Digital Signal Processing

http://kom.aau.dk/~zt/cources/Digital_signal_processing/

Solutions of Lecture 4 (MM4)

Exercise 4.1. Design a discrete-time filter that meets specifications

$$
\begin{array}{ll}
0.87 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1, & 0 \leq|\omega| \leq 0.25 \pi \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.21, & 0.35 \leq|\omega| \leq \pi
\end{array}
$$

by using the impulse invariance method to a continuous-time Butterworth filter having magnitudesquared function

$$
\left|H_{c}(j \Omega)\right|^{2}=\frac{1}{1+\left(\Omega / \Omega_{c}\right)^{2 N}}
$$

Determine the integer order N and the quantity ${ }^{\Omega_{c}}$ such that the continuous-time Butterworth filter exactly meets the specifications. (Assume that $T d=1$)

Solution:

$$
\begin{aligned}
& 1+\left(\frac{0.25 \pi}{\Omega_{c}}\right)^{2 N}=\left(\frac{1}{0.87}\right)^{2} \\
& 1+\left(\frac{0.35 \pi}{\Omega_{c}}\right)^{2 N}=\left(\frac{1}{0.21}\right)^{2} \\
& 2 N=\frac{\log \frac{\left(\frac{1}{0.87}\right)^{2}-1}{\left(\frac{1}{0.21}\right)^{2}-1}}{\log \frac{0.25}{0.35}}
\end{aligned}
$$

$$
N=6.259
$$

$$
\Omega_{c}=\frac{0.25 \pi}{\left(\left(\frac{1}{0.87}\right)^{2}-1\right)^{1 / 2 N}}=0.86
$$

So

$$
\begin{aligned}
& N=7 \\
& \Omega_{c}=\frac{0.25 \pi}{\left(\left(\frac{1}{0.87}\right)^{2}-1\right)^{1 / 2 N}}=0.8518
\end{aligned}
$$

Exercise 4.2. We wish to use the Kaiser window method to design a discrete-time filter with generalized linear phase that meets specifications of the following form :

$$
\begin{aligned}
\left|H\left(e^{j \omega}\right)\right| \leq 0.01, & 0 \leq|\omega| \leq 0.25 \pi \\
0.95 \leq\left|H\left(e^{j \omega}\right)\right| \leq 1.05, & 0.35 \pi \leq|\omega| \leq 0.6 \pi \\
\left|H\left(e^{j \omega}\right)\right| \leq 0.01, & 0.65 \pi \leq|\omega| \leq \pi
\end{aligned}
$$

(a) Determine the minimum length $(\mathrm{M}+1)$ of the impulse response and the value of the Kaiser window parameter β for a filter that meets the preceding specifications.
(b) What is the delay of the filter?
(c) Determine the ideal impulse response $h_{d}[n]$ to which the Kaiser window should be applied.

Solution:
(a) $\mathrm{M}+1=91, \quad \beta=3.395$
(b) $\mathrm{M} / 2=45$
(c)
$h_{d}[n]=\frac{\sin [0.625 \pi(n-45)]}{\pi(n-45)}-\frac{\sin [0.3 \pi(n-45)]}{\pi(n-45)}$

Exercise 4.3. We wish to design an FIR lowpass filter satisfying the specifications

$$
\begin{array}{cr}
0.95<H\left(e^{j \omega}\right)<1.05, & 0 \leq|\omega| \leq 0.25 \pi \\
-0.1<H\left(e^{j \omega}\right)<0.1, & 0.35 \pi \leq|\omega| \leq \pi
\end{array}
$$

by applying a window $\mathrm{w}[\mathrm{n}]$ to the impulse response $h_{d}[n]$ for the ideal discrete-time lowpass filter with cutoff $\omega_{c}=0.3 \pi$. Which of the windows listed in Table 7.1 can be used to meet this specification?

Solution:

The Hamming, Hanning, and Blackman windows may be used, since
$20 \log _{10} \delta=20 \log _{10} 0.05=-26$

