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Course at a glance
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Part I-A: Periodic sampling

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction 

 Part II: system analysis
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Periodic sampling
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Two stages

 Mathematically
 Impulse train modulator

 Conversion of the impulse

In practice?

 Conversion of the impulse 
train to a sequence
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Periodic sampling

 Tow-stage representation
 Strictly a mathematical representation that is 

convenient for gaining insight into sampling inconvenient for gaining insight into sampling in 
both the time and frequency domains.

 Physical implementation is different.

 a continuous-time signal, an impulse train,  
zero except at nT

 a discrete-time sequence time normalization

)(txs

][nx

Digital Signal Processing, III, Zheng-Hua Tan6

 a discrete-time sequence, time normalization, 
no explicit information about sampling rate

 Many-to-many  in general not invertible 

][nx
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Part I-B: Freq. domain represent.

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction 

 Part II: system analysis
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Frequency-domain representation 

 From xc(t) to xs(t)
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The Fourier transform of a periodic 
impulse train is a periodic impulse train.
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 The Fourier transform of xs(t) consists of periodic 
repetition of the Fourier transform of xc(t).
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Frequency-domain
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Recovery 

)()()( srr  jXjHjX

Ideal lowpass filter with gain 

T and cutoff frequency 
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Aliasing distortion 

 Due to the overlap among the copies of              , due 
to 

 not recoverable by lowpass filtering

)(c jX

Ns 2

)( jX not recoverable by lowpass filtering)(c jX
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Aliasing – an example 
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Nyquist sampling theorem

Given bandlimited signal           with 

Nc jX  ||for       ,0)(

)(txc

Then        is uniquely determined by its samples

If

is called Nyquist frequencyN
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is called Nyquist frequency

is called Nyquist rate
N

N2

Fourier transform of x[n]

From         to ][       )( nxtxs
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By taking continuous-time Fourier transform of xs(t)
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By taking discrete-time Fourier transform of x[n]
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Fourier transform of x[n]
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From Slide 14, 

From Slide 8, 

i.e.          is simply a frequency-scaled version of          
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p y q y
with

retains a spacing between samples equal to 
the sampling period T while         always has unity 
space. 

T

][nx
)(txs

Sampling and reconstruction of Sin Signal
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Part I-C: Reconstruction

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction

 Part II: system analysis
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Requirement for reconstruction

 On the basis of the sampling theorem, 
samples represent the signal exactly when:

B dli it d i l Bandlimited signal

 Enough sampling frequency

 + knowledge of the sampling period  recover the 
signal
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Reconstruction steps 

Given x[n] and T, the impulse train is




 cs nTtnxnTtnTxtx )(][)()()( 

(1)

i.e. the nth sample is associated with the impulse at 
t=nT.

The impulse train is filtered by an ideal lowpass CT 
filter with impulse response 
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Ideal lowpass filter interpolation

CT signal

Modulated impulse train
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discrete-to-continuous-time converter

“Practical DACs do not output a sequence of dirac impulses (that, if 
ideally low-pass filtered, result in the original signal before sampling) 
but instead output a sequence of piecewise constant values or 
rectangular pulses”rectangular pulses
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From http://en.wikipedia.org/wiki/Digital-to-analog_converter.

Ideally sampled signal. Piecewise constant signal typical 
of a practical DAC output. 

Applications
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Part II System analysis

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase
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System analysis

 Three domains

 Time domain: impulse response, convolution sum




 Frequency domain: frequency response

 z-transform: system function
)()()(  jjj eHeXeY 
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 LTI system is completed characterized by …

)()()( zHzXzY 
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Part II-A: Frequency response

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase
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Frequency response

 Relationship btw Fourier transforms of input and 
output 

)()()(  jjj eHeXeY 

 In polar form

 Magnitude  magnitude response, gain, 
distortion 

|)(||)(||)(|  jjj eHeXeY 

)()()( eHeXeY 
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 Phase  phase response, phase shift, distortion 

)()()(  jjj eHeXeY 
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Ideal lowpass filter – an example

 Frequency response
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p
 How to make a noncausal system causal? 

 In general, any noncausal FIR system can be made 
causal by cascading it with a sufficiently long delay!

 But ideal lowpass filter is an IIR system!

Phase distortion and delay

 Ideal delay system
][][ did nnnh   Delay distortion

 Ideal lowpass filter with linear phase 

1|)(| j
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id neH Linear phase distortion
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Ideal lowpass filter is
always noncausal!
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Group delay

 A measure of the linearity of the phase

 Concerning the phase distortion on a narrowband
signalsignal

 For this input with spectrum only around w0, phase 
effect can be approximated around w0 as the linear 
approximation (though in reality maybe nonlinear)

)cos(][][ 0nnsnx 

)(   j neH

0 w0
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and the output is approximately 

 Group delay
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An example of group delay

 Figure 5.1, 5.2, 5.3
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An example of group delay
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Part II-B: System functions

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan34
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System function of LCCDE systems

 Linear constant-coefficient difference equation
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Stability and causality

 Stable
 h[n] absolutely summable

H( ) h ROC i l di h i i l H(z) has a ROC including the unit circle

 Causal
 h[n] right side sequence

 H(z) has a ROC being outside the outermost pole
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Inverse systems

 Many systems have inverses, specially systems with 
rational system functions
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 Poles become zeros and vice versa.

 ROC: must have overlap btw the two for the sake 
of G(z).
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Part II-C: All-pass systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems

 Minimum-phase systems

 Linear systems with generalized linear phase
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All-pass systems

 Consider the following stable system function
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 all-pass system: for which the 
frequency response magnitude is a constant.

1|)(| j
ap eH
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Example: First-order all-pass system

P275 Example 5.13
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Part II-D: Minimum-phase systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan42
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Minimum-phase systems

 Magnitude does not uniquely characterize the 
system

St bl d l l i id it i l Stable and causal  poles inside unit circle, no 
restriction on zeros

 Zeros are also inside unit circle  inverse system 
is also stable and causal (in many situations, we 
need inverse systems!)

  such systems are called minimum-phase
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  such systems are called minimum-phase 
systems (explanation to follow): are stable and 
causal and have stable and causal inverses

Minimum-phase and all-pass decomposition

Any rational system function can be expressed as:

S ppose H( ) has one ero o tside the nit circle at
)()()( min zHzHzH ap

Suppose H(z) has one zero outside the unit circle at 
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minimum-phase all-pass
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Frequency response compensation

When the distortion system is not minimum-phase 
system:

)()()( HHH 1)()()( min zHzHzH apdd 
)(
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d
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Frequency response magnitude is compensated

Phase response is the phase of the all-pass

Properties of minimum-phase systems

 From minimum-phase and all-pass decomposition

)()()( min zHzHzH ap

 From the previous figure, the continuous-phase
curve of an all-pass system is negative for 

 So change from minimum-phase to non-minimum-
phase (+all pass phase) always decreases the

 0

)](arg[)](arg[)](arg[ min
 j

ap
jj eHeHeH 
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phase (+all-pass phase) always decreases the 
continuous phase or increases the negative of the 
phase (called the phase-lag function). Minimum-
phase is more precisely called minimum phase-lag 
system
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Part II-E: GLP systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase
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Design a system with non-zero phase

 System design sometimes desires
 Constant frequency response magnitude

Z h h ibl Zero phase, when not possible 
 accept phase distortion, in particular linear phase since 

it only introduce time shift

 Nonlinear phase will change the shape of the input 
signal though having constant magnitude response

Digital Signal Processing, III, Zheng-Hua Tan48
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Ideal delay
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Generalized linear phase

 Linear phase filters
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 Generalized linear phase filters
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constants real are  and 
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Summary

 Part I: sampling and reconstruction
 Periodic sampling

F d i i Frequency domain representation 

 Reconstruction 

 Part II: system analysis
 Frequency response

 System functions  
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 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Course at a glance

Discrete-time 
signals and systems

MM1 System

Fourier transform 
and Z-transform

Filt d i

MM2

Sampling and
reconstruction

MM3

System
analysis
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DFT/FFT

Filter design

MM5

MM4


