

Magnitude of side lobes vs width of main lobe					
TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS					
Type of Window	Peak Side-Lobe Amplitude (Relative)	Approximate Width of Main Lobe	Peak Approximation Error, 20 log ₁₀ δ (dB)	Equivalent Kaiser Window, β	Transition Width of Equivalent Kaiser Window
Rectangular	-13	$4\pi/(M+1)$	-21	0	$1.81 \pi / M$
Bartlett	-25	$8\pi/M$	-25	1.33	$2.37\pi/M$
Hanning	-31	$8\pi/M$	-44	3,80	$5.01\pi/M$
Hamming Blackman	-41 -57	8π/M 12π/M		7.04	$9.19\pi/M$
	Independent of M!				
42 E	Digital Signal Processing, IV, Zheng-Hua Tan, 2009			AALBORG UNIVERSITY	

