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Course at a glance
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The discrete-time Fourier transform (DTFT)

The DTFT is useful for the theoretical analysis of
signals and systems.

But, it has this definition

X(e")= > x[nk”
Nn=—c0
From the numerical computation viewpoint, the
computation of DTFT by computer has several
problems:
o The summation over n is infinite
o The independent variable w is continuous

-> DTFT and z-transform are not numerically computable
transforms.

3 Digital Signal Processing, V, Zheng-Hua Tan AALBORG UNIVERSITY

A way out

Goal: find out a numerically computable transform.

Solution: sample the DTFT in the frequency domain
or the z-transform on the unit circle.

Way to get there:

o Analyze periodic sequences on the basis that a
periodic sequence can always be represented by a
linear combination of harmonically related complex
exponentials -> Discrete Fourier Series (DFS).

o Extend the DFS to finite-duration sequences —>
Discrete Fourier Transform (DFT), the solution to the
two problems!
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The discrete Fourier transform (DFT)

= In many cases, only finite duration is of concern
o The signal itself is finite duration
o Only a segment is of interest at a time
o Signal is periodic and thus only finite unique values
= For finite duration sequences, an alternative Fourier
representation is DFT
o The summation over n is finite

o DFT itself is a sequence, rather than a function of a
continuous variable

o Therefore, DFT is computable and important for the
implementation of DSP systems

o DFT corresponds to samples of the Fourier transform
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Part I-A: The discrete Fourier series

= DFT
o The discrete Fourier series
o Sampling the Fourier transform
o The discrete Fourier transform
o Properties of the DFT
o Linear convolution using the DFT
n FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT
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The discrete Fourier series

A periodic sequence with period N

X[n] = X[n+rN]
Periodic sequence can be represented by a Fourier
series, i.e. a sum of complex exponential sequences

with frequencies being integer multiples of the

fundamental frequency (2z/N)associated with the X[n]
i[n] _ %z )Z[k]ej(Z”/N)kn The frequency of the periodic sequence.
k

o Only N unique harmonically related complex

exponentials since
eI@rIN)kmN)n _ o j27/N)kng j27mn _ o j(27/ N)kn

o SO R‘[n]:i'f)z[k]ej(Zﬂ/N)kn
N k=0
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The Fourier series coefficients

The coefficients
N-1 )
)N([n] zizx[k]eJ(Zn/N)kn
N %

~ N-1 .
X [k] — Z i[n]e—J(anN)kn

n=0
The sequence is periodic with period N
~ N-1 . ~
X[k +N]= > X[nJe @=/Mltn = XTk]
n=0

For convenience, define w, =g "'V
N-1 _
Synthesisequation X[n] = % > XKW
k=0

_ N-1 Very similar equations
Analysisequation  X[k] = Zi[”]‘/\/ﬁ" = duality
n=0
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Part I-B: The discrete Fourier series

= DFT
o The discrete Fourier series
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
s FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT

a
u]
a
u]
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The Fourier transform of periodic signals

= One conclusion: the DFS coefficients of X[n]are
: <>
samples of the Fourier transform of the one period
of X[n]

] = {i[n], 0<n<N-1

) 0, otherwise
that is

X[kl = X (€1"™%) = X (€7°) |, _20/nyx

00

X(Ee*)=> x[n]eI“""n

N=-—00

~ N-1 .
X[k] — z i[n]efj(Ziz'/N)kn
n=0
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Sampling the Fourier transform

An aperiodic sequence and its Fourier transform

X ()= 3 x[nk " ¢ x[n] =2ij” X (e')e " da
N=-—o0 T -
Sampling the Fourier transform _
X[k]=X(e") =ik = X (g1

o generates a periodic sequence in k with period N since
the Fourier transform is periodic in @ with period 27z

Fm
z-plane
Unit \277
circle N
¥
e
Figure 8.7 Points on the unit circle at
which X(2) is sampled to obtain the
periodic sequence X[k] (N = 8). e ONIVERSITY
Example 1

x[n]

““l_rE x[n-ri2

allllie_tln, ot lll-

0 8 n
N=12

(b)

Figure 8.8 (a) FI.HIl(-_‘-|EHgIh sequence x[n]. (b) Periodic sequence ¥[n] corre-
sponding to sampling the Fourier transform of x[n] with ¥ = 12

In this case, the Fourier series coefficients for a
periodic sequence are samples of the Fourier
transform of one period
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Example 2

Figure 8.9 Periodic sequence X[n] corresponding to sampling the Fourier trans-
form of x[n] in Figure 8.8(a) with N = 7.

In this case, still the Fourier series coefficients for X[n]
are samples of the Fourier transform of x[n]. But,
one period of X[n] is no longer identical to x[n]

This is just sampling in the frequency domain as
compared in the time domain discussed before.
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Sampling in the frequency domain

The relationship between x[n] and one period of X[n]
in the undersampled case is considered a form of
time domain aliasing.

Time domain aliasing can be avoided only if XIn] has
finite length, just as frequency domain aliasing can
be avoided only for signals being bandlimited.

If x[n] has finite length and we take a sufficient
number of equally spaced samples of its Fourier
transform (specifically, a number greater than or
equal to the length of x[n] ), then the Fourier
transform is recoverable from these samples,
equivalently x[n]is recoverable from X[n].
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Sampling in the frequency domain

Recovering x[n]
X[n], 0<n<N-1

x[n]= :
0, otherwise
i.e. recovering X[n] does not require to know its
Fourier transform at all frequencies

Application: represent finite length sequence by
using Fourier series (coefficients) > DFT

x[n] — X[n] — DFS, X[k] — X[n] — x[n]

AALBORG UNIVERSITY
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Sampling the Fourier transform

Fourier transform X (jQ) =[" x(t)e *™dt

X(t) = Zi [* X(ie™da
T

Discrete-time Fourier transform

o0

X(e'”)= 3 xne~"

x[n] =ij” X (e')e!"dw
. ) T
Discrete Fourier transform
N-1 )
X[k] — z X[nk—J(Zﬂ/N)kn
n=0

1 N-1 .
X[n] - z X [k]ej(Zzz/N)kn
N S
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Part I-C: The DFT

= DFT
o The discrete Fourier series
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
n FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT

a
u]
a
u]
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The discrete Fourier transform

= Consider a finite length sequence x[n] of length N
samples (if smaller than N, appending zeros)

o Construct a periodic sequence
X[n]= >_x[n—rN]
Assuming no overlap btw x[n—rN]
X[n] = x[(n modulo N)]= x[((n)),]
o Recover the finite length sequence
X[n] = X[n], 0<n S-N -1
0, otherwise

= To maintain a duality btw the time and frequency
domains, choose one period of X[k] as the DFT
X[k]:{X[k], 0<k<N-1
0, otherwise
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The DFT

Periodic sequence and DFS coefficients
~ N—1~
X[k] = ZX[_ﬂ]Wﬁ”

X[n]= Z X [k,

k=0 —
Since summatlons are calculated btw 0 and (N-1)

X[K] = {Zx[n]\N 0<k<N-1

0,  otherwise Generally
N-1
1 N2 X[k] Zx[n]\N
— 3 XKW, 0<n<N-1
X[n] = N é L:NVN 1 ?\‘
0, otherwise x[n] — W Z X [k]\N —kn
k=0
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The DFT

A finite or periodic sequence has only N unique
values, x[n] for 0<=n<N

Spectrum is completely defined by N distinct
frequency samples

DFT: uniform sampling of DTFT spectrum
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1
The DFT of a rectangular pulse ......“UJ ] [ e S

Example 8.7 pp.561

x[n]
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Figure B.10  IHustration of the DFT. {a) Finita-length
sequence X[n] formead from x[n] with period ¥ = 5. (¢
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Founer transform, | X (e} is also shown. (d) DFT of x[n]
, v[n]
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. . Figure 8.11 lilustration of the DFT. (a) Finite-length 2
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sequence X[n] formed from x[n] with period N = 10, (c) DFT magnitude. (d) DFT
phase. (x's indicate indeterminate values.)
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Part I-D: Properties of the DFT

= DFT
o The discrete Fourier series
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
n FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT

a
u]
a
u]
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Properties of the DFT — linearity

Linearity

ax,[n]+bx,[n] 33 aX,[k]+bX,[k]

The lengths of sequences and their DFTs are all equal
to the maximum of the lengths of x,[n] and x,[n]
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Circular shift of a sequence

= Given
x[n] <> X[k]
DFT . /
x[n] < X [k]=e 1®*NmX K]
= Then
X [] = X[n]=X[n-m]=x[((n-m)),], 0<n<N-1
0, otherwise
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Figure 8.12  Circular shift of a finite-length sequence; i ., the effect in the time AALBORG UNIVERSITY
domain of multiplying the DFT of the sequence by a linear phase factor,
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Duality

X[n] <> X[k]

X[n] <> NX[(—K)), ], 0<k<N-1
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Circular convolution

-1
0

X,[n] = NZil[m]iz[n—m], 0<n<N-1

LN

2 X LM) Ix[((n-m))y ] 0<n<N-1

71
Ld

= S xml[((-m),], 0<n<N-1

3

In linear convolution, one sequence is multiplied by
a time —reversed and linearly shifted version of the
other. For convolution here, the second sequence is
circularly time reversed and circularly shifted. So it is
called an N-point circular convolution

X;[n] = % [NNDx, [n]
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Circular convolution with a delayed impulse

= JJ I Ty . . '_.__ x[n]=0o[n-ny]
0 N .' Xl[k] :W’\I‘(no
N X5[K] =W, X, [K]

] -\ m
Xy [((1 —m))y], 0 = N
Htl]._
[ N m
sal] =[] () xaln]
..,_:_‘“l, o
0 N
Figure 8.14 Circular ¢ ion of a finite-length nce x;[n] with a single AALBORG UNIVERSITY

delayed impulse, x;[n] = §[n — 1]

Summary of properties of the DFT

TABLE 8.2

Finite-Length Sequence (Length V)

1. x|n]

2 xn].xln]

L axy[n] + bxan|
4 Xl

5. alilm —md)a

6. W "x[n|

78 nimel(l — m)y
L z

B ayn]xs(n]

3 w*lnl
[n)

10 2 [((—m)ix]

1. Relxln

12, jTmixln])

13, xealn] |xfn] + x*[{{=rddn])
14 topln] = Lxln] — 2 [((=m)) )]
Propertics 15-17 apply only when x[n] is real

N-point DFT {Length N}

Y[k]

X1 [k]. Xa[4]

@ X1 1k] + bXa (K]
Nx[((=kNw]
Wy [k

X[k — ehn]
X)Xk

X [({=k))w
el AJ-K)n]I

15, Symmeiry propertics Tl X[((—kYx]

X =K1

1P X =knall
16, xepl xlm] 4 xf (=]} X[k
T ] ] = 1] ol XA AALBORG UNIVERSITY
2 xlm xil mi| X[k
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Part I-D: Linear convolution of the DFT

= DFT
The discrete Fourier series
o Sampling the Fourier transform
o The discrete Fourier transform
o Properties of the DFT
o Linear convolution using the DFT
n FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT

O
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Linear convolution using the DFT

= Procedure
o Compute the N-point DFTs X,[k] and X,[k] of two
sequences x[n] and x,[n], respectively
o Compute the product of X,[k]= X,[k]X,[k] forO<k <N -1
o Compute the sequence x,[n] = x,[nJN)x,[n] as the
inverse DFT of X,[k]
= As we know, the multiplication of DFTs corresponds
to a circular convolution of the sequences. To obtain
a linear convolution, we must ensure that circular
convolution has the effect of linear convolution.
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Linear convolution of two finite-length sequences

|1 —

XM= Yxmbon-m HHH

B R T e e

......................

Figure B
33 Digital Signal Processing, V, Zheng-Hua  showing
a) Finite

Circular convolution as linear convolution with alaising

Fourier transform of x,[n]: X,(e'”) = X, (') X, (e')
DefineaDFT:  X,[k]= X,(e'®™™), 0<k<N-1
Also X, [k]= X, (e!®*"M) X, (/™M) 0<k<N-1
So, Xj[k]=X,[KIX,[k]

the inverse DFT of X,[K]:

X.[Jn=rN], 0<n<N-1
XSp[n]: r_zw 3[ ]

0, otherwise
X, [N] = %, [N]QX, [N]

The circular convolution corresponding to X,[k]X,[k] is identical
to the linear convolution corresponding to x, (ei)x,(e™*)if the length
of DFTs satisfies N>L+P-1
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Circular convolution as linear convolution with alaising

[[101]

. -
] L=p
(a)

taler] = (] » xyfi]

e —

” : JJ I Ly ; :
S O 1
eyt | l |11 I\.r |

]

1

.\\ L=

? S ———

L vy + N] 0
Ne=l=6
quurn_ 8.18 lllustration that circular convolution is eguh o finear
t T T 1 convolution followed by aliasing, (a) The sequences x|n] and x,(n) ta be
BT - - . . - convalved, (D) The Enear convolution of x;, [n] and x;[n]. (c) xy[n — N | far & = 6.
" (d) xs[rr+ N | for N = 6. () x[m] (50 a0, which is equal 1o the sum of (), (c),

i) and (d} in the interval 0 < 5 < 5. {1) x[n] §2) x{n)
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Part I1-A: Direct computation of the DFT

Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT

o Linear convolution using the DFT

= FFT

o Direct computation of the DFT

o Decimation-in-time FFT algorithms

a Fourier analysis of signals using the DFT

= D
o The discrete Fourier series
a
a
a
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Direct computation of the DFT

The DFT of a finite-length sequence of length N

N-1

X[k]=> x[nW",  k=01..,N-1
n=0
The inverse DFT

N

x[n] = — L ZX[k]\N"‘”, n=01..N-1

Due to the duallty, focus on the DFT only.

Use the number of arithmetic multiplications and
additions as a measure of computational complexity.

Fast Fourier transform (FFT) is a set of algorithms
for the efficient and digital computation of the N-
point DFT, rather than a new transform.
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Direct computation of the DFT

The DFT of a finite-length sequence of length N

X[K] = NZx[n]\N k=01 N-1 x[n]§ X [K]

Direct computation: N2 complex multiplications and
N(N-1) complex additions
Q Compute and store (only over one period)

W) =g 1C7/NK

=c0s(27k / N)+ jsin(224k /N), k=01,...,N -1
o Compute the DFT using stored W, and input X[n]
N-1

X[k]=> x[nW,",  k=01..N-1

n=0
W, and x[n] may be complex

38 Digital Signal Processing, V, Zheng-Hua Tan AALBORG UNIVERSITY
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Direct computation of the DFT

For each k

X[k]= f[(Re{x[n]}ReﬁNﬁ,‘“}— (Im{x[n]}Im{W,"})
+ j(Re{x[n[}Im{W,"}+ Im{X[n]}Re{W"}), k=01..,N-1

Therefore, for each value of k, the direct computation
of X[K] requires 4N real multiplications and (4N-2)
real additions.

The direct computation of the DFT requires 4N°
real multiplications and N(4N —2) real additions.

The efficiency can be improved by exploiting the
symmetry and periodicity properties of W,"
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Symmetry and periodicity of complex exponential

Complex conjugate symmetry
WL =W = W) = ReW,3— j Imdw,"}
Periodicity in n and k
W =W =y {etn
For example
Re{x[n]}Re{W,"}+ Re{x[N —n]}Re{w, """}
= (Re{x[n]}+ Re{x[N —n]}) Re{W"}

o The number of multiplications is reduced by a factor of
2.
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20



Part II-B: Decimation-in-time FFT algorithms

s DFT
o The discrete Fourier series
o Sampling the Fourier transform
o The discrete Fourier transform
o Properties of the DFT
o Linear convolution using the DFT
= FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
a Fourier analysis of signals using the DFT
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FFT

= Cooley and Tukey (1965) published an algorithm for
the computation of the DFT that is applicable when
N is a composite number, i.e., the product of two or
more integers. Later, it resulted in a number of
highly efficient computational algorithms.

= The entire set of such algorithms are called the fast
Fourier transform, FFT.

= FFT decomposes the computation of the DFT of a
sequence of length N into successively smaller
DFTs.

42 Digital Signal Processing, V, Zheng-Hua Tan AALBORG UNIVERSITY
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Decimation-in-time FFT algorithms

Where

o decomposition is done by decomposing the sequence
into successively smaller subsequences,

o and both the symmetry and periodicity of complex
exponential W," = e 1?"/M" are exploited.

Consider N =2' and separate x[n] into two (N/2)-

point sequences
N-1

X[k]=> x[nW",  k=01..,N-1
n=0
X[kI= 2 x[nWy" + > x[nWy"
neven nodd
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Decimation-in-time FFT algorithms

X[k]= > x[nWy" + > x[nWy"

neven nodd

(N/2)-1 (N/2)-1

= D x2rwWg™+ D x2r + W
r=0 r=0

(N/2)-1 (N/2)-1

= Y xrIWH)™ Wy > x[2r + 1 W)™
r=0 r=0

(N/2)-1 (N/2)-1

= D x[2rW, Wy D x2r + 1w,
r=0 r=0

=G[K]+WEH[k], k=01...,N-1

(only compute for k =0,1,..., N /2 —1) due to the periodicity (%)

44 Digital Signal Processing, V, Zheng-Hua Tan AALBORG UNIVERSITY
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Flow graph of the decimation-in-time

= Periodicity is applied, e.g. G[7]=GJ3]

Glo]

x[[]} e |
x[2] o——o g
‘2\ point
x[4] o—— DFT
x[6] o—»
x[1] o—
x[3] o—»—] e
= poimnt
x[5] o—>— DFT Figure 9.3 Flow graph of the
decimation-in-time decomposition of an
] N-point DFT computation into two
x[7] o—— (N /2)-point DFT computations

(N =8).

Decimation-in-time FFT

= Further break down
(N/2)-1 (N/4)-1 N/4)-1

(N74)
Glkl= > gIrWyj, = > g[21W5+ > g2l +IWi5>"
r=0 =0 =0

(N/4)-1 . CIDS .
= Z gl21Wy), + Wy, Z g2l +1Wy),
=0 =0
(N/4)-1 (N/4)-1

HIkI= > h[21Wy, + Wy, D h[21+1Wy,
-0 1=0

x[0)o—— Go]
x[4)o——{ DFT G[1]

AN
x[2] o——] GI2] FigL_lre 9.4 Flow graph of the
%f ~ point Wi, decimation-in-time decomposition of an

{N/2)-point DFT computation into two
;oG[3]  (N/4)-point DFT computations
Wan (N =8).

DFT
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Combination of Fig. 9.3 and 9.4

xfojo—{
4 ~point

x[4)on DFT

x[2] o—»—

% - point

DFT

x[6] o——

x[1] o= N
- point
DFT

v [5] o—=—

x[3) oo
-I\ point
DFT

x[7] o—=—

Wy W,

47 Digital Signal Processing, V, Zheng-Hua Tan

Figure 9.5 Result of substituting the
structure of Figure 9.4 into Figure 9.3.

AALBORG UNIVERSITY

2-point DFT

x[0]

x[4]

DFT.
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Figure 9.6  Flow graph of a 2-point

AALBORG UNIVERSITY
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Flow graph

log, N stages and
each stage has N
complex multiplications
and N complex
additions .

x|0] o
(0] os————

x4 0"—“-‘ -
4 Wy

2] . 2 Intotal, N jog, N complex

"“‘;f;.;zf’u?'t’- multiplications and additions
x[6] o= Hr_:_‘ eg.
_ 910 _
x[1) o= — N =2" =1024
< Wx N? =1,048576
x[5] Wi = N log, N =10,240
- A reduction of 2 orders!
1‘_“‘: L ;
e i Figure 9.7 Flow graph of complete
x[7] o= e decimation-in-time decomposition of an
N 8-point DFT computation.
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Part I1-D: Fourier analysis of signals using the DFT

m DFT
o The discrete Fourier series
o Sampling the Fourier transform
o The discrete Fourier transform
o Properties of the DFT
o Linear convolution using the DFT
» FFT
o Direct computation of the DFT
o Decimation-in-time FFT algorithms
o Fourier analysis of signals using the DFT
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Fourier analysis of signals using the DFT

= Finite-duration requirement of DFT - windowing

Anti-aliasing
lowpass filter

s.(1)

()

Continuous-to-
discrete-time
conversion

H}i a (j‘( l)

Figure 10.1 Processing ste

continuous-time signal.
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ps in the discrete-time Fourier analysis of a

DFT [——
VK]
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Fourier analysis of signals using the DFT

|

-1, 0 0y

1)

Ho, (76

Tapers off but is
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Not ideal.
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and modified.
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Fourier analysis of signals using the DFT

Windowing.
W (e
| | | |
2 - 0 T 2w @
) 1 ¢z : :
V(e)=—[" X"V (" ")de (€) In
(") Z”L,( V( ) + ey
V(el™), V[k]
d 4
=27 -7 0 T 21 w
®

N-1
V(K) =Y v[nle 1@V k=01,..,N-1
"= Figure 10.2 lllustration of the Fourier transforms of the system of Figure 10.1.
=V (") lpezmn () Fourier transform of continuous-time input signal. (b) Frequency response of
antialiasing filter. (c) Fourier transform of output of antialiasing filter. (d) Fourier
transform of sampled signal. () Fourier transform of window sequence. (f) Fourier
transform of windowed signal segment and frequency samples obtained using DFT
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samples.

it Effect of Windowing on

Fourier analysis

A rectangular window of length 64.

) S, (t) = Ay cos(Q,t +6,) + A cos(QQ,t+6,)
' X[n] = A, cos(w,n+6,) + A cos(o,n+6,)
v[n] = Ayw[n]cos(aw,n + 6,) + Aw[n]cos(awn +6,)

V() :%ei«%w(ej(w—wﬁ))+%e-15’ow(ei(m+mo))

+iei'91w (ei(m—aq))_,'_%e-j'%w (ej(mml))

Figure 10.3 lllustration of Fourier analysis of windowed cosines with a rectangu-
lar window. (a) Fourl sform o Fourier transform of windowed
cosines as £y — £y becomes progres ller. (b) S2g = (27/6) = 10%. €y =

(2 /3]  10¢ AALBORG UNIVERSITY
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IV (el

ﬁ 32 n
The DTFT of a sinusoidal signal
. is a pair of impulses.
Windowing broadens the impulses
B and reduces the distinction of

J signals that are close in frequency
| [R1i
- 4w 2w 0 27 4w T @
15 14 14 15
()
| Vie) !
Wl
- (e)
= o Figure 10.3 (continued) (c) g = (2x/14) = 10°. @y = (4x/15) = 10¢
(d) £ = (2/14) = 10, 2y = (2/12) = 10", (8) Sy = (27/14) x 10°, @, =
(4/25) = 104,
Summary

DFT

o The discrete Fourier series

o Sampling the Fourier transform

o The discrete Fourier transform

o Properties of the DFT

o Linear convolution using the DFT

FFT

o Direct computation of the DFT

o Decimation-in-time FFT algorithms

o Fourier analysis of signals using the DFT
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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Sampling and
reconstruction

Fourier transform
and Z-transform

Filter design

MM5
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The end.

Thanks for your attention!
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