name> are different

‘f‘ Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 22

11

Comments and grammar header

[* text */ A traditional comment.
/[text A single-line comment.

The header format is
#JSGF version char-encoding local;

e.g.
#JSGF V1.0;

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 23

Import

The import declarations follow the grammar declaration and must
come before the grammar body (the rule definitions).

An import declaration allows one or all of the public rules of another
grammar to be referenced locally. Formats:

o import <fullyQualifiedRuleName>;

o import <fullGrammarName.*>;

For example,

o import <com.sun.speech.app.index.1stTo31st>;

an import of a single rule by its fully-qualified rulename: the rule
<1stTo31st> from the grammar com.sun.speech.app.index. The
imported rule, <1stTo31st>, must be a public rule of the imported
grammar.

o import <com.sun.speech.app.numbers.*>;

The use of the asterisk requests import of all public rules of the
numbers grammar. E.g., if that grammar defines 2 public rules,
<digits>, <teens>, then both 2 may be referenced locally.

‘fL Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 24

12

Rule definitions

Grammar body defines rules
o <ruleName> = ruleExpansion;
o public <ruleName> = ruleExpansion;

Weights
o <size>=/10/small | /2/ medium | /1/large;

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 25

Grouping and unary operators

Grouping

o <command> = (open | close) (windows | doors);
Unary operators

o <polite> = please | kindly | oh mighty computer;
o <command> = <polite> * don’t crash

A rule expansion followed by the asterisk symbol indicates that
the expansion may be spoken zero or more times. Here a user
can say things like "please don't crash”, "oh mighty computer
please please don't crash”, or to ignore politeness with "don't

crash*.

o <command> = <polite> + don’t crash

The plus symbol indicates the expansion may be spoken one
of more times.

‘fL Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 26

13

Tags

Tags provide a mechanism for grammar writers to
attach application-specific information to parts of rule
definitions.

Applications typically use tags to simplify or enhance
the processing of recognition results.

Tag attachments do not affect the recognition of a
grammar. Instead, the tags are attached to the result
object returned by the recognizer to an application.

A tag is a unary operator. The tag is a string delimited
by curly braces “{}'.

The tag attaches to the immediate preceding rule
expansion. E.g.

o <rule> = <action> {tag in here};, <command>= please (open
{OPEN} | close {CLOSE}) the file;

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008 27

Example 1: Hello world application

Robot control

#JSGF V1.0;

/**

* JSGF Robot Grammar for Hello World example
*/
grammar robot;

public <move>= (LIFT ARM | STEP FORWARD | SIT
DOWN | ENTER STAIRS | FETCH THE CUP) *;

‘fL Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 28

14

Example 2: Simple Command & Control

#JSGF V1.0;

grammar com.acme.politeness;

// Body

public <startPolite> = (please | kindly | could you | oh mighty computer) *;
public <endPolite> = [please | thanks | thank you];

#JSGF V1.0 1SO8859-1 en;

grammar com.acme.commands;

import <com.acme.politeness.startPolite>;

import <com.acme.politeness.endPolite>;

/**

* Basic command.

* @example please move the window

* @example open a file

*/

public <basicCmd> = <startPolite> <command> <endPolite>;

<command> = <action> <object>;
<action> = /10/ open |/2/ close |/1/ delete |/1/ move;
<object> = [the | a] (window | file | menu);

Example 3: HCWapp Application for PDA

#JSGF V1.0;

grammar jsgf;

<quit> = EXIT | QUIT;

<selection> = SELECT | VIEW | DISPLAY | GET | GO TO;

<tab> = TAB | PAGE | SCREEN;

<application> = PROGRAM | APPLICATION | SOFTWARE;

public <jsgf> =
[<selection>] (INEXT] VISITS | [THE] <tab> TWO) {goto_visits} |
[<selection>] (PATIENT [DETAILS] | [THE] <tab> THREE)

{goto_patients} |

[<selection>] (OPTIONS | [THE] <tab> FOUR) {goto_options} |
[<selection>] (HELP | [THE] <tab> FIVE) {goto_help} |
(<quit> [[THE] <application>]) {quit};

‘fL Multi-Modal User Interaction, IV, Zheng-Hua Tan, 2008 30

Summary

Introduction

o Lexicon

o Finite state grammar

o n-gram

Rule grammar recogniser

o BNF format

o VoiceXML

o Java Speech Grammar Format
o JSGF examples for Sphinx 4

‘fL Multi-Modal User Interaction, 1V, Zheng-Hua Tan, 2008

31

16

