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The discrete-time Fourier transform (DTFT)

 The DTFT is useful for the theoretical analysis of 
signals and systems.

 But it has this definition But, it has this definition 

 From the numerical computation viewpoint, the 
computation of DTFT by computer has several 
problems:
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problems:
 The summation over n is infinite

 The independent variable w is continuous

-> DTFT and z-transform are not numerically computable 
transforms.

A way out

 Goal: find out a numerically computable transform.

 Solution: sample the DTFT in the frequency domain 
or the z-transform on the unit circleor the z-transform on the unit circle.

 Way to get there:
 Analyze periodic sequences on the basis that a 

periodic sequence can always be represented by a 
linear combination of harmonically related complex 
exponentials -> Discrete Fourier Series (DFS).
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 Extend the DFS to finite-duration sequences –> 
Discrete Fourier Transform (DFT), the solution to the 
two problems! 
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The discrete Fourier transform (DFT)

 In many cases, only finite duration is of concern  
 The signal itself is finite duration

 Only a segment is of interest at a time Only a segment is of interest at a time

 Signal is periodic and thus only finite unique values 

 For finite duration sequences, an alternative Fourier 
representation is DFT
 The summation over n is finite 

 DFT itself is a sequence, rather than a function of a
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 DFT itself is a sequence, rather than a function of a 
continuous variable

 Therefore, DFT is computable and important for the 
implementation of DSP systems

 DFT corresponds to samples of the Fourier transform

Part I-A: The discrete Fourier series

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT
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The discrete Fourier series

 A periodic sequence with period N

Periodic seq ence can be represented b a Fo rier

][~][~ rNnxnx 

 Periodic sequence can be represented by a Fourier 
series, i.e. a sum of complex exponential sequences 
with frequencies being integer multiples of the 
fundamental frequency            associated with the

Only N unique harmonically related complex
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The frequency of the periodic sequence.
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 Only N unique harmonically related complex 
exponentials since  

 so
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The Fourier series coefficients 

 The coefficients
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 The sequence is periodic with period N

For convenience define
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 For convenience, define )/2( Nj
N eW 
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 duality
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Part I-B: The discrete Fourier series

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT

The Fourier transform of periodic signals

 One conclusion: the DFS coefficients of        are 
samples of the Fourier transform of the one period 
of ][~ nx

][~ nx
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that is  
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Sampling the Fourier transform

 An aperiodic sequence and its Fourier transform
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 Sampling the Fourier transform

 generates a periodic sequence in k with period N since 
the Fourier transform is periodic in     with period
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Example 1 

 Case 1

Fig 8 8Fig 8.8
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 In this case, the Fourier series coefficients for a 
periodic sequence are samples of the Fourier 
transform of one period 
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Example 2 

 Case 2

Fig 8 9Fig 8.9

 In this case, still the Fourier series coefficients for 
l f th F i t f f B t][

][~ nx
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are samples of the Fourier transform of        . But, 
one period of         is no longer identical to

 This is just sampling in the frequency domain as 
compared in the time domain discussed before.  

][nx
][nx][~ nx

Sampling in the frequency domain

 The relationship between        and one period of        
in the undersampled case is considered a form of 
time domain aliasing.

][nx ][~ nx

time domain aliasing.

 Time domain aliasing can be avoided only if        has 
finite length, just as frequency domain aliasing can 
be avoided only for signals being bandlimited.

 If         has finite length and we take a sufficient 
number of equally spaced samples of its Fourier 

][nx

][nx

Digital Signal Processing, V, Zheng-Hua Tan14

transform (specifically, a number greater than or 
equal to the length of       ), then the Fourier 
transform is recoverable from these samples, 
equivalently       is recoverable from       .

][nx

][nx ][~ nx
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Sampling in the frequency domain

 Recovering ][nx
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i.e. recovering         does not require to know its 
Fourier transform at all frequencies  

 Application: represent finite length sequence by 
using Fourier series (coefficients)  DFT

    otherwise        ,0
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Sampling the Fourier transform

 Fourier transform
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 Discrete-time Fourier transform

 Discrete Fourier transform
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 Discrete Fourier transform
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Part I-C: The DFT

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT

The discrete Fourier transform

 Consider a finite length sequence        of length N 
samples (if smaller than N, appending zeros)
 Construct a periodic sequence

][nx

p q

Assuming no overlap btw

 Recover the finite length sequence
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 To maintain a duality btw the time and frequency 
domains, choose one period of         as the DFT



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The DFT

 Periodic sequence and DFS coefficients
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The DFT

 A finite or periodic sequence has only N unique 
values, x[n] for 0<=n<N

 Spectrum is completely defined by N distinct Spectrum is completely defined by N distinct 
frequency samples

 DFT: uniform sampling of DTFT spectrum

Digital Signal Processing, V, Zheng-Hua Tan20



11

The DFT of a rectangular pulse

Example 8.7 pp.561
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The DFT of a rectangular pulse
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Part I-D: Properties of the DFT

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT

Properties of the DFT – linearity 

Linearity 

][][][][ kbXkaXnbxnax
DFT



The lengths of sequences and their DFTs are all equal 
to the maximum of the lengths of           and 
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Circular shift of a sequence

 Given
][][
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Circular shift of a sequence – an example
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Duality
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Circular convolution
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other. For convolution here, the second sequence is 
circularly time reversed and circularly shifted. So it is 
called an N-point circular convolution

][ N ][][ 213 nxnxnx 
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Circular convolution with a delayed impulse

The delayed impulse sequence ][][ 01 nnnx  
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Summary of properties of the DFT

Digital Signal Processing, V, Zheng-Hua Tan30
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Part I-D: Linear convolution of the DFT

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT

Digital Signal Processing, V, Zheng-Hua Tan31

p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT

Linear convolution using the DFT

 Procedure
 Compute the N-point DFTs          and          of two 

sequences and respectively
][1 kX ][2 kX

][1 nx ][2 nxsequences          and         , respectively

 Compute the product of

 Compute the sequence                                  as the 
inverse DFT of 

 As we know, the multiplication of DFTs corresponds 
to a circular convolution of the sequences. To obtain 
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a linear convolution, we must ensure that circular 
convolution has the effect of linear convolution. 



17

Linear convolution of two finite-length sequences
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Circular convolution as linear convolution with alaising
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The circular convolution corresponding to                     is identical 
to the linear convolution corresponding to                     if the length 
of DFTs satisfies

    otherwise                    ,0

][][ 21 kXkX

][ N ][][ 213 nxnxnx p 

)()( 21
 jj eXeX

1 PLN
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Circular convolution as linear convolution with alaising
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Part II-A: Direct computation of the DFT

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT

Digital Signal Processing, V, Zheng-Hua Tan36

p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT
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Direct computation of the DFT

 The DFT of a finite-length sequence of length N

1,...,1,0      ,][][
1




NkWnxkX
N

kn
N

 The inverse DFT

 Due to the duality, focus on the DFT only.
 Use the number of arithmetic multiplications and 
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N

0

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p
additions as a measure of computational complexity.

 Fast Fourier transform (FFT) is a set of algorithms 
for the efficient and digital computation of the N-
point DFT, rather than a new transform. 

 The DFT of a finite-length sequence of length N

Direct computation of the DFT

1,...,1,0      ,][][
1

0
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N

n
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N ][nx ][kX

 Direct computation: N2 complex multiplications and 
N(N-1) complex additions
 Compute and store (only over one period)
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 Compute the DFT using stored        and input ][nxk
NW

complex bemay  ][  and  nxW k
N
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 For each k

Direct computation of the DFT

})Im{]}[(Im{}Re{]}[[(Re{][
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N

kn
N

kn
N

 Therefore, for each value of k, the direct computation 
of X[k] requires 4N real multiplications and (4N-2) 
real additions.

 The direct computation of the DFT requires 24N
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 The direct computation of the DFT requires            
real multiplications and                    real additions.  

 The efficiency can be improved by exploiting the 
symmetry and periodicity properties of 

)24( NN
4N

kn
NW

Symmetry and periodicity of complex exponential

 Complex conjugate symmetry

}Im{}Re{)( *][ kn
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 Periodicity in n and k

 For example
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 The number of multiplications is reduced by a factor of 
2.
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Part II-B: Decimation-in-time FFT algorithms

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT

Digital Signal Processing, V, Zheng-Hua Tan41

p

 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT

FFT

 Cooley and Tukey (1965) published an algorithm for 
the computation of the DFT that is applicable when 
N is a composite number, i.e., the product of two orN is a composite number, i.e., the product of two or 
more integers. Later, it resulted in a number of 
highly efficient computational algorithms. 

 The entire set of such algorithms are called the fast 
Fourier transform, FFT.

 FFT decomposes the computation of the DFT of a 

Digital Signal Processing, V, Zheng-Hua Tan42

sequence of length N into successively smaller 
DFTs.
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Decimation-in-time FFT algorithms

 Where 
 decomposition is done by decomposing the sequence 

into successively smaller subsequencesinto successively smaller subsequences, 

 and both the symmetry and periodicity of complex 
exponential                             are exploited.

 Consider                and separate x[n] into two (N/2)-
point sequences
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Decimation-in-time FFT algorithms
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Flow graph of the decimation-in-time

 Periodicity is applied, e.g. G[7]=G[3]
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Decimation-in-time FFT

 Further break down
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Combination of Fig. 9.3 and 9.4
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2-point DFT
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Flow graph

N2log stages and 
each stage has N 
complex multiplications 
and N complexand N complex 
additions . 

NN 2logIn total,                 complex 
multiplications and additions.

5760481

10242

e.g.

2

10





N

N
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240,10log

576,048,1

2 


NN

N

A reduction of 2 orders! 

Part II-D: Fourier analysis of signals using the DFT

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms

 Fourier analysis of signals using the DFT
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Fourier analysis of signals using the DFT

 Finite-duration requirement of DFT  windowing
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Fourier analysis of signals using the DFT

 Fig. 10.2
Tapers off but is 
not band-limited. 

Not ideal. 

Low-pass filtered

Digital Signal Processing, V, Zheng-Hua Tan52

Low pass filtered 
and modified. 
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Fourier analysis of signals using the DFT

Windowing. 
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Effect of Windowing on Fourier analysis

 Fig. 10.3

Effect of  Windowing on 
Fourier analysis

A rectangular window of length 64.
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Effect of Windowing on Fourier analysis

 Fig. 10.3

The DTFT of a sinusoidal signal
is a pair of impulses. 
Windowing broadens the impulses 
and reduces the distinction ofand reduces the distinction of 
signals that are close in frequency
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Summary

 DFT
 The discrete Fourier series
 Sampling the Fourier transform Sampling the Fourier transform
 The discrete Fourier transform
 Properties of the DFT
 Linear convolution using the DFT

 FFT
 Direct computation of the DFT
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p
 Decimation-in-time FFT algorithms
 Fourier analysis of signals using the DFT
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Course at a glance

Discrete-time 
signals and systems

MM1 System

Fourier transform 
and Z-transform

Filt d i

MM2

Sampling and
reconstruction

MM3

System
analysis
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DFT/FFT

Filter design

MM5

MM4

The end.

Thanks for your attention!

Digital Signal Processing, V, Zheng-Hua Tan58


