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Outline

Voice activity detection
o Features
o Classifiers
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Voice activity detection

To detect the presence or absence of speech
in a segment of an acoustic signal.

The detected non-speech segments can
subsequently be abandoned to improve the
overall performance of these systems.
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Applications

Wireless communications

Real-time speech communication over the
Internet

Hearing aids devices
Speech and speaker recognition
Noise reduction
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VAD (and de-noising) application

Noisy signal MFCC
- Speech Frame Feature _ N
. > enhancement > dropping » extraction |
* A
Noise

’ estimation

| VAD T

AALBORG UNIVERSITY Extraction of Features, VI, Zheng-Hua Tan 5

Techniques

Noise robust features

a Energy, Pitch detection, Spectrum analysis, Zero-
crossing rate, Periodicity measure , MFCC,

Entropy P(Xl Hl) P; P(Hu)

Decision rules/classifiers P(x|Hy) < P(H;)
o Thresholding, SVM, GMM, decision tree, ...
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Energy

= One of the most common features

= Et at the t-th frame is computed as the logarithm
of the signal energy; for N-length Hamming-
windowed speech samples

N2
E¢ =log Xsp
n=1

= The ratio of log-energy of the input frame to that
of noise (En):
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Energy (dB)

Clean
SNR=5dB
SNR= -5 dB 2015105 5
) (Ramirez, 2007)
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Zero crossing rate (ZCR)

The number of times the signal level crosses

zero

ZCR ratio of the input frame to noise
Zt
Z,

where Zt denotes the ZCR of the input frame,
and Zn denotes that of noise
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GMM modeling and likelihood ratio

A log-likelinood ratio of speech GMM to noise
GMM for input frames is used for the GMM
feature.

The feature calculated as follows, where
and ¢, denote the model parameter set of
GMM for the speech and noise, respectively

log(p(x, | 6;))—log(p(x |6,))
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Performance evaluation
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Figure 3: Sensor room:10db
(Kida, 1S2005)
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Performance evaluation

(Tan, 2010)
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Outline

a

a

De-noising

o Spectral subtraction

o Wiener filter

a Non-local means de-noising
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De-noising/enhancement

Recover s(n) from y(n) = s(n) + d(n)

s(n)

0 A

'UWU\,\
R y(n) S(n)
@ "M ,l‘;‘l f‘.q‘m signal [E— ﬁ; /" A~
F ‘.\J*}‘AY processing WU

A

WA 1A

W N’\]‘ WH

d(n) noise

AALBORG UNIVERSITY Extraction of Features, VI, Zheng-Hua Tan




Spectral subtraction

= Subtracting noise power spectrum from noisy
signal power spectrum

noise

frame?
Ym(N) Iy |estimate
0 — Fa(w)
Hip e
=~ FFT
phase
Wwdpe FFT '
AALBORG sl |\’V\\ (AT n
Wiener filtering
Concept:
Ymin) §a{n)

"\Ji‘\.\i\w“w — o JVJ‘ M~

An j| (W) =H(W) Yo (W)
A Qc. AN —_— (\ { ] -
Hw) = Ps(w)
Py (w)

H(w) weights spectrum according to SNR at different frequencies (Ho)

i R 16
AALBORG UNIVERSITY Extraction of Features, VI, Zheng-Hua Tan




Wiener filtering
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Iterative wiener filtering

Estimating P.(w) by P,(w) - P (x) may not be good
Can do better by computing P,(w) from the Wiener filter output
Algorithm:

P (@)= P,(w) - Py(w)
i=0
repeat

P 2 C))
@)= F @), + P
S,(®),,,=H(®), Y, (m)

P (@);,,= S, (@), [
i=i+1
until convergence
e
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Wiener filtering

= Wiener filtering is an optimum filter in the
mean-square error sense

= Wiener filtering, assuming known signal and
noise spectra, gives an upper bound in
performance
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Non-local means de-noising

| Fast Fourier Transformation |
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Non-local means de-noising
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Fig. 3. Comparisons of magnitude spectrograms between the NL-means and ( ! )
SS methods. (a) Clean speech. (b) Clean speech corrupted by the “car” noise

AALBORG UNIV with 5-dB SNR. (¢) Enhanced by NL-means. (d) Enhanced by SS. (e) Noise 21
removed by NL-means. (f) Noise removed by the SS.

Non-local means de-noising

90

e Baseline

sS
70 - FWR-SS

NL-Means by Eq.(5
& y Eq.(5)

50
40

30

Averaged WER (%)

20

10~

%O 15 10 5 0

SNR(dB) (Xu, 2008)

Fig. 4. WER (%) (averaged over different noise types) comparisons for a range
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Summary

Voice activity detection

o Features

a Classifiers

De-noising

o Spectral subtraction

a Wiener filter

a Non-local means de-noising
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