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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Sampling and
reconstruction

Fourier transform
and Z-transform

Filter design

MM5
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Part I: Filter design

Filter design
lIR filter design
FIR filter design
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Filter design process

Filter, in broader sense, covers any system.

Three design steps

Performance ;
. System function )
constraints Solution
Problem
Specifications — Approximations — Realization ——*
Magnitude response IIR or FIR Structure
Phase response Subtype
(frequency domain)
Complexity
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Specifications — an example

Specifications for a discrete-time lowpass filter
1-0.01<H(e')[<1+0.01, O0<w<w,
|H(e!”)|<0.001, &> a,
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Specifications of frequency response

Typical lowpass filter specifications in terms of
tolerable

o Passband distortion, as smallest as possible
o Stopband attenuation, as greatest as possible
o Width of transition band: as narrowest as possible

Improving one often worsens others - a tradeoff
Increasing filter order improves all
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DT filter for CT signals

DT filter for the processing of CT signals
o Bandlimited input signal
o High enough sampling frequency

Then, specifications (often given in frequency
domain) conversion is straightforward

_ HE* "), |Q<z/T
Her (1) = 0 o T Signal is band-limited;
' Q> 7 T is small enough.
- . @
H(e‘“’)zHeﬁ(J?), |w|< o=QT
— (/D > H(e/) — DIC p—>
x,(0) x([n] yln] Yalt)
T T Figure 7.1 Basic system for
] discrete-time filtering of
r r continuous-time signals.

Specifications — an example
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Specifications for a CT lowpass filter
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Design a filter

Design goal: find system function to make frequency
response meet the specifications (tolerances)

Infinite impulse response filter

o Poles insider unit circle due to causality and stability
o Rational function approximation

Finite impulse response filter

o Linear phase is often required

o Polynomial approximation
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E.g. IIR filter design

For rational system function ib 7k
k
H(z)=—% ——

N

find the system coefficients such that the
corresponding frequency response

H(e")=H(2)],
provides a good approximation to a desired response
H (ejw) ~ Hdesired (ejw)

H(z)

<Rational system function
*Stable

ecausal
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FIR and IIR

IR FIR
o Rational system o Polynomial system
function function
o Poles + zeros o Zeros
o Stable/unstable o Stable
o Hard to control o Easy to get linear
phase phase
o Low order (4-20) o High order (20-
o Designed on the 2000)
basis of analog filter o Unrelated to analog
filter
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FIR or IIR

Whether FIR or IR often depends on the phase
requirements

Design principle
o If GLP is essential > FIR

o If not - IR preferable (can meet specifications with
lower complexity)
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Part II: IIR Filter design

m Filter design
= |IR filter design

o Analog filter design

o lIR filter design by impulse invariance
= FIR filter design
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Design IIR filter based on analog filter

= The mapping is direct

. HE* ™), |QkxzIT
Hei (1) = { T Signal is band-limited;
0, | Q |> «“ T is small enough.
i . @
H (e’ )=Heﬁ(1;), o<z

= Advanced analog filter design techniques

-> Designing DT filter by transforming prototype CT
filter:
o Transform (map) DT specifications to analog
o Design analog filter
o Inverse-transform analog filter to DT
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Transformation method

Transform (map) DT specifications to analog

w=QT
Design analog filter s=o+jQ

H.(s) or h.(t) H(s) =] h(t)e dt
Inverse-transform to DT H(Q) = [ (e 2ot

H(z) or h[n] S rel®
» The imaginary axis of the s-plane joy 2 Zjen
- the unit circle of the z-plane XE™)= an[n]e

* Poles in the left half of the s-plane

- poles inside the unit circle in the X (2)= Zx[n]z

z-plane (stable) =

n

AALBORG UNIVERSITY
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Part II-A: Analog Filter design

Filter design

lIR filter design

o Analog filter design

o lIR filter design by impulse invariance

FIR filter design
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Analog filter design

Butterworth
Chebyshev |
Chebyshev Il
Ellipical
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Butterworth lowpass filters

The magnitude response

o Maximally flat in the passband

o Monotonic in both passband and stopband
The squared magnitude response

|1 H i) . 2 1
| H c (JQ) | - 2N
e 1+(Q/Q,)
1 - '
2| i Figure B.1 Magnitude-squared
| 1 function for continuous-time
0 Q, (X Butterworth filter.

Figure B.2 Dependence of Butterworth
magnitude characteristics on the
order N




Poles in s-plane

'-‘._1_____/ i
Figure B.3 s-plane pole locations for a
third-nrdar Rutterwnrth filtar
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Part II-B: Design by impulse invariance

m Filter design
= |IR filter design
o Analog filter design
o |IR filter design by impulse invariance

= FIR filter design
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Filter design by impulse invariance

Impulse invariance: a method for obtaining a DT
system whose H(e') is determined by the H_(j)

of a CT system.

h[n]=T;h.(nT,)
T, -'design‘samplinginterval

o In DT filter design, the specifications are provided in
the DT, so T, has no role. T, is included for discussion
though. T, also has nothing to do with C/D and D/C
conversion in Fig. 7.1, i.e. T, need not be the same as
the sampling period T of the C/D and D/C conversion.

AALBORG UNIVERSITY
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Relationship btw frequency responses

Impulse response sampling:
h[n] :Td hc (an) X[n] = Xc (nT)
Frequency response 1 @ _ 2k
e 2r, XE)=T Y XTI
HE") = 3 Ho (i + i 20K) Tm T T
k=—0 Ty Ty o

if the CT filter is bandlimited
H. (jQ) =0, |Qx/T,

then o HEM)=Hg (D) ol
H(e"‘“)zHc(jTﬂ), o<z

d
This is also the way to get CT filter specifications from
H(e') by applyingthe relation Q= /T,
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Aliasing in the impulse invariance design

h[n]=T,h.(nT,)

; kel ) .27
HEe)= > Ho(i—=+j<Zk)

d

LW
HrfT,)
/1\
[0
H el
-——~— 1 - -
Pt ~ 4 ~ 2 ~
s \>/ \>/ N
”~
i L™ e | e S S
24 27 @

The continuous-time filter may be designed to exceed the specifications,
particularly in the stopband.
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Impulse invariance with a Butterworth filter

Specifications
0.89125<|H(e/’)|<1, 0<w|<0.27
|H(e'”)|<0.17783, 03z<wl<x

Since the sampling interval T, cancels in the impulse
invariance procedure, we choose T,;=1,s0 w=0Q
Magnitude function for a CT Butterworth filter
0.89125<|H_(jQ) <1, 0<Ql<0.27 He,.<ja>={oﬁ‘e'“T>v ok
|H, (jQ)|<0.17783, 037<QKx HE) =Ha (1D, ol
Due to the monotonic function of Butterworth filter, we
have |H,(j0.27) |> 0.89125

|H,(j0.37)|<0.17783

24 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Impulse invariance with a Butterworth filter

Squared magnitude function of a Butterworth filter

o 1 |H,(j0.27) > 0.89125
T) RO = aray™ Y H, (jo3r) k£ 0.17783
1+(0§§ﬂ)2N =G 8;125)2 o N=0
Y 0 3C | 1
1+( éﬂ)m =Go1mes
. : ©6) Q,=0.7032
\ l 1
N =5.8858 H.(s)H (-8) = —————
4) c c - 2N
Q, = 0.70474 L+ (5710
_ 1
1+(s/ j0.7032)"
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Impulse invariance with a Butterworth filter

12 poles for the

squared magnitude Pole pair 1: —0.182 % (0.679),
fu nCt|0n Pole pair 2: —0.497 + j(0.497),
The SyStem funCtion Pole pair 3: —(.679 + j(0.182).
has the three pole e
pairs in the left half of ™
the s-plane it
X,
X \‘\:'_f,\_‘?"' 'fx
X ) )él Yte
\ | o
\X )(
w L e

Figure 7.4 s-plane locations for poles of Hy(s)Hc(—s) for sixth-order

2 Digital Signe g, tterworth filter in Example 7.2.
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Impulse invariance with a Butterworth filter

To construct H,(s) from the magnitude-squared function He(s)Hc(-s) ,

we choose the poles on the left-half-plane part of the s-plane
to obtain a stable and causal filter.

H.(5) = 0.12093
“ 7 (s? +0.3640s +0.4945)(s? +0.9945s + 0.4945)(s2 +1.35855 + 0.4945)

Express H,(s) as a partial fraction expansion, perform the transformation
of Eq. (7.12):

0.2871-0.4466z*
H(z) = 1 )
(1-1.2971z27 +0.6949z7)

. —2.1428+1.145527" . 1.8557 —0.6303z
(1-1.0691z ' +0.3699z7%) (1-0.9972z7! +0.257027?)

27
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Impulse invariance with a Butterworth filter

Figure 7.5

- . Impuise invarance, (4 0
1.2 —— -

A mplitude

AALBORG UNIVERSITY
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Part I11: FIR filter design

m Filter design
m |IR filter design
= FIR filter design
o Commonly used windows
o Generalized linear-phase FIR filter
o The Kaiser window filter design method
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FIR filter design

= Design problem: the FIR system function
M
H(z)=>bz™
k=0

b,, 0<n<M
h[n] = .
0, otherwise

= Start from impulse response directly
H(z) =h[0]+h[]z " +...+ h[M]z™™
Find
o the degree M and
o the filter coefficients h[k]
to approximate a desired frequency response

30 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Lowpass filter — as an example

Ideal lowpass filter

Hlp(ejw) :{

] ok e, sin,n

h[n] =

, —00<N<Ko0
0, o, <w<r

lIR filter: based on transformations of CT IIR system
into DT ones.

. 1
|H Q) = — ¢
¢ 1+(Q/Q, )"
~ poles
Figure B.2 Dependence of Butterworth
magnitude characteristics on the
* 1 order N
FIR filter: how? h[n] is non-causal, infinite!
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Design by windowing

Desired frequency responses are often piecewise-
constant with discontinuities at the boundaries
between bands, resulting in non-causal and infinte
impulse response extending from —oo to oo, but
n—+w, hy[n]—>0
So, the most straightforward method is to truncate
the ideal response by windowing and do time-
shifting:
h <
g[n]:{ d[n]1 |n| M
0, otherwise

h[n]=g[n-M]

32 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Design by windowing

After Champagne & Labeau, DSP Class Notes 2002.

H (@)

ml2 T @

Figure 9.17: Desired (a) frequency response and (b) impulse response for example 9.7

t )
£ln] T hln]
1/2 12+
L . . .
L] | L] | T
: | — e —]
01 5 ” 01 | 5 10 n

Feure 9.18: (a) Windowed impulse response g[n] and (b) shifted windowed impulse response hjn) for

mample 9.7

Design by rectangular window

In general,
h[n] =h, [n]w{n]

For simple truncation, the window is the rectangular
window

1, 0<n<M
nl=
win] {0, otherwise

H(e'”) = %j H, (e)H (e ")do

34 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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W’(?.f(w—ﬁ))

(b)

Figure 7.19 (a) Convolution process implied by truncation of the ideal impulse

response. (b) Typical approximation resulti i i i i
il ing from windowing the ideal impulse

win]=1, —w<n<ow, thenwhat? W('”)= > 275(w+ 2ar)
W (e ) should be narrow band =

Requirements on the window

win]=1 —o<n<o, W(e)= i27r5(a)+27zr)

r=—ow

W (e!”) should be narrow band

Requirements

o W (e!”) approximates an impulse to faithfully
reproduce the desired frequency response

o w[n] as short as possible in duration (the order of the
filter) to minimize computation in the implementation of

the filter
> Conflicting
Take the rectangular window as an example.
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Rectangular window o

sin (w(M + 1)/2)

M+1

constant /4

Peak sidelobe

l

2w 277 T 2 w
M+1) (M+1)
—> Ade, [«— Mainlobe Figure 7.20 Magnitude of the Fourier
width transform of a rectangular window
(M=T7).
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Part III-A: Commonly used windows

m Filter design
m |IR filter design
= FIR filter design
o Commonly used windows
o Generalized linear-phase FIR filter
o The Kaiser window filter design method

38 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Standard windows — time domain

Rectangular yin1— 1 0<n<M
0, otherwise
Triangular 2n/M, 0<n<M /2
wn]=<2-2n/M, M/2<n<M
0, otherwise
Hanning 0.5-0.5cos(2m/M), 0<n<M
wln]= .
0, otherwise
Hamming W] = 0.54-0.46cos(2mn/M), 0<n<M
Blackman ) otherwise
0.42-0.5cos(2n/ M) +0.08cos(4n/M), 0<n<M
wln] = .
0, otherwise

Standard windows — figure

‘ wn] Rectangular

1.0

Hamming
— ——— Hanning

—— == Blackman
————— Bartlett

0.6

0.4

0.2

Plotted for convenience. In fact, the window is defined only at integer values of n.
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Figure 7.22  Fourier transforms (log
magnitude) of windows of Figure 7.21.
with M = 50. (a) Rectangular.

(b) Bartlett. (c) Hanning. (d) Hamming.
(e) Blackman.

R .11.-17 0.6 0.8 t

nﬂn Nanla l

0.4 0.6 087 7

Radian frequency (w)

Standard windows — comparison

Magnitude of side lobes vs width of main lobe

TABLE 7.1 COMPARISON OF COMMONLY USED WINDOWS
Peak Transition
Peak Approximation  Equivalent Width
Side-Lobe  Approximate Error, Kaiser of Equivalent
Type of Amplitude Width of 201og 8 Window, Kaiser
Window (Relative) Main Lobe (dB) il Window
Rectangular —-13 dr/(M+1) =21 0 1817/ M
Bartlett 25 8afM =25 133 2377 /M
Hanning -31 8/ M —44 3.86 S0lm/M
Hamming —41 8xiM —53 4.86 627r/M
Blackman —57 12n/M —~74 7.04 9497/ M
Independent of M!
42 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Part III-B: Linear-phase FIR filter

m Filter design
m |IR filter design
o Analog filter design
o lIR filter design by impulse invariance
= FIR filter design
o Commonly used windows
o Generalized linear-phase FIR filter
o The Kaiser window filter design method
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Linear-phase FIR systems

= Generalized linear-phase system
H(e!”) = A(e!”)e 1"+ 1F
A(e’”) isa real function of ,
a and g are real constants

= Causal FIR systems have generalized linear-phase

if h[n] satisfies the symmetry condition
h[M —n]=h[n], n=01,....M
or

h[M —n]=-h[n], n=01,....M

44 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Generalized linear phase FIR filter

Often aim at designing causal systems with a
generalized linear phase (stability is not a problem)

o If the impulse response of the desired filter is
symmetric about M/2, h,[M —n]=h,[n]

o Choose windows being symmetric about the point M/2
WM —-n], 0<n<M
n|=

win] {0, otherwise

W (e!) =W, (e!)e "'

W, (e'”) is a real, even function of w
- the resulting frequency response will have a

generalized linear phase

H(e'”) = A (e/”)e 1M A, (e')is realand even

45 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY

Linear-phase lowpass filter — an example

Desired frequency response

Hlp(ejw) :{

sinfew, (Nn—M /2)]
z(n—M/2)

e—ja)M/Z’ |6()|<C()c

0, W, <O

h,[n]= , —0<N<o©

% hyIM -n]=hy[n]

apply a symmetric window > a linear-phase system

=y ] = S g

46 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Window method approximations

A el Hd(ejw) — He(ejw)e—jlez

H (el

H.(e'”)is real and even
W (eja)) =We (ej(a)e—jwM 12
W_ (e'”) is real and even

H (eiw) — Ae(ejw)e—jruMIZ

jo _i F I i(0-0)
A©") == [ H (M, (" 7)o

Figure 7.23 lllustration of type of approximation obtained at a discontinuity of

the ideal frequency response. AALBORG UMIVERSITY

Key parameters

To meet the requirement of FIR filter, choose

o Shape of the window

o Duration of the window

Trail and error is not a satisfactory method to design

filters - a simple formalization of the window
method by Kaiser

48 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Part ITI-C: Kaiser window filter design

m Filter design
m |IR filter design
o Analog filter design
o lIR filter design by impulse invariance
= FIR filter design
o Commonly used windows
o Generalized linear-phase FIR filter
o The Kaiser window filter design method

49 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY

The Kaiser window filter design method

= An easy way to find the trade-off between the main-
lobe width and side-lobe area

= The Kaiser window
L[BL-[(n-a)/a]’)"?]

, 0<n<M
win]= 1o(5)
0, otherwise
a=M]/2
= l,() isthe zeroth-order modified Bessel function of

the first kind. B> 0is an adjustable design parameter.

o The length (M+1) and the shape parameter g can be
adjusted to trade side-lobe amplitude for main-lobe
width (not possible for preceding windows!)

50 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Amplitude
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fa) Radian frequency (m)
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0
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5 50 —_— =2
———— M =4
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0

02w o -’\-1-.- o “[I_{\.‘.: 0.8 ) T
Figure 7.24 (a) Kaiser windows for g = 0, 3, and 6 and M = 20. (b) Fourier
transforms corresponding to windows in (a). (c) Fourier transforms of Kaiser
windows with 8 = 6 and M = 10, 20, and 40.

Design FIR filter by the Kaiser window

Calculate M and g to meet the filter specification
o The peak approximation error & is determined by A
Define A=-20log,, ¢ then (Peak error is fixed for othemndows)

0.1102(A-8.7), A>50
B =40.5842(A-21)* +0.07886(A—21), 21<A<50
0.0, A<21 (Rectangular)
o Passband cutoff frequency o, is determined by:
IH(e*)21-6 =2
Stopband cutoff frequency o, by: |H(e)|<s -\
Transition width Aw =0, -, _ “'g’““'“"
‘M must satisfy M A-8 ,
52 Digital Signal Processing, IV, Zhengij?asn,AZ(i))Q u /\// \/L .
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A lowpass filter Specifications

Specifications for a discrete-time lowpass filter
1-0.01< H(e')|<1+0.01, 0<w<w,=04r
|H(e!”)|<0.001, &>w, =0.6r

LH (/)]
1+ 5, SRR
TN 5,=0.01
— 01 e Em Ah
TN | S, =0.001
I\ [
I \\ [
Passband | Transition } Stopband
| N
| N
| N
| N e s e
e I T =
O mp (‘“_s' T w

Design the lowpass filter by Kaiser window

Designing by window method indicating o,=4, , we
must set  §=0.001
Transition width Aw=0,-w, =027

A=-20log,, 5 =60
The two parameters: /S =5.653, M =37

Cutoff frequency of the ideal lowpass filter

o, =(o,+w,)/2=057
Impulse response

sino,(n-a) 1,[AA-[(n-a)/a]’)"]

,0<n<M
hin]=y 7z(n-e) 1, (8)
0, otherwise
54 Digital Signal Processing, 1V, Zheng-Hua Tan, 2009 AALBORG UNIVERSITY
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Amplitude

02| What is the group delay?

._m»m-rr“-rxﬂ]l'] ]lln*‘" ......... ! M/2=18.5

0 10 20 30 40
Sample number (n)

(a)

4

6l —

-100* ! S —
(] 027 0447 0.6+ 0.8

Radian frequency ()

(bl

Figure 7.25 Resporse funclions
M 371 (b) Log magnitude An

Summary

Filter design

lIR filter design

o Analog filter design

o |IR filter design by impulse invariance
FIR filter design

o Commonly used windows

o Generalized linear-phase FIR filter

o The Kaiser window filter design method
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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Sampling and
reconstruction

Fourier transform
and Z-transform

Filter design

MM5
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