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Part I: Introduction

Introduction, history and trends
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM 
Variability
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ASR history

1. Spectral resonances extracted by an analogue filter bank and logic 
circuits; phoneme, syllable, digit recognition

2. DTW, IWR, IBM LV ASR, Bell Labs SI ASR, CMU CSR, ARPA 5-
year project

3. Statistical framework, HMM (CMU, IBM, J.Baker), Δcepstrum 
(Furui), N-gram (IBM), Neural net, DARPA program (Resource 
management task)

Discriminative approach, robust ASR, DARPA program (broadcast 
news, EARS rich transcription, GALE), spontaneous speech, audio-
visual ASR (S. Furui 2007)
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IT Technology progress 
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1971-1976: The ARPA project 
ARPA launched 5 year Spoken Understanding Research 
project
Goal: 1000 word vocabulary, a few speakers, continuous 
speech, constrained grammar, 90% understanding rate, near 
real time on a 100 MIPS machine
4 Systems built by the end of the program

SDC (24%), BBN’s HWIM (44%), CMU’s Hearsay II (74%), CMU’s 
HARPY (95% -- but 80 times real time!)

HARPY based on engineering approach:  search on network 
of all the possible utterances 
Conclude: Speech Understanding is too early for its time

Raj Reddy

Lesson learned:
Hand-built knowledge does not scale up
Need of a global “optimization” criterion
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1980s -- The Statistical Approach
Hidden Markov Models based statistical approach (Fred 
Jelinek and Jim Baker, IBM)
Foundations of modern speech recognition engines
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No Data Like More Data
Whenever I fire a linguist, our system 

performance improves (1988)
Some of my best friends are linguists (2004)
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• A Block Diagram

• Example Input Sentence
this is speech

• Acoustic Models
(th-ih-s-ih-z-s-p-ih-ch)

• Lexicon  (th-ih-s) → this
(ih-z) → is
(s-p-iy-ch) → speech

• Language Model (this) – (is) – (speech)
P(this) P(is | this) P(speech | this is) 
P(wi|wi-1)        bi-gram language  model
P(wi|wi-1,wi-2) tri-gram language model,etc

Front-end
Signal Processing

Acoustic
Models Lexicon

Feature
Vectors

Linguistic Decoding 
and 

Search Algorithm

Output 
Sentence

Speech
Corpora

Acoustic
Model

Training

Language
Model

Construction
Text

Corpora

Lexical
Knowledge-base

Language
Model

Input Speech

Grammar

L.S. Lee, 2007

Large vocabulary speech recognition 
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Key components of LVCSR system

Speech recognition involves:
How to represent the signal
How to model both acoustic and language constraints
How to search for the optimal answer

Feature 
extraction

Decoder
(search)

Acoustic
models

Language
models

ApplicationSpeech Words
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Part II: Speech signal representation

Introduction
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM  
Variability 
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Short-time processing solution

Assuming that speech has non-time-varying 
properties (fixed excitation and vocal tract) 
within short intervals 

Processing short segments (frames) of the 
speech signal each time

)()(),( mnwmxmnf x −=
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Windows

Rectangular window

Hamming window (commonly used)
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Choice of window

Window type
Bandwidth of Hamming window is about twice the 
bandwidth of Rectangular
Attenuation of more than 40dB for Hamming as 
compared with 14 dB for Rectangular, outside 
passband

Window duration N
Increase N = decrease window bandwidth
N should be larger than a pitch period, but smaller 
than a sound duration
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Dimension & speech representation

The curse of dimension – the computational cost 
increases exponentially with the dimension of 
the problem 
The frame-based analysis yields a sequence as 
a new representation of the speech signal

samples at 8000/sec vectors at 100/sec
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Front-end feature extraction

MFCC
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Part III: Template based approach 

Introduction
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM  
Variability 
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Template matching mechanism
Calculate the distance between two patterns
Dynamic time warping (DTW)

Feature 
Extraction

unknown 
speech

Pattern 
Matching

Decision 
Making

x(t) WX

output 
wordfeature 

vector 
sequence

Reference 
Patterns

Feature 
Extraction

y(t) Y

training 
speech

Template based ASR
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Speaking rate and time-normalization 
Speaking rate variation causes nonlinear fluctuation 
in a speech pattern time axis

Time-normalization is needed.
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DP based time-normalization 

Dynamic programming is a pattern matching 
algorithm with a nonlinear time-normalization 
effect.

Time differences btw two speech patterns are 
eliminated by warping the time axis of one so that 
the maximum coincidence is attained with the 
other, also called dynamic time warping (DTW)
The time-normalized distance is calculated as the 
minimized residual distance between them, 
remaining still after eliminating the timing 
differences.
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Consider an i-j plane, 
then time differences 
can be depicted by a 
sequence of points 
c=(i,j):

where 

Dynamic programming
Consider two speech patterns expressed as a sequence of 
feature vectors :
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Dynamic programming (cont’d)

The sequence c is called a warping function.
A distance btw two feature vectors is

The weighted summation of distances on warping 
function F becomes

The time-normalized distance btw A and B is 
defined as the minimum residual distance btw them
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Restrictions on warping function

Warping function F (or points c(k) ), as a model of 
time-axis fluctuation in speech, has restrictions:

  gentle. nor too steep oneither to be shouldgradient A 
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The simplest DP of symmetric form

Step 1: Initialisation:

Step 2: Iteration (DP equation):

Adjustment window:
Step 3: Termination:
Time-normalised distance 
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From template to statistical method

The template method with DP alignment is a 
simplified, non-parametric method which is hard to 
characterise the variation among utterances
Hidden Markov model (HMM) is a powerful 
statistical method of characterising the observed 
data samples of a discrete-time series 
The underlying assumption of the HMM is

The speech signal can be well characterised as a 
parametric random process
The parameters of the stochastic process can be 
estimated in a precise, well-defined manner
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Part IV: Hidden Markov model

Introduction
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM 
Variability 
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“Hidden” Markov model
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The Urn-and-Ball model

doubly stochastic systems
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Elements of a discrete HMM
N: the number of states 

states, s = {s1,s2,...,sN}
state at time t, qt∈ s 

M: the number of observation symbols
observation symbols, v = {v1,v2,...,vM }
observation at time t, ot∈ v 

A = {aij}: state transition probability distribution
aij = P(qt+1 = sj | qt = si ), 1≤ i,j ≤ N 

B = {bj(k)}: observation probability distribution in state j 
bj(k) = P(Ot=vk | qt = sj), 1≤ j ≤ N, 1≤ k ≤ M 

: initial state distribution 
For convenience, we use the notation:

}{ iππ =

),,( πλ BA=
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Three basic HMM problems

Scoring: Given an observation sequence O = 
{o1,o2,...,oT } and a model λ = {A, B,π}, how to 
compute P(O | λ), the probability of the observation 
sequence? The Forward-Backward Algorithm

Matching: Given an observation sequence O = 
{o1,o2,...,oT } and the model λ,how to choose a 
state sequence q = {q1,q2,...,qT } which is optimum 
in some sense? The Viterbi Algorithm

Training: How to adjust the model parameters λ = 
{A,B,π} to maximize P(O| λ)? The Baum-Welch 
Re-estimation Procedures
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Problem 1: Scoring

Given O = {o1,o2,...,oT } and λ = {A, B,π}, how to 
compute P(O | λ), the probability of the 
observation sequence? (probability evaluation)

Consider all possible state sequences (NT) of length T:

Calculation required ≈ 2T·NT

For N =5,T = 100,  2 · 100 · 5100 ≈ 1072 computations!
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The forward algorithm
Consider the forward variable        defined as

i.e., the probability of the partial observation sequence 
until time t and state i at time t, given the model λ
We can solve for         inductively as follows:
1. Initialisation

2. Induction

3. Termination

Calculation≈N2.T.  For N=5,T=100, 2500, instead of 
1072
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Illustration of forward algorithm

(Rabiner, 1989)
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The backward algorithm
Similarly, consider the backward variable        
defined as

i.e., the probability of the partial observation sequence 
from time t +1 to the end, given state i at time t and 
model λ
We can solve for         inductively as follows:
1. Initialisation

2. Induction

3. Termination
Again, calculation≈N2.T.  
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Problem 2: Matching

Given O = {o1,o2,...,oT },how to choose a state 
sequence q = {q1,q2,...,qT } which is optimum in 
some sense? (“Optimal” state sequence)  

Trellis diagram for an Isolated Word Recognition task.
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Finding optimal state sequence

One optimality criterion is to choose the states qi
that are individually most likely at each time t

Define the probability of being in state i at time t, given 
the observation sequence O, and the model λ

The individually most likely state qt
* at time t is
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Finding optimal state sequence (cont’d)

The individual optimality criterion has the 
problem that the optimum state sequence 
may not obey state transition constraints 
The “optimal” state sequence may not even 
be a valid sequence (aij=0 for some i and j)
Another optimality criterion is is to find the 
single best state sequence (path), i.e., to 
maximize  P(q , O|λ) 
The Viterbi algorithm – a method based on 
dynamic programming
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The Viterbi algorithm

To find the best path q = {q1,q2,...,qT }, for 
given O = {o1,o2,...,oT }, we define the best 
score (highest probability) along a single path, 
at time t,

which accounts for the first t observations and 
ends in state i.

Then 
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The Viterbi algorithm (cont’d)

1. Initialisation 

2. Recursion

3. Termination

4. Path (state sequence) backtracking
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The Viterbi algorithm (cont’d)

(Joseph Picone)
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The power of recursive equation
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Problem 3: Training

How to tune the model parameters λ = {A,B,π} to 
maximize P(O| λ)? - a learning problem

No efficient algorithm for global optimisation 
Effective iterative algorithm for local optimisation: the 
Baum-Welch re-estimation

Baum-Welch
= forward-backward algorithm (Baum, 1972)
is a special case of EM (expectation-maximization) 
algorithm
computes probabilities using current model λ; 
refines λ to    such that P(O| λ) is locally maximised 
uses    and    from forward-backward algorithmα β

λ
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Baum-Welch re-estimation

Define           , the probability of being in state i at 
time t, and state j at time t+1, given λ and O, i.e. 
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Baum-Welch Re-estimation (cont’d)

Recall that        is defined as the probability of 
being in state i at time t, given the entire 
observation sequence and the model, so

Sum        and          over t, we have
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Baum-Welch re-estimation formulas
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Part VI: Variability 

Introduction
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM  
Variability 
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Variability in the speech signal

Most noticeable factors that determine accuracy are 
variations in context, in speaker and in environment.
Speech recogniser can be very accurate for a 
particular speaker, in a particular language and 
speaking style, in a particular environment, and 
limited to a particular task.
But it remains a research challenge to build a 
recogniser that can understand anyone’s speech, in 
any language, on any topic, in any free-flowing style, 
and in any speaking environment
Accuracy and robustness are the ultimate measures 
for the success of ASR
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Variability

Context variability
It is easy to recognise speech.
It is easy to wreck a nice beach.

Style variability
Isolated, continuous, spontaneous

Speaker variability – human vocal tract
Speaker-dependent vs. speaker-independent
Speaker-adaptation

Environmental variability
Multistyle training

Transmission channel variability
Error concealment 
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Problems with noise

High-level performance in controlled 
environments
Degradation in noisy situations

100% to 30% accuracy in a car with 90km/h
99% to 50% in a cafeteria

Key issue: mismatch in training and operating 
environments
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Noise robustness

Language
models

Feature 
Extraction

unknown speech 
+ noise2, SNR2

Decoder 
x(t) WX

Acoustic 
models

Feature 
Extraction

y(t) Y

training speech 
+ noise1, SNR1

Noise 
resistance

Speech 
enhancement

Model 
compensation

Multi-condition 
training
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Part VI: Summary  

Introduction
Speech signal representation
Template based approach – DTW
Statistical model based approach – HMM  
Variability 


