Multi-Modal User Interaction Fall 2008

Lecture 1: Introduction

Zheng-Hua Tan

Department of Electronic Systems Aalborg University, Denmark zt@es.aau.dk

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

1

Aperitif

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

About the course

Purpose

- To give the student a comprehension of the principles for multi-modal interaction, in particular speech-based interfaces
- To enable the student to extend the methods for HCI GUI design to analyse, design and synthesise multi modal user interfaces

Contents

- Automatic speech recognition and –synthesis
- Integration of information from e.g. speech and visual modalities into advanced multimodal interfaces
- Architectures and platforms of MM systems
- Multi modal interface design and evaluation methods

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

3

Course Outline

- MM1~5: Speech synthesis and recognition
 - Introduction
 - Speech synthesis
 - Speech recognition
- MM6 ~10: Multimodal interaction
 - Integration of information from multiple modalities
 - Architectures and platforms of MM systems
 - Multi modal interface design and evaluation methods

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Literature

- Textbook:
 - McTear, Spoken Dialogue Technology, Springer, 2004.
- Readings:
 - Huang, Acero and Hon, Spoken Language Processing, Prentice-Hall, 2001.
 - D. O'Shaughnessy, Speech Communications, IEEE Press, 2000
 - Rabiner and Juang, Fundamentals of Speech Recognition, Prentice-Hall, 1993.

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

5

Course homepage and contact info

- http://kom.aau.dk/~zt/cources/MMUI/
- Zheng-Hua Tan
 - **+45** 9940-8686
 - □ Office: Room A6-319, Niels Jernes Vej 12
- Lars Bo Larsen
 - **+45** 9940-7202
 - □ Office: Room A6-317, Niels Jernes Vej 12

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Part I: Introduction

- Introduction
 - Speech input and output components of speech interaction
 - State-of-the-art
- Basics about speech a short introduction
- Speech synthesis

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

7

Computer as dream of human being

HAL talks, listens, reads lips and solves problems

- Nature and effortless for human
- Hard for computer
- Dream of AI scientists and human
- True in 2001: A Space Odyssey

(After 2001: A Space Odyssey, 1968)

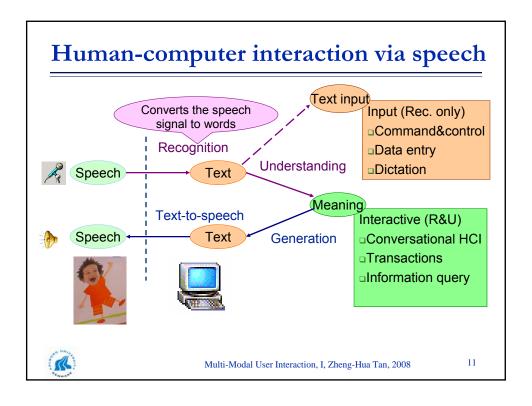
Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Computer as a reality: state-of-the-art

Man vs. machine

- Text to speech (TTS)
 - Next generation TTS @ AT&T

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008


٥

State-of-the-art

- Dragon Naturally speaking 10
 - It's three times faster than most people type
 - □ Up to 99% accurate right out of the box!
 - The latency between speaking and seeing words on the PC has nearly been eliminated.
 - Let you find files on your PC, search web maps, shop on eBay, set appointments and more, all with simple voice commands.

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Part II: Basics about speech

- Introduction
- Basics about speech a short introduction
- Speech synthesis

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Information in Speech

Speech coding data rates

Rate (bits/sec)

200k 100k 64k 32k ADPCM, DPCM, PCM Waveform coding 16k 12k 9k 4.8k 2k 1k 500 100 60 LPC, CELP, MELP, Vocoders Parametric (source) coding

Human can understand text:

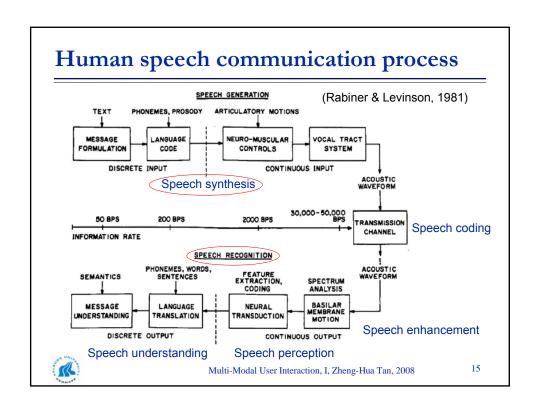
10 char/sec x 6 bits/ASCII char = 60 bits/sec

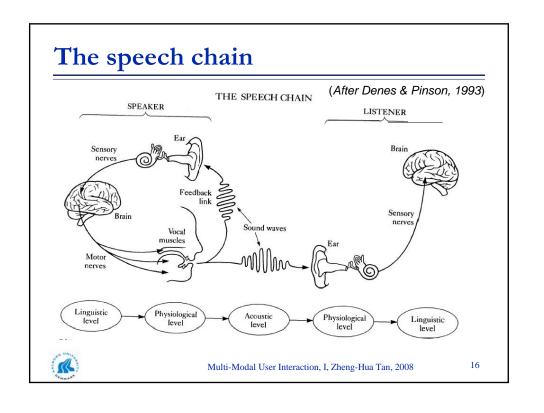
Is content in speech more than 60 bits/sec?

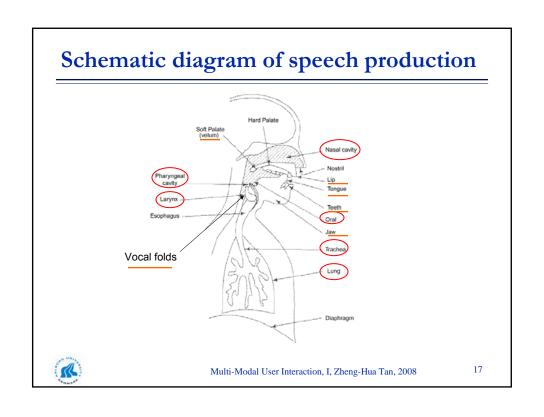
Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

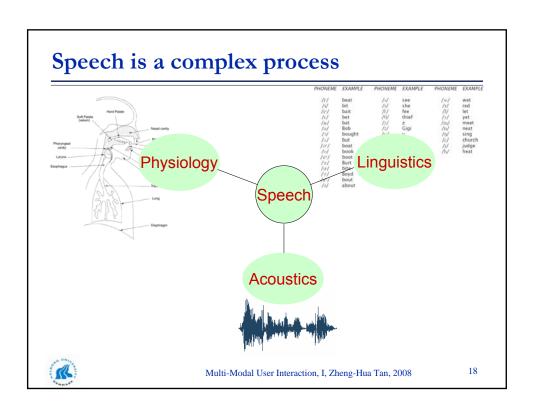
13

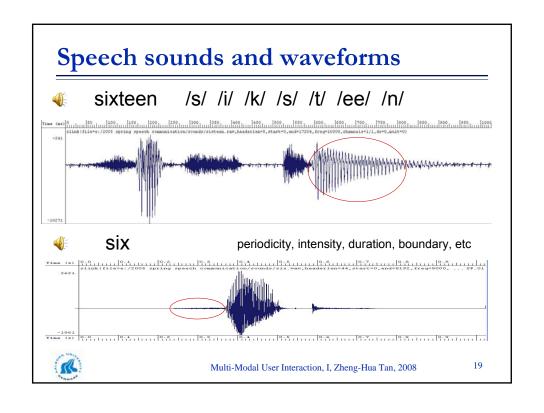
Information in Speech – cont.

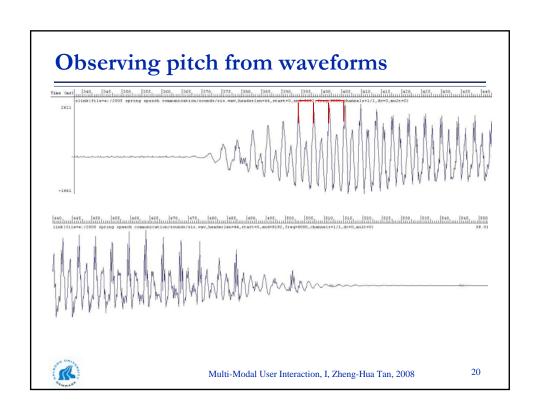


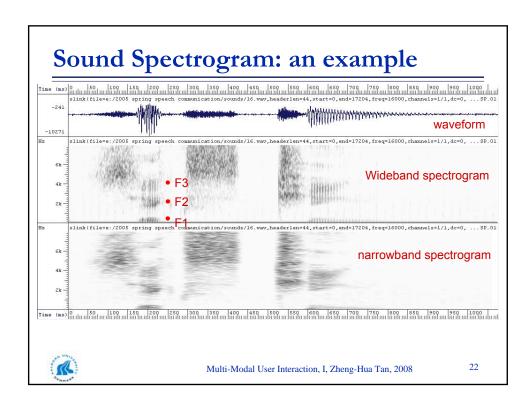

- "That's one small step for man; one giant leap for mankind."
 - -- Neil Armstrong, Apollo 11 Moon Landing Speech

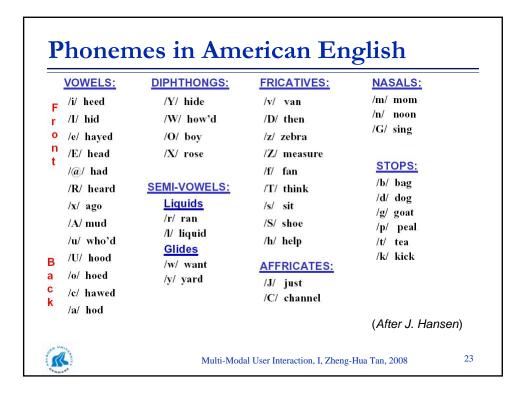

Speech contains speaker identity, emotion, meaning, text, language, sex and age, channel characteristics. → speech techniques

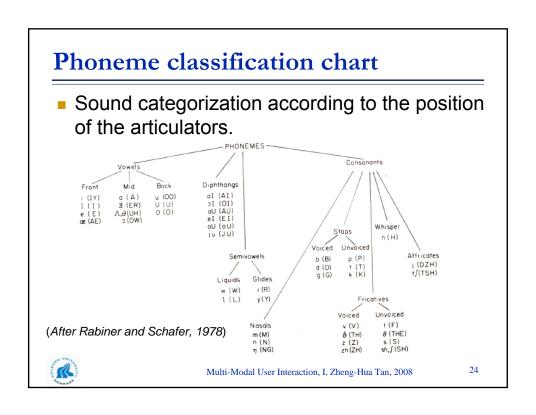


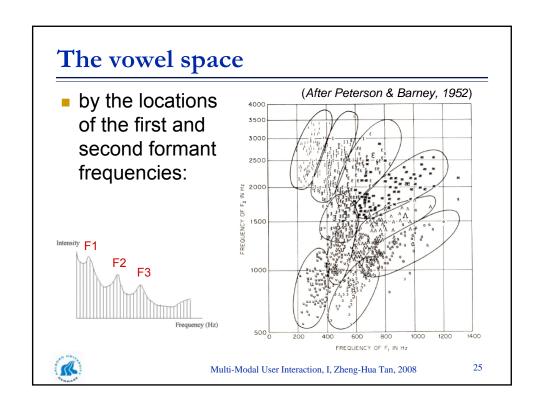

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008






Spectrogram


- Spectrogram
 - 2-D waveform (amplitude/time) is converted into a
 3-D pattern (amplitude/frequency/time)
 - Wideband spectrogram: analyzed on 15ms sections of waveform with a step of 1ms
 - Voiced regions with vertical striations due to the periodicity of the time waveform (each vertical line represents a pulse of vocal folds) while unvoiced regions are 'snowy'.
 - Narrowband spectrogram: analyzed on 50ms sections
 - Pitch for voiced intervals in horizontal lines



Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

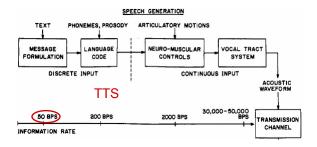
Speech Tool

- Speech Filing System- Tools for Speech Research
 - It performs standard operations such as recording, replay, waveform editing and labelling, spectrographic and formant analysis and fundamental frequency estimation.
 - http://www.phon.ucl.ac.uk/resource/sfs/

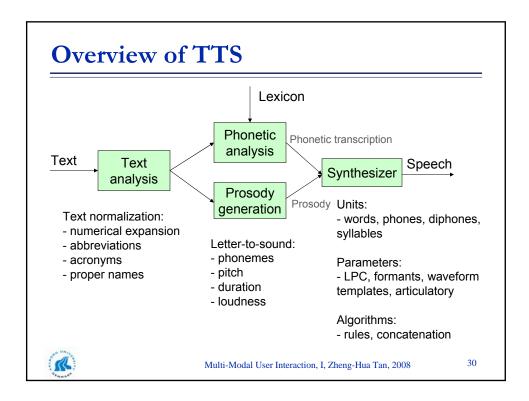
Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

27

Part III: Speech synthesis


- Introduction
- Basics about speech a short introduction
- Speech synthesis
 - Articulatory synthesis
 - Formant synthesis
 - Concatenative synthesis

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008


Text-to-speech (TTS)

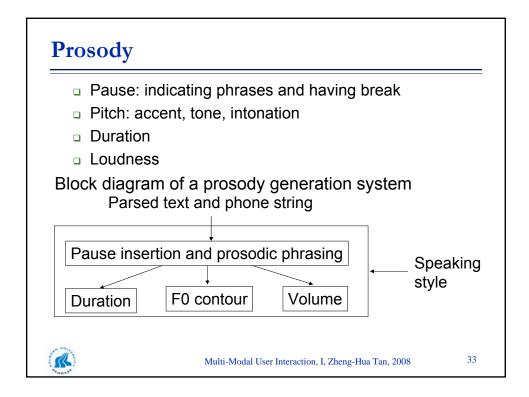
- TTS converts arbitrary text to intelligible and natural sounding speech.
- TTS is viewed as a speech coding system with an extremely high compression ratio.
- The text file that is input to a speech synthesizer is a form of coded speech. What is the bit rate?

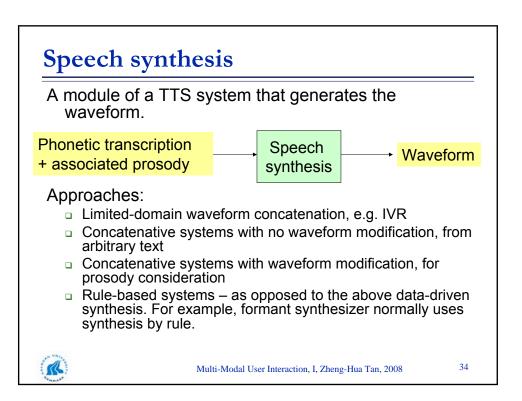
Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Text analysis

- Document structure detection
 - to provide context for later processes, e.g. sentence breaking and paragraph segmentation affect prosody.
 - e.g. email needs special care. This is easy :-) ZT
- Text normalization
 - to convert symbols, numbers into an orthographic transcription suitable for phonetic conversion.
 - Dr., 9 am, 10:25, 16/02/2006 (Europe), DK, OPEC
- Linguistic analysis
 - to recover syntactic and semantic features of words, phrases
 & sentences for both pronunciation and prosodic choices.
 - word type (name or verb), word sense (river or money bank)

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008


31


Letter-to-sound

- LTS conversion provides phonetic pronunciation for any sequence of letters.
- Approaches
 - Dictionary lookup
 - If lookup fails, use rules.
 - knight: k -> /sil/ % _n
 - Kitten: k -> /k/
 - Classification and regression trees (CART) is commonly used which includes a set of yes-no questions and a procedure to select the best question at each node to grow the tree from the root.

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Types according to the model

- Articulatory synthesis
 - uses a physical model of speech production including all the articulators
- Formant synthesis
 - uses a source-filter model, in which the filter is determined by slowly varying formant frequencies
- Concatenative synthesis
 - concatenates speech segments, where prosody modification plays a key role.

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

35

Formant speech synthesis

- A type of synthesis-by-rule where a set of rules are applied to decide how to modify the pitch, formant frequencies, and other parameters from one sound to another
- Block diagram

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Concatenative speech synthesis

- Synthesis-by-rule generates unnatural speech
- Concatenative synthesis
 - A speech segment is generated by playing back waveform with matching phoneme string.
 - cut and paste, no rules required
 - completely natural segments
 - An utterance is synthesized by concatenating several speech segments. Discontinuities exist:
 - spectral discontinuities due to formant mismatch at the concatenation point
 - prosodic discontinuities due to pitch mismatch at the concatenation point

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

37

Key issues in concatenative synthesis

- Choice of unit
 - Speech segment: phoneme, diphone, word, sentence?
- Design of the set of speech segments
 - Set of speech segments: which and how many?
- Choice of speech segments
 - How to select the best string of speech segments from a given library of segments, given a phonetic string and its prosody?
- Modification of the prosody of a speech segment
 - To best match the desired output prosody

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

Choice of unit

Unit types in English

(After Huang et al., 2001)

Unit length	Unit type	# units	Quality
Short	Phoneme	42	Low
	Diphone	~1500	
	Triphone	~30K	
	Semisyllable	~2000	
	Syllable	~15K	
	Word	100K-1.5M	
Long	Phrase	∞	\ High
	Sentence	∞	Ingii

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

39

Attributes of speech synthesis system

- Delay
 - □ For interactive applications, < 200ms
- Momory resources
 - Rule-based, < 200 KB; Concatenative systems, 100 MB
- CPU resources
 - For concatenative systems, searching may be a problem
- Variable speed
 - e.g., fast speech; difficult for concatenative system
- Pitch control
 - e.g., a specific pitch requirement; difficult for concatenative
- Voice characteristics
 - e.g., specific voices like robot; difficult for concatenative

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

TTS Systems

- ATT
- Festival

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008

41

Summary

- Introduction
 - Speech input and output components of speech interaction
 - State-of-the-art
- Basics about speech a short introduction
- Speech synthesis
 - Articulatory synthesis
 - Formant synthesis
 - Concatenative synthesis

Multi-Modal User Interaction, I, Zheng-Hua Tan, 2008