Extraction and Representation of Features, Spring 2011

Lecture 5: Speech and Audio Analysis

Zheng-Hua Tan

Multimedia Information and Signal Processing
Department of Electronic Systems
Aalborg University, Denmark
zt@es.aau.dk

Extraction of Features, V, Zheng-Hua Tan

1

Feature extraction

- A special form of dimensionality reduction, used when the input data is
 - Too large to be stored or processed
 - Redundant (much data, but not much information)
- Data is transformed into a compact representation – a set of features.
- Speech and audio signals have a lot in common.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Speech analysis

■ Most applications of speech processing must exploit the properties of speech signals → Speech Analysis: the process of extracting such properties from a speech signal.

Speech analysis: Short-time analysis

- Short-time speech analysis
- Time-domain processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

Speech is a time-varying signal:

- excitation
- pitch
- amplitude

Extraction of Features, V, Zheng-Hua Tan

-

Short-time processing solution

Assuming that speech has non-time-varying properties (fixed excitation and vocal tract) within short intervals →

Processing short segments (frames) of the speech signal each time

$$f_x(n,m) = x(m)w(n-m)$$

Fig. 6.1 Sketches of x(m) and w(n-m) for several values of n.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Frame-by-frame processing

Frames often overlap one another

- The frame-based analysis yields a timevarying sequence as a new representation of the speech signal
 - □ samples at 8000/sec → vectors at 100/sec

Extraction of Features, V, Zheng-Hua Tan

7

Windows

Rectangular window

$$w[n] = 1,$$
 $0 \le n \le N-1$

Hamming window

AALBORG UNIVERSIT

Choice of window

- Window type
 - Bandwidth of Hamming window is about twice the bandwidth of Rectangular
 - Attenuation of more than 40dB for Hamming as compared with 14 dB for Rectangular, outside passband
- Window duration N
 - □ Increase N = decrease window bandwidth
 - N should be larger than a pitch period, but smaller than a sound duration

Extraction of Features, V, Zheng-Hua Tan

9

Speech analysis: Time-domain

- Short-time speech analysis
- Time-domain speech processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

Time-domain parameters

- Short-time energy
- Short-time average magnitude
- Short-time zero crossing rate
- Short-time autocorrelation
- Short-time average magnitude difference

Extraction of Features, V, Zheng-Hua Tan

11

Short-time energy

 The long term energy definition is not useful for time-varying signals

$$E = \sum_{m=-\infty}^{\infty} x^2(m)$$

Short-time energy of weighted signal around
 n is defined as

$$E_n = \sum_{m=-\infty}^{\infty} [x(m)w(n-m)]^2$$

AALBORG UNIVERSIT

Extraction of Features, V, Zheng-Hua Tan

Examples of short-time energy

- It can be used to detection voiced/unvoiced/silence
 - Effects of window type, duration N (bandwidth) and why?

Uttered by a male speaker.

Two plots converge as N increases.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

11

Short-time magnitude

 Less sensitive to large signal levels as compared to energy where x²(n) terms is used.

$$M_n = \sum_{m=-\infty}^{\infty} |x(m)| w(n-m)$$

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Short-time average zero-crossing rate

- A zero-crossing occurs if successive samples have different algebraic signs.
- It is a measure of the frequency.-
- Definition

$$Z_n = \sum_{m=-\infty}^{\infty} |\operatorname{sgn}[x(m)] - \operatorname{sgn}[x(m-1)] | w(n-m)$$

where
$$\operatorname{sgn}[x(n)] = \begin{cases} 1 & x(n) \ge 0 \\ -1 & x(n) < 0 \end{cases}$$

and

$$w(n) = \begin{cases} \frac{1}{2N} & 0 \le n \le N - 1\\ 0 & otherwise \end{cases}$$

Extraction of Features, V, Zheng-Hua Tan

15

Zero-crossing rate distributions

- A histogram of average zero-crossing rates (averaged over 10 msec) for both voiced and unvoiced speech
- In different frequency bands

Fig. 4.11 Distribution of zero-crossings for unvoiced and voiced speech.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Example of zero-crossing rate

 Although the zero-crossing rate varies considerably, the voiced and unvoiced regions are quite prominent.

Fig. 4.12 Average zero-crossing rate

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Short-time autocorrelation function

The autocorrelation function

$$\phi(k) = \sum_{m=-\infty}^{\infty} x(m)x(m+k)$$

■ The short-time autocorrelation function

$$R_n(k) = \sum_{m=-\infty}^{\infty} x(m)w(n-m)x(m+k)w(n-k-m)$$

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

18

Applications

- Boundary detection
 - short-time energy
 - zero crossing rate
- Pitch estimation
 - short-time autocorrelation function

Extraction of Features, V, Zheng-Hua Tan

19

Speech analysis: Frequency-domain

- Short-time speech analysis
- Time-domain speech processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

Discrete-time Fourier transform

$$\begin{cases} X(e^{jw}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-jwn} \\ x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{jw})e^{jwn} dw \end{cases}$$

Convolution and multiplication duality:

$$\begin{cases} y[n] = x[n] * h[n] \\ Y(e^{jw}) = X(e^{jw})H(e^{jw}) \end{cases}$$

$$\begin{cases} y[n] = x[n]w[n] \\ Y(e^{jw}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} W(e^{j\theta})X(e^{j(w-\theta)})d\theta \end{cases}$$

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

21

Short-time Fourier transform

It is motivated by the need for a spectral representation to reflect the time-varying properties of the speech waveform

$$X_{n}(e^{jw}) = \sum_{m=-\infty}^{+\infty} w[n-m]x[m]e^{-jwm}$$

$$w(50-m)$$

$$w(100-m)$$

$$x(m)$$

$$m = 50$$

$$n = 100$$

Fig. 6.1 Sketches of x(m) and w(n-m) for several values of n.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Spectrogram

- Spectrogram
 - two-dimensional waveform (amplitude/time) is converted into a three-dimensional pattern (amplitude/frequency/time)
 - Wideband spectrogram: analyzed on 15ms sections of waveform with a step of 1ms
 - voiced regions with vertical striations due to the periodicity of the time waveform (each vertical line represents a pulse of vocal folds) while unvoiced regions are solid/random, or 'snowy'
 - Narrowband spectrogram: on 50ms
 - pitch for voiced intervals in horizontal lines

Extraction of Features, V, Zheng-Hua Tan

25

Wide- and narrow-band spectrograms | Time (ms) | 00 | 100 | 150 | 200 | 250 | 200 | 250 | 400 | 450 | 500 | 550 | 500 | 650 | 700 | 750 | 800 | 850 | 200 | 250 |

Speech analysis: LPC analysis

- Short-time speech analysis
- Time-domain speech processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

27

Discrete-time filter model for speech

Its philosophy is related to the speech model in which speech is modelled as the output of a linear, time-varying system excited by either quasi-periodic pulses or random noise.

The LPC provides a robust and accurate method for estimating the parameters of the time-varying system.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

LPC analysis

- For efficient coding, speech signals are often modelled using parameters of the vocal tract shape that generates them.
- Pole-zero model (ideal during a stationary frame)

$$H(z) = \frac{S(z)}{U(z)} = G \frac{1 + \sum_{l=1}^{q} b_l z^{-l}}{1 - \sum_{l=1}^{p} a_k z^{-k}}$$

All-pole model (simple): a matter of analytical necessity

$$H(z) = \frac{S(z)}{U(z)} = G \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}} \qquad 1 - az^{-1} = \frac{1}{\sum_{n=0}^{\infty} a^n z^{-n}}$$
Extraction of Features, V, Zheng-Hua Tan

All-pole model - the LPC model

$$H(z) = \frac{S(z)}{U(z)} = G \frac{1}{1 - \sum_{k=1}^{p} a_k z^{-k}}$$
 \Rightarrow $S(z) = \frac{G}{1 - \sum_{k=1}^{p} a_k z^{-k}} U(z)$

$$\Rightarrow S(z) = S(z) \sum_{k=1}^{p} a_k z^{-k} + GU(z)$$

$$\Rightarrow s(n) = \sum_{k=1}^{p} a_k s(n-k) + Gu(n)$$

where u(n) is a normalised excitation and G is the gain of the excitation

AALBORG UNIVERSIT

Extraction of Features, V, Zheng-Hua Tan

The LPC model

After excluding the excitation term, a given speech sample at time n, s(n), can be approximated as a linear combination of the past p speech samples:

$$\tilde{s}(n) = \alpha_1 s(n-1) + \alpha_2 s(n-2) + ... + \alpha_p s(n-p)$$

where the coefficients $\alpha_1, \alpha_2, ..., \alpha_p$ are assumed constant over the speech frame.

LPC analysis: to determine a set of predictor coefficients $\{\alpha_k\}$ directly from the speech signal.

Extraction of Features, V, Zheng-Hua Tan

31

LPC analysis equations

Windowed speech: x(n) = s(n)w(n)

Error of linear predictor $e(n) = s(n) - \hat{s}(n)$

$$e(n) = s(n) - \sum_{k=1}^{p} \alpha_k s(n-k)$$

Method: minimise mean-squared prediction error Short-time average prediction error

$$E_n = \sum_{m = -\infty}^{\infty} e_n^2(m) = \sum_{m = -\infty}^{\infty} [s_n(m) - \sum_{k=1}^{p} \alpha_k s_n(m - k)]^2$$

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

LPC analysis equations (cont'd)

Find α_k such that E_n is minimal

$$E_n = \sum_{m = -\infty}^{\infty} e_n^2(m) = \sum_{m = -\infty}^{\infty} [s_n(m) - \sum_{k=1}^{p} \alpha_k s_n(m-k)]^2$$

$$\frac{\partial E_n}{\partial \alpha_i} = 0$$
 for $i = 1, 2, ..., p$

Resulting in
$$\sum_{m=-\infty}^{\infty} s_n(m-i)s_n(m) = \sum_{k=1}^{p} \hat{\alpha}_k \sum_{m=-\infty}^{\infty} s_n(m-i)s_n(m-k)$$

Define covariance $\phi_n(i,k) = \sum_{m=-\infty}^{\infty} s_n(m-i)s_n(m-k)$

Then

$$\sum_{k=1}^{p} \hat{\alpha}_k \phi_n(i,k) = \phi_n(i,0) \quad i = 1,2,...,p$$

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

33

Short-time LP analysis

■ To solve the following equation for the optimum predictor coefficients (the $\hat{\alpha}_k$ s)

$$\phi(i,0) = \sum_{k=1}^{p} \hat{a}_k \phi(i,k)$$
 $i = 1,2,...,p$

we have to compute $\phi(i,k)$ and then solve the resulting set of p equations.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Speech analysis: Cepstral analysis

- Short-time speech analysis
- Time-domain speech processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

35

Homomorphic speech processing

- Again, speech is modelled as the output of a linear, timevarying system (linear time-invariant (LTI) in short seg.) excited by either quasi-periodic pulses or random noise.
- The problem of speech analysis is to estimate the parameters of the speech model and to measure their variations with time.
- Since the excitation and impulse response of a LTI system are combined in a convolutional manner, the problem of speech analysis can also been viewed as a problem in separating the components of a convolution, called "deconvolution".

$$y[n] = x[n] * h[n]$$

AALBORG UNIVERSIT

Extraction of Features, V, Zheng-Hua Tan

Homomorphic deconvolution

Converts a convolution into a sum

$$\begin{cases} y(n) = x(n) * h(n) \\ \hat{y}(n) = \hat{x}(n) + \hat{h}(n) \end{cases}$$

Canonic form for system for homomorphic deconvolution

$$x_1(n) * x_2(n)$$

$$\hat{x}_1(n) + \hat{x}_2(n)$$

$$x_1(n) * x_2(n)$$
 $\hat{x}_1(n) + \hat{x}_2(n)$ $\hat{y}_1(n) + \hat{y}_2(n)$ $y_1(n) + y_2(n)$

Extraction of Features, V, Zheng-Hua Tan

The characteristic system

The characteristic system for homomorphic deconvolution

Extraction of Features, V, Zheng-Hua Tan

Cepstral analysis

Observation:

$$x[n] = x_1[n] * x_2[n] \Leftrightarrow X(z) = X_1(z)X_2(z)$$

taking logarithm of X(z), then

$$\log\{X(z)\} = \log\{X_1(z)\} + \log\{X_2(z)\}$$

i.e.,
$$\hat{X}(z) = \hat{X}_1(z) + \hat{X}_2(z)$$

$$\hat{\boldsymbol{x}}[n] = \hat{x}_1[n] + \hat{x}_2[n]$$

So, the two convolved signals are additive.

Extraction of Features, V, Zheng-Hua Tan

39

Complex cepstrum and real cepstrum

Real cepstrum c[n] is the even part of $\hat{x}[n]$

$$\begin{cases} \hat{x}[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \hat{X}(e^{jw}) e^{jwn} dw \\ = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log\{X(e^{jw})\} e^{jwn} dw & \text{complex cepstrum} \\ c[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log|X(e^{jw})| e^{jwn} dw & \text{cepstrum} \end{cases}$$

cepstrum was coined by reversing the first syllable in the word spectrum.

ALBORG UNIVERSIT

Extraction of Features, V, Zheng-Hua Tan

Speech analysis: Cepstral analysis

- Short-time speech analysis
- Time-domain speech processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

Extraction of Features, V, Zheng-Hua Tan

43

Gammatone filters

- Gammatone is a widely used model of auditory filters.
- Impulse response (the product of a gamma distribution and sinusoidal tone):

$$g(t) = at^{n-1}e^{-2\pi bt}\cos(2\pi ft + \phi),$$

where f is the frequency, ϕ is the phase of the carrier (tone), a is the amplitude, n is the filter's order, b is the filter's bandwidth, and t is time.

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan

Summary

- Short-time speech analysis
- Time-domain processing
- Frequency-domain (spectral) processing
- Linear predictive coding (LPC) analysis
- Cepstral analysis
- Filter bank analysis

AALBORG UNIVERSITY

Extraction of Features, V, Zheng-Hua Tan