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Course at a glance
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Part I: Filter design

 Filter design

 IIR filter design

 FIR filter design

Digital Signal Processing, IV, Zheng-Hua Tan, 20093

Filter design process

Filter, in broader sense, covers any system.

Three design steps

Specifications
Problem

Solution 

RealizationApproximations

M it d

System function
Performance 
constraints 

Digital Signal Processing, IV, Zheng-Hua Tan, 20094

Magnitude response
Phase response
(frequency domain)
Complexity 

Structure IIR or FIR
Subtype
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Specifications – an example

 Specifications for a discrete-time lowpass filter
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Specifications of frequency response 

 Typical lowpass filter specifications in terms of 
tolerable
 Passband distortion as smallest as possible Passband distortion, as smallest as possible

 Stopband attenuation, as greatest as possible

 Width of transition band: as narrowest as possible

 Improving one often worsens others  a tradeoff

 Increasing filter order improves all

Digital Signal Processing, IV, Zheng-Hua Tan, 20096

 Increasing filter order improves all
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DT filter for CT signals

 DT filter for the processing of CT signals
 Bandlimited input signal 
 High enough sampling frequencyg g p g q y

 Then, specifications (often given in frequency 
domain) conversion is straightforward 
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Fig. 7.1
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Specifications – an example

 Specifications for a CT lowpass filter
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Fig 7.2(a)(b)
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Design a filter

 Design goal: find system function to make frequency 
response meet the specifications (tolerances) 

 Infinite impulse response filter Infinite impulse response filter
 Poles insider unit circle due to causality and stability 

 Rational function approximation 

 Finite impulse response filter
 Linear phase is often required 

 Polynomial approximation

Digital Signal Processing, IV, Zheng-Hua Tan, 20099

 Polynomial approximation 

E.g. IIR filter design

 For rational system function
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Digital Signal Processing, IV, Zheng-Hua Tan, 200910

provides a good approximation to a desired response 

H(z)
•Rational system function
•Stable
•causal

)()(  j
desired

j eHeH 
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FIR and IIR

IIR
 Rational system 

f ti

FIR
 Polynomial system 

functionfunction

 Poles + zeros 

 Stable/unstable

 Hard to control 
phase

 Low order (4-20)

function

 Zeros 

 Stable

 Easy to get linear 
phase

 High order (20-

Digital Signal Processing, IV, Zheng-Hua Tan, 200911

 Low order (4 20)

 Designed on the 
basis of analog filter 

2000)

 Unrelated to analog 
filter

FIR or IIR

 Whether FIR or IIR often depends on the phase 
requirements

 Design principle Design principle
 If GLP is essential  FIR

 If not  IIR preferable (can meet specifications with 
lower complexity)

Digital Signal Processing, IV, Zheng-Hua Tan, 200912
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Part II: IIR Filter design

 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design

Digital Signal Processing, IV, Zheng-Hua Tan, 200913

Design IIR filter based on analog filter

 The mapping is direct
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 Advanced analog filter design techniques

 Designing DT filter by transforming prototype CT 
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Digital Signal Processing, IV, Zheng-Hua Tan, 200914

filter:
 Transform (map) DT specifications to analog

 Design analog filter

 Inverse-transform analog filter to DT
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Transformation method

 Transform (map) DT specifications to analog

Design analog filter

T 

 Design analog filter

 Inverse-transform to DT
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][)( The imaginary axis of the s plane 
 the unit circle of the z-plane
• Poles in the left half of the s-plane 
 poles inside the unit circle in the 
z-plane (stable)

Part II-A: Analog Filter design

 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design

Digital Signal Processing, IV, Zheng-Hua Tan, 200916
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Analog filter design

 Butterworth

 Chebyshev I

Cheb she II Chebyshev II

 Ellipical 

Digital Signal Processing, IV, Zheng-Hua Tan, 200917

Butterworth lowpass filters

 The magnitude response
 Maximally flat in the passband

 Monotonic in both passband and stopband Monotonic in both passband and stopband

 The squared magnitude response 

N
c

c jH
2

2

)/(1

1
|)(|




Digital Signal Processing, IV, Zheng-Hua Tan, 200918
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Poles in s-plane

Digital Signal Processing, IV, Zheng-Hua Tan, 200919

Part II-B: Design by impulse invariance

 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design

Digital Signal Processing, IV, Zheng-Hua Tan, 200920
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Filter design by impulse invariance 

 Impulse invariance: a method for obtaining a DT 
system whose is determined by the    
of a CT system.

)( jHc
)( jeH

of a CT system.

 In DT filter design, the specifications are provided in 
the DT, so Td has no role. Td is included for discussion 

interval sampling design'' -  
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Digital Signal Processing, IV, Zheng-Hua Tan, 200921

, d d

though. Td also has nothing to do with C/D and D/C 
conversion in Fig. 7.1, i.e. Td need not be the same as 
the sampling period T of the C/D and D/C conversion.

Relationship btw frequency responses

 Impulse response                 sampling:

 Frequency response
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Digital Signal Processing, IV, Zheng-Hua Tan, 200922

This is also the way to get CT filter specifications from
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Aliasing in the impulse invariance design
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Digital Signal Processing, IV, Zheng-Hua Tan, 200923

The continuous-time filter may be designed to exceed the specifications, 
particularly in the stopband. 

Impulse invariance with a Butterworth filter

 Specifications 
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 Since the sampling interval Td cancels in the impulse 
invariance procedure, we choose Td=1, so

 Magnitude function for a CT Butterworth filter
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 Due to the monotonic function of Butterworth filter, we 
have 
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Impulse invariance with a Butterworth filter

 Squared magnitude function of a Butterworth filter
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Impulse invariance with a Butterworth filter

 12 poles for the 
squared magnitude 
functionfunction

 The system function 
has the three pole 
pairs in the left half of 
the s-plane 

Digital Signal Processing, IV, Zheng-Hua Tan, 200926
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Impulse invariance with a Butterworth filter

To construct Hc(s) from the magnitude-squared function Hc(s)Hc(-s) , 
we choose the poles on the left-half-plane part of the s-plane 
to obtain a stable and causal filter. 
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Express Hc(s) as a partial fraction expansion, perform the transformation 
of Eq. (7.12):

Digital Signal Processing, IV, Zheng-Hua Tan, 200927
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

Digital Signal Processing, IV, Zheng-Hua Tan, 200928
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Part III: FIR filter design 

 Filter design

 IIR filter design

 FIR filter design
 Commonly used windows

 Generalized linear-phase FIR filter

 The Kaiser window filter design method

Digital Signal Processing, IV, Zheng-Hua Tan, 200929

FIR filter design

 Design problem: the FIR system function
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 Start from impulse response directly
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Digital Signal Processing, IV, Zheng-Hua Tan, 200930

Find 

 the degree M and

 the filter coefficients h[k]

to approximate a desired frequency response
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Lowpass filter – as an example

 Ideal lowpass filter
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 IIR filter: based on transformations of CT IIR system 
into DT ones.
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Digital Signal Processing, IV, Zheng-Hua Tan, 200931

 FIR filter: how?            is non-causal, infinite!     ][nh

N
c

c j
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|)(|
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poles

Design by windowing

 Desired frequency responses are often piecewise-
constant with discontinuities at the boundaries 
between bands, resulting in non-causal and infintebetween bands, resulting in non causal and infinte
impulse response extending from        to     , but

 So, the most straightforward method is to truncate 
the ideal response by windowing and do time-
shifting: 
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Digital Signal Processing, IV, Zheng-Hua Tan, 200932
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Design by windowing

After Champagne & Labeau, DSP Class Notes 2002.

Digital Signal Processing, IV, Zheng-Hua Tan, 200933

Design by rectangular window

 In general,

 ][][][ nwnhnh d

For simple truncation, the window is the rectangular 
window
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Digital Signal Processing, IV, Zheng-Hua Tan, 200934
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Convolution process by truncation

 Fig. 7.19

Digital Signal Processing, IV, Zheng-Hua Tan, 200935

?t  then wha,   ,1][  nnw )2(2)( reW
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Requirements on the window
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j  






bandnarrowbeshould)( jeW

 Requirements
 approximates an impulse to faithfully 

reproduce the desired frequency response

 w[n] as short as possible in duration (the order of the 
filter) to minimize computation in the implementation of 

bandnarrow be should)(eW

)( jeW

Digital Signal Processing, IV, Zheng-Hua Tan, 200936

) p p
the filter

 Conflicting

Take the rectangular window as an example.
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Rectangular window

M+1

M=7

4constant  

Digital Signal Processing, IV, Zheng-Hua Tan, 200937

Part III-A: Commonly used windows

 Filter design

 IIR filter design

 FIR filter design
 Commonly used windows

 Generalized linear-phase FIR filter

 The Kaiser window filter design method

Digital Signal Processing, IV, Zheng-Hua Tan, 200938
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Standard windows – time domain

 Rectangular 

  2/0/2 MM
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Digital Signal Processing, IV, Zheng-Hua Tan, 200939

 Hamming

 Blackman 
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Standard windows – figure 

 Fig. 7.21

Digital Signal Processing, IV, Zheng-Hua Tan, 200940

Plotted for convenience. In fact, the window is defined only at integer values of n.
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Standard windows – magnitude

Digital Signal Processing, IV, Zheng-Hua Tan, 200941

Standard windows – comparison 

Magnitude of side lobes vs width of main lobe

Digital Signal Processing, IV, Zheng-Hua Tan, 200942

Independent of M!
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Part III-B: Linear-phase FIR filter

 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design
 Commonly used windows

Digital Signal Processing, IV, Zheng-Hua Tan, 200943

 Generalized linear-phase FIR filter

 The Kaiser window filter design method

Linear-phase FIR systems

 Generalized linear-phase system

)()(  jjjj eeAeH 

 Causal FIR systems have generalized linear-phase 
if h[n] satisfies the symmetry condition

constants real are  and 

 , offunction  real a is  )(


jeA

Digital Signal Processing, IV, Zheng-Hua Tan, 200944
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Generalized linear phase FIR filter

 Often aim at designing causal systems with a 
generalized linear phase (stability is not a problem)
 If the impulse response of the desired filter is If the impulse response of the desired filter is 

symmetric about M/2, 

 Choose windows being symmetric about the point M/2

2/)()( Mjj
e

j eeWeW  
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][][ nhnMh dd 

Digital Signal Processing, IV, Zheng-Hua Tan, 200945

is a real, even function of w

 the resulting frequency response will have a 
generalized linear phase

)( j
e eW

2/)()( Mjj
e

j eeAeH   even and real is )( j
e eA

Linear-phase lowpass filter – an example

Desired frequency response
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
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apply a symmetric window a linear phase system
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Digital Signal Processing, IV, Zheng-Hua Tan, 200946

apply a symmetric window  a linear-phase system
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)]2/(sin[
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Window method approximations 
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Digital Signal Processing, IV, Zheng-Hua Tan, 200947
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deWeHeA j
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e
j
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2
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Key parameters

 To meet the requirement of FIR filter, choose
 Shape of the window

 Duration of the window Duration of the window

 Trail and error is not a satisfactory method to design 
filters  a simple formalization of the window 
method by Kaiser

Digital Signal Processing, IV, Zheng-Hua Tan, 200948
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Part III-C: Kaiser window filter design

 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design
 Commonly used windows

Digital Signal Processing, IV, Zheng-Hua Tan, 200949

 Generalized linear-phase FIR filter

 The Kaiser window filter design method

The Kaiser window filter design method

 An easy way to find the trade-off between the main-
lobe width and side-lobe area

 The Kaiser window The Kaiser window

is the zeroth order modified Bessel function of

2/       
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 is the zeroth-order modified Bessel function of 
the first kind.         is an adjustable design parameter.

 The length (M+1) and the shape parameter     can be 
adjusted to trade side-lobe amplitude for main-lobe 
width (not possible for preceding windows!)

)(0 I
0


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The Kaiser window

Digital Signal Processing, IV, Zheng-Hua Tan, 200951

Design FIR filter by the Kaiser window

Calculate M and      to meet the filter specification
 The peak approximation error      is determined by

Define then





log20A (Peak error is fixed for other windows)Define                         then

 Passband cutoff frequency        is determined by:
 1|)(| jeH
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(Rectangular)
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Stopband cutoff frequency      by:

Transition width 

M must satisfy
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A lowpass filter Specifications

 Specifications for a discrete-time lowpass filter
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Design the lowpass filter by Kaiser window

 Designing by window method indicating              , we 
must set

 Transition width

001.0
 20

21  

 Transition width



 The two parameters:

 Cutoff frequency of the ideal lowpass filter

I l

60log20 10  A
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37            ,653.5  M
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 Impulse response
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Design the lowpass filter

What is the group delay?

M/2=18 5M/2 18.5

Digital Signal Processing, IV, Zheng-Hua Tan, 200955

Summary
 Filter design

 IIR filter design
 Analog filter design

 IIR filter design by impulse invariance

 FIR filter design
 Commonly used windows

Digital Signal Processing, IV, Zheng-Hua Tan, 200956

 Generalized linear-phase FIR filter

 The Kaiser window filter design method
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Course at a glance

Discrete-time 
signals and systems

MM1 System

Fourier transform 
and Z-transform

Filt d i

MM2

Sampling and
reconstruction

MM3

System
analysis

Digital Signal Processing, IV, Zheng-Hua Tan, 200957

DFT/FFT

Filter design

MM5

MM4


