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Feature extraction

A special form of dimensionality reduction,
used when the input data is

o Too large to be stored or processed
o Redundant (much data, but not much information)

Data is transformed into a compact
representation — a set of features.

Speech and audio signals have a lot in
common.
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Speech analysis

= Most applications of speech processing must
exploit the properties of speech signals >
Speech Analysis: the process of extracting
such properties from a speech signal.

applications: e.g.

speech representation pitch, formants,
speech —| analysis |5 speech boundary detection,
(DSP) speech & speaker
recognition
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Speech analysis: Short-time analysis

= Short-time speech analysis

= Time-domain processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis
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Properties of speech signals
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Speech is a time-varying signal:
o excitation
a pitch
o amplitude
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Short-time processing solution

Assuming that speech has non-time-varying
properties (fixed excitation and vocal tract)
within short intervals -

Processing short segments (frames) of the
speech signal each time
f. (n,m)=x(m)w(n—m)

w(200-m)

w(so—m\ wi100—-m}
-~ f( "f/ x(mj
|

Fig. 6.1 Sketches of x(m) and w(n—m) for several values of n.
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Frame-by-frame processing

= Frames often overlap one another

wav, haa
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m The frame-based anaIyS|s yields a time-
varying sequence as a new representation of
the speech signal
o samples at 8000/sec - vectors at 100/sec

i - 7
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Windows

= Rectangular window
w[n] =1, 0<n<N-1

= Hamming window

W[n] = 0.54 - 0.46 cos(%),
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Choice of window

= Window type

o Bandwidth of Hamming window is about twice the
bandwidth of Rectangular

o Attenuation of more than 40dB for Hamming as
compared with 14 dB for Rectangular, outside
passband

= Window duration - N
o Increase N = decrease window bandwidth

o N should be larger than a pitch period, but smaller
than a sound duration
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Speech analysis: Time-domain

m Short-time speech analysis

= Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis
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Time-domain parameters

Short-time energy

Short-time average magnitude
Short-time zero crossing rate

Short-time autocorrelation

Short-time average magnitude difference

i - 11
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Short-time energy

The long term energy definition is not useful
for time-varying signals

E= ixz(m)

Short-time energy of weighted signal around
n is defined as

E,= Y D(mw(n-m)]?

i - 12
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Examples of short-time energy

= It can be used to detection voiced/unvoiced/silence
o Effects of window type, duration N (bandwidth) and why?

/WHAT SME SAID/-RECTANGULAR WINDOW FWHAT SHE SAID/ - HAMMING WINDOW
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TIME IN SECONDS TIME IN SECONDS
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SHORT-TIME ENERGY, E,

SHORT ~TIME ENERGY, £,

Fig. 4.6 Short-time energy functions for rectangular windows of various Fig. 4.7 Short-lime energy functions for Hamming windows of various
lengths. lengths

Uttered by a male speaker. Two plots converge as N increases.
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Short-time magnitude

= Less sensitive to large signal levels as
compared to energy where x2(n) terms is used.

M, = 2 x(m)[w(n—m)

JWHAT SHE SAID/ - MAMMING WINDOW FWHAT SHE SAIDF~HAMMING Wi

Aok
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j-\ /\L Nea0n
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SHORT ~TIME ENERGY, E,
AVERAGE MAGNITUDE My

TIME IN SECONDS

s i T
TIME IN SECONDS
Fig. d-" functions for Hamming windows of various Fig. -LI-M"DM for Hamming windows of various
lengths lengths.
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Short-time average zero-crossing rate

A zero-crossing occurs if successive samples
have different algebraic signs. | ’ |
L 1]

It is a measure of the frequency.

Definition /| \/“ ’ |
w Zero crossing

Z, = 2.Isgn[x(m)]—-sgn[x(m—D)]{ w(n—m)

m=—o0

sgn[x(n)] = {

where 1 x(n)>0

-1 x(n)<0
! 0<n<N-1
and w(n) =1 2N sh=N-
0 otherwise

i - 15
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Zero-crossing rate distributions

A histogram of average zero-crossing rates

(averaged over 10 msec) for both voiced and
unvoiced speech

In different frequency bands

UNVQICED

NOICED

1KHz 2KHz é:mnz 4KHz (80/2)/1 Oms=4kHz

H :
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NUMBER OF ZERO CROSSINGS PER 10 msec INTERVAL

Fig. 4.11 Distribution of zero-crossings for unvoiced and voiced speech.

i R 16
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Example of zero-crossing rate

Although the zero-crossing rate varies
considerably, the voiced and unvoiced
regions are quite prominent.
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Fig. 4.9 Average magnitude f for Ha
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Fig. 4.12 Average zero-crossing rate
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A T R b L Extraction of Features, V, Zheng-Hua Tan 17

Short-time autocorrelation function

The autocorrelation function
oK) = ;x(m)x(m+k)

The short-time autocorrelation function
R, (k)= i x(m)w(n—m)x(m+k)w(n—k —m)

m=—oo ‘
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Applications

= Boundary detection
a short-time energy
0 zero crossing rate

= Pitch estimation
o short-time autocorrelation function
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Speech analysis: Frequency-domain

m Short-time speech analysis

m Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis
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Discrete-time Fourier transform

X(e")= ¥ x[nle "

1o o, gunni
X[n]=— X(E™)edw
[n] Zﬁj_,, e™)

Convolution and multiplication duality:
y[n] = x[n]*h[n]
Y(e™)=X(e")H (")
y[n] = x[n]win]
' 1 jo j(w—0
Y(M) =—[ W)X ("™ ")do
2r 7
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Short-time Fourier transform

It is motivated by the need for a spectral
representation to reflect the time-varying
properties of the speech waveform

X (") = 3 win—m]x[mje "

m=—o0

W(50—m\ W(I00—m) w(200-m)
~ f{/ /\’/

X (m)

Fig. 6.1 Sketches of x(m) and w(n—m) for several values of 2.
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Spectra

Hamming Vs. Rectangular Spectra
0.3082

— L T —
0.4082

0.2087 Original Waveform
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0. Hamming Window: 100 B000. 0. Rectangular Window: 100 8000,
6. Rectangular Window: 500 8000,
MMW
0. Hamming Window: 500 B8000. 0. Rectangular Window: 500 8000.
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Spectra of voiced/unvoiced sounds
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Spectrogram

Spectrogram

o two-dimensional waveform (amplitude/time) is
converted into a three-dimensional pattern
(amplitude/frequency/time)

o Wideband spectrogram: analyzed on 15ms
sections of waveform with a step of 1ms

voiced regions with vertical striations due to the
periodicity of the time waveform (each vertical line
represents a pulse of vocal folds) while unvoiced regions
are solid/random, or ‘snowy’

o Narrowband spectrogram: on 50ms
pitch for voiced intervals in horizontal lines
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Wide- and narrow-band spectrograms
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Speech analysis: LPC analysis

= Short-time speech analysis

m Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis

i - 27
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Discrete-time filter model for speech

Its philosophy is related to the speech model in which
speech is modelled as the output of a linear, time-
varying system excited by either quasi-periodic pulses or
random noise.

The LPC provides a robust and accurate method for
estimating the parameters of the time-varying system.

fundamental
frequency A

l

Impulse Glottal
Train = Pulse

Generator Model

Random
N

oise
Generator

An

an— . ) 28
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LPC analysis

For efficient coding, speech signals are often
modelled using parameters of the vocal tract
shape that generates them.
Pole-zero model (ideal duringqa stationary frame)
1+ bz
H(Z)Z S(Z) =G 1=1
U(z) a —k
1-> az

k=1
All-pole model (simple): a matter of analytical
necessity one zero <> multiple poles

S(z 1
H(z) = @ _g 5 1—art-—1

U(2) 1-Yaz* ia”z‘“
k=1 n=0
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All-pole model — the LPC model

S 1
H(Z)=U((ZZ)) =G— k > S(2)= U(2)
1-» az” - -k
kz:; «Z 1 kz:;akz

->  S(2)= S(z)zp:akz‘k +GU(z)
k=1

> s(n)= Zp:aks(n —k)+Gu(n)
k=1

where u(nj is a normalised excitation and G is the
gain of the excitation

AR eRE ORNIVERSITY Extraction of Features, V, Zheng-Hua Tan 30

15



The LPC model

After excluding the excitation term, a given speech
sample at time n, s(n), can be approximated as
a linear combination of the past p speech
samples:

s(n)=as(n-1) +as(n—2) +...+ a,5(n - p)

where the coefficients «.2...@, are assumed
constant over the speech frame.

LPC analysis: to determine a set of predictor
coefficients {a}directly from the speech signal.
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LPC analysis equations

Windowed speech:  x(n) =s(n)w(n)
Error of linear predictor  e(n) =s(n) - $§(n)

e(n) =s(n) - Zp:aks(n -k)
k=1

Method: minimise mean-squared prediction error
Short-time average prediction error

0 ) p
E,= Den(m= D [5,(m) - s, (m=-K)F
m=—o0 m=—o0 k=1
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LPC analysis equations (cont’d)

Find & such that E, is minimal

0 0 p
En= >en(m= D [5,(m)— s, (m-K)J’
m=—o m=—o0 k=1

oE,

o, =0 fori=12,..,p
e} p 0
ReSU“ZIng |n an(m_i)sn(m)zz&k an(m_i)sn(m_k)
m=—oo k=1 m=—ow0

Define covariance k)= 3s,(m—i)s,(m-k)
Then m:w

p

> G (k) = 4,(,0) 1=12,..,p
k=1
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Short-time LP analysis

To solve the following equation for the
optimum predictor coefficients (the #«s)

$(.0) = 2 8,4(,K) 1=12,..p

we have to compute ¢#(i.k) and then solve the
resulting set of p equations.
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Speech analysis: Cepstral analysis

= Short-time speech analysis

m Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis
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Homomorphic speech processing

= Again, speech is modelled as the output of a linear, time-
varying system (linear time-invariant (LTI) in short seg.)
excited by either quasi-periodic pulses or random noise.

= The problem of speech analysis is to estimate the
parameters of the speech model and to measure their
variations with time.

= Since the excitation and impulse response of a LTI
system are combined in a convolutional manner, the
problem of speech analysis can also been viewed as a
problem in separating the components of a convolution,
called "deconvolution”.

y[n] = x[n]*h[n]
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Homomorphic deconvolution

Converts a convolution into a sum
{Y(n) =x(n)*h(n)
y(n) = X(n) +h(n)
Canonic form for system for homomorphic
deconvolution

* + + + + *
—— D] - L1 — DA ——
x(n) x(n) y(n) y(n)

X; ()X, () X,(n) + X, (n) Vi (N)+y,(n) vy (n)+y,(n)

AALBORG UNIVERSITY Extraction of Features, V, Zheng-Hua Tan 37

The characteristic system

The characteristic system for homomorphic
deconvolution
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Cepstral analysis

AALBORG UNIVERSITY

Observation:
X[n] = x,[n]*x,[n] < X (z) = X,(2) X,(2)
taking logarithm of X(z), then
log{X (2)} = log{X,(2)}+log{X,(2)}
e, X(z)=X,(z)+ X,(2)
&> Kn]=%[n]+X,[n]
So, the two convolved signals are additive.
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Complex cepstrum and real cepstrum
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Real cepstrum c[n] is the even part of X[n]
o _i T\ jw jwn
X[n] = - [” X(e™)e™ dw

= Zif,, log{X (e")}e""dw  complex cepstrum
T

c[n] = ZLK” log| X (e™)]e™ dw cepstrum
T

cepstrum was coined by reversing the first
syllable in the word spectrum.
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Mel-frequency cepstral coefficience

M FCC f\;’\l‘v"""l\_}v\ﬂ"ﬁ Speech

FFT

FFT based
spectrum

X
Mel scale
triangular filters

39 Element
Acoustic
Vector

i - 41
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Speech analysis: Cepstral analysis

= Short-time speech analysis

m Time-domain speech processing
Frequency-domain (spectral) processing
Linear predictive coding (LPC) analysis
Cepstral analysis

Filter bank analysis
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Gammatone filters

= Gammatone is a widely used model of
auditory filters.

= Impulse response (the product of a gamma
distribution and sinusoidal tone):

g(t)= at™ e cos(2mft + @),

where f is the frequency, ¢ is the phase of the
carrier (tone), a is the amplitude, n is the filter's
order, b is the filter's bandwidth, and t is time.

P o TR .- = Extraction of Features, V, Zheng-Hua Tan 44

22



Gammatone filters

30 Gammatone Filters (Opt=)
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Summary
= Short-time speech analysis
= Time-domain processing
= Frequency-domain (spectral) processing
= Linear predictive coding (LPC) analysis
= Cepstral analysis
= Filter bank analysis
46
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