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Part I-A: Periodic sampling

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction 

 Part II: system analysis
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Periodic sampling

 From continuous-time        to discrete-time)(txc ][nx
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Two stages

 Mathematically
 Impulse train modulator

 Conversion of the impulse

In practice?

 Conversion of the impulse 
train to a sequence
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Periodic sampling

 Tow-stage representation
 Strictly a mathematical representation that is 

convenient for gaining insight into sampling inconvenient for gaining insight into sampling in 
both the time and frequency domains.

 Physical implementation is different.

 a continuous-time signal, an impulse train,  
zero except at nT

 a discrete-time sequence time normalization

)(txs

][nx
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 a discrete-time sequence, time normalization, 
no explicit information about sampling rate

 Many-to-many  in general not invertible 

][nx
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Part I-B: Freq. domain represent.

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction 

 Part II: system analysis

Digital Signal Processing, III, Zheng-Hua Tan7

Frequency-domain representation 

 From xc(t) to xs(t)
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The Fourier transform of a periodic 
impulse train is a periodic impulse train.
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 The Fourier transform of xs(t) consists of periodic 
repetition of the Fourier transform of xc(t).
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Frequency-domain
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NsNNs  2or     

Recovery 

)()()( srr  jXjHjX

Ideal lowpass filter with gain 
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Aliasing distortion 

 Due to the overlap among the copies of              , due 
to 

 not recoverable by lowpass filtering

)(c jX

Ns 2

)( jX not recoverable by lowpass filtering)(c jX
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Aliasing – an example 
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Nyquist sampling theorem

Given bandlimited signal           with 

Nc jX  ||for       ,0)(
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Then        is uniquely determined by its samples
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is called Nyquist frequency

is called Nyquist rate
N

N2

Fourier transform of x[n]

From         to ][       )( nxtxs
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By taking continuous-time Fourier transform of xs(t)
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By taking discrete-time Fourier transform of x[n]
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Fourier transform of x[n]
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p y q y
with

retains a spacing between samples equal to 
the sampling period T while         always has unity 
space. 

T
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Sampling and reconstruction of Sin Signal
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Part I-C: Reconstruction

 Part I: sampling and reconstruction
 Periodic sampling

F d i i f h li Frequency domain representation of the sampling

 Reconstruction

 Part II: system analysis

Digital Signal Processing, III, Zheng-Hua Tan17

Requirement for reconstruction

 On the basis of the sampling theorem, 
samples represent the signal exactly when:

B dli it d i l Bandlimited signal

 Enough sampling frequency

 + knowledge of the sampling period  recover the 
signal

Digital Signal Processing, III, Zheng-Hua Tan18
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Reconstruction steps 

Given x[n] and T, the impulse train is
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i.e. the nth sample is associated with the impulse at 
t=nT.

The impulse train is filtered by an ideal lowpass CT 
filter with impulse response 
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Ideal lowpass filter interpolation

CT signal

Modulated impulse train
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discrete-to-continuous-time converter

“Practical DACs do not output a sequence of dirac impulses (that, if 
ideally low-pass filtered, result in the original signal before sampling) 
but instead output a sequence of piecewise constant values or 
rectangular pulses”rectangular pulses

Digital Signal Processing, III, Zheng-Hua Tan23

From http://en.wikipedia.org/wiki/Digital-to-analog_converter.

Ideally sampled signal. Piecewise constant signal typical 
of a practical DAC output. 

Applications

Digital Signal Processing, III, Zheng-Hua Tan24
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Part II System analysis

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan25

System analysis

 Three domains

 Time domain: impulse response, convolution sum




 Frequency domain: frequency response

 z-transform: system function
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 LTI system is completed characterized by …

)()()( zHzXzY 
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Part II-A: Frequency response

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan27

Frequency response

 Relationship btw Fourier transforms of input and 
output 

)()()(  jjj eHeXeY 

 In polar form

 Magnitude  magnitude response, gain, 
distortion 
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 Phase  phase response, phase shift, distortion 

)()()(  jjj eHeXeY 
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Ideal lowpass filter – an example

 Frequency response
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 Frequency selective filter
 Impulse response

 Noncausal, cannot be implemented! 
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p
 How to make a noncausal system causal? 

 In general, any noncausal FIR system can be made 
causal by cascading it with a sufficiently long delay!

 But ideal lowpass filter is an IIR system!

Phase distortion and delay

 Ideal delay system
][][ did nnnh   Delay distortion

 Ideal lowpass filter with linear phase 
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Group delay

 A measure of the linearity of the phase

 Concerning the phase distortion on a narrowband
signalsignal

 For this input with spectrum only around w0, phase 
effect can be approximated around w0 as the linear 
approximation (though in reality maybe nonlinear)

)cos(][][ 0nnsnx 

)(   j neH

0 w0
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and the output is approximately 

 Group delay

0)(  dneH

))(cos(][|)(|][ 00
0   dd

j nnnnseHny
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 jj eH

d

d
eHgrd 

An example of group delay

 Figure 5.1, 5.2, 5.3
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An example of group delay

Digital Signal Processing, III, Zheng-Hua Tan33

Part II-B: System functions

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan34
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System function of LCCDE systems

 Linear constant-coefficient difference equation
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Stability and causality

 Stable
 h[n] absolutely summable

H( ) h ROC i l di h i i l H(z) has a ROC including the unit circle

 Causal
 h[n] right side sequence

 H(z) has a ROC being outside the outermost pole
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Inverse systems

 Many systems have inverses, specially systems with 
rational system functions
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 Poles become zeros and vice versa.

 ROC: must have overlap btw the two for the sake 
of G(z).
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Part II-C: All-pass systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan39

All-pass systems

 Consider the following stable system function
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 all-pass system: for which the 
frequency response magnitude is a constant.

1|)(| j
ap eH
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Example: First-order all-pass system

P275 Example 5.13

Digital Signal Processing, III, Zheng-Hua Tan41

Part II-D: Minimum-phase systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Digital Signal Processing, III, Zheng-Hua Tan42
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Minimum-phase systems

 Magnitude does not uniquely characterize the 
system

St bl d l l i id it i l Stable and causal  poles inside unit circle, no 
restriction on zeros

 Zeros are also inside unit circle  inverse system 
is also stable and causal (in many situations, we 
need inverse systems!)

  such systems are called minimum-phase

Digital Signal Processing, III, Zheng-Hua Tan43

  such systems are called minimum-phase 
systems (explanation to follow): are stable and 
causal and have stable and causal inverses

Minimum-phase and all-pass decomposition

Any rational system function can be expressed as:

S ppose H( ) has one ero o tside the nit circle at
)()()( min zHzHzH ap

Suppose H(z) has one zero outside the unit circle at 
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minimum-phase all-pass
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Frequency response compensation

When the distortion system is not minimum-phase 
system:

)()()( HHH 1)()()( min zHzHzH apdd 
)(

1
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d
c 

)()()()( zHzHzHzG apcd 
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Frequency response magnitude is compensated

Phase response is the phase of the all-pass

Properties of minimum-phase systems

 From minimum-phase and all-pass decomposition

)()()( min zHzHzH ap

 From the previous figure, the continuous-phase
curve of an all-pass system is negative for 

 So change from minimum-phase to non-minimum-
phase (+all pass phase) always decreases the

 0

)](arg[)](arg[)](arg[ min
 j

ap
jj eHeHeH 
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phase (+all-pass phase) always decreases the 
continuous phase or increases the negative of the 
phase (called the phase-lag function). Minimum-
phase is more precisely called minimum phase-lag 
system
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Part II-E: GLP systems

 Part I: sampling and reconstruction

 Part II: system analysis
 Frequency response

 System functions  

 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase
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Design a system with non-zero phase

 System design sometimes desires
 Constant frequency response magnitude

Z h h ibl Zero phase, when not possible 
 accept phase distortion, in particular linear phase since 

it only introduce time shift

 Nonlinear phase will change the shape of the input 
signal though having constant magnitude response

Digital Signal Processing, III, Zheng-Hua Tan48
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Ideal delay
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Generalized linear phase

 Linear phase filters
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 Generalized linear phase filters
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constants real are  and 
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Summary

 Part I: sampling and reconstruction
 Periodic sampling

F d i i Frequency domain representation 

 Reconstruction 

 Part II: system analysis
 Frequency response

 System functions  
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 All-pass systems 

 Minimum-phase systems

 Linear systems with generalized linear phase

Course at a glance

Discrete-time 
signals and systems

MM1 System

Fourier transform 
and Z-transform

Filt d i

MM2

Sampling and
reconstruction

MM3

System
analysis
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DFT/FFT

Filter design

MM5

MM4


