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Part I-A: Periodic sampling

= Part I: sampling and reconstruction

o Periodic sampling
o Frequency domain representation of the sampling

o Reconstruction
m Part lI: system analysis
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Periodic sampling

= From continuous-time x.(t) to discrete-time x[n]

X[n]=x.(nT), —co<n<w

o Sampling period T
o Sampling frequency f,=1/T

Q. =27IT
—_— D | .
x,(1) x[n]=x.(n7) Figure 41 Block diagram
T representation of an ideal
. continuous-to-discrete-time (C/D)
converter.
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Two stages R In practice?

Mathematically
o Impulse train modulator

o Conversion of the impulse
train to a sequence

s(t) = ié(t—nT) B O e .f_ f
X () = X, (D5 ] ‘ ‘ HH ‘ ’ ] ‘ } i ‘
= x.(t) S6(t-nT) “arrorar 1 ar o 0 T o

N=-w

= Yk (T)s(t-nT) . o
armom == | 11T

(%O=]" @8N )  pgeas s

with a periodic impulse train by conversion to
ce. (a) Overall system. (b) Xx; sampling rates
ance for the two different sampling rat

Periodic sampling

Tow-stage representation

o Strictly a mathematical representation that is
convenient for gaining insight into sampling in
both the time and frequency domains.

o Physical implementation is different.

o x,(t) a continuous-time signal, an impulse train,
zero except at nT

o x[n] a discrete-time sequence, time normalization,
no explicit information about sampling rate

Many-to-many - in general not invertible
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Part I-B: Freq. domain represent.

Part I: sampling and reconstruction

o Periodic sampling

o Frequency domain representation of the sampling
o Reconstruction

Part II: system analysis
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Frequency-domain representation

From x.(t) to x(t) The Fourier transform of a periodic
impulse train is a periodic impulse train.
s(t) = 3 5(t—nT) o S(jQ)zzT—” Y 5@ -ko,)
- n=-0 ? k=-o0

N 1 . .

X (t) = X, (t)s(t) © Xs(JQ):ZXc(JQ)*S(JQ)

= L&,
=%.() 25(t-nT) == Y X (@)
n=-0 k=—o0

= 3 X, (NT)S(t-nT)

The Fourier transform of x,(t) consists of periodic
repetition of the Fourier transform of x(t).
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(12, = $2y)
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Figure 4.3  Effect in the frequency

1
m domain of sampling in the time domain.
7 - - - - - - (a) Spectrum of the original signal

A 4 A i . A A (b} Spectrum of the sampling function.

- S A 0 '_"‘ o (c) Spectrum of the sampled signal with
=Tl o Qg > 2Qy. (d) Spectrum of the

(@ sampled signal with Qs < 22y GEREITY
] .E &t-nT
Recovery A =
X, (JQ) = H (jQ)X,(j)
. . . 0y . iy 0
Ideal lowpass filter with gain

T and cutoff frequency o,

Qy <Q, <(Q,-Qy)

X, (jQ) = X, (jQ) | Beibiocindi
Figure 4.4 Exact recovery of a ; & I
continuous-time signal from its samples -
using an ideal lowpass filter. /\\
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Aliasing distortion

= Due to the overlap among the copies of X.(jQ) , due
to Q, <20,

= X,.(j) notrecoverable by lowpass filtering
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i.\'|.-i.!3 . .
i |y Aliasing — an example
0 0, a
" X, (t) = cosQ,t
a.l T iLT s::..r*rs}..til‘: 0, in L
(b} *: XS(JQ):? ZXC(J(Q_kQS))
| X e - A k=—o0
: __£_-__ Iy >
A I Ao i
b.1 T l_!:_;“Tt_f;f ;1!._r| 0, 0
No aliasing X0 T
a.2 i - 5 X, (t) = cosQt
Alinsing R v 0.5 F
' i - o X, (t) = cos(Q, —Q,)t
b2 - tla .

B
(- ) (=) t Figure 4.5 The effect of aliasing in the

sampling of a cosine signal AALBORG UNIVERSITY




Nyquist sampling theorem

Given bandlimited signal x.(t) with
X (jQ) =0, for |QFQ,

Then x.(t) is uniquely determined by its samples

X[n] = x,(nT), —o<N< o0
If
0, =50,
T

Q, is called Nyquist frequency
2Q3 is called Nyquist rate
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Fourier transform of x[n]

From x(t) to x[n] = == G converter |

0 !

© i |

X t) = z Xe (nT)o(t—nT) l Conversion from :

n=- impulse 1:".n.in |
Xn]=x%(T), —w<n<e  x0) w0 | e I. t[n] = x (nT)

. | 1

FromX (jQ)to X(e™) = -

By taking continuous-time Fourier transform of x.(t)
X,(JjQ) = 2 x.(nT)e ™ ( X =] x(®e'™dt )
N=—o0

By taking discrete-time Fourier transform of x[n]
X()= A ™ X, (JO) = X (") |y = X ()

N=—o0
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Fourier transform of x[n]

From Slide 14, X (jQ) = X(ej’”) loar = X X (e*T)

From Slide 8, is(jQ)_ ZX_(J(Q kQ,))

So, X(£1) = X, (1)1, =7 SXc(i@-k2),
T k=—o T

o 27K 1 a)27zk

=T kZ_w c(J (———))—?k_Z_w

)

l.e. x(')is simply a frequency-scaled version of X,(jQ)
with o = QT
X,(t) retains a spacing between samples equal to

the sampling period T while x[n] always has unity
space.
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Sampling and reconstruction of Sin Signal

X, (t) = cos(4000t) — Q3 = 40007

T =1/6000 - Q, =27/T =12000z .. noaliasing

X[n] = x,(nT) = cos(40007nT) = cos((27 / 3)n) = cos(m,n)
X, () © X, (j©) = 75(Q—40007) + 75(Q+ 40007)  X,(jQ) = Tikixc(j(fzf k2,)
X (€)= X (J) |gewir = X (j@/T) with normalized frequency w = QT

How about
X, (t) = cos(160007t)

—
1
P S
A EY

A f
—
—_—
——-

Fll]lltedﬁ Continuous-time (a) and discrete-time (b) Fouriert
;0sine signal with frequency o = 40007 and sampling pe
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Part I-C: Reconstruction

Part I: sampling and reconstruction

o Periodic sampling

o Frequency domain representation of the sampling
o Reconstruction

Part II: system analysis

17 Digital Signal Processing, 111, Zheng-Hua Tan AALBORG UNIVERSITY

Requirement for reconstruction

On the basis of the sampling theorem,
samples represent the signal exactly when:
o Bandlimited signal

o Enough sampling frequency

o + knowledge of the sampling period - recover the
signal
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Reconstruction steps

(1) Given x[n] and T, the impulse train is

X.(t) = 3% ("T)st-nT)= 3 xn]s(t—nT)

N=—ow

I.e. the nth sample is associated with the impulse at
t=nT.

20 The impulse train is filtered by an ideal lowpass CT

filter with impulse response h (t) < H,(jQ)

0

X ()= Y x(mh, t-nT)

N=—o0

X, (JjQ) = H, (i) X (")
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[deal reconstruction system

Convert from [ijl.':ll. ; :
tn] ' ||H|\f:llllitl'\|:.u|\; [,:;| X 1) f,lli:ft.l:{r]] I i X0
t ;
Sampling |
- _[_'c_'._iml r - B l
| H 1Y)
7 Commonly choose cutoff frequncy as
|_' ’ Q. =Q,/2=7xIT
™ v 4]
T !

sin(zt/T)

h (t) =
() alT

Figure 4.8 (a) Block diagram of an
ideal bandlimited signal reconstruction
system. (b) Frequency response of an

. ideal reconstruction filter. (c) Impulse
(c) response of an ideal reconstruction filter. & UMNIVERSITY
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x.(r)

CT signal

(a)

[ \“‘\|=_"”' Modulated impulse train

- sin(z(t—nT)/T)
% (0= 2 0] Z(t-nT)/T

Figure 4.9 |deal bandlimited s g e UNIVERSITY
interpolation.

Ideal discrete-to-continuous-time converter

Ideal reconstruction system

|
|
! .
I | Convert from N lqedl‘ ;
} sequence Lo - rucon};.]llrelidlon | D/C
x[n] } impulse train | x,(7) H,(jQ) : x(t) x[n] x,(1)

I 1. | f
I | q*
: Sampling I
I period T }
o J

(a) (b)

Figure 4.10 (a) Ideal bandlimited signal reconstruction. (b) Equivalent represen-
tation as an ideal D/C converter.
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discrete-to-continuous-time converter

“Practical DACs do not output a sequence of dirac impulses (that, if
ideally low-pass filtered, result in the original signal before sampling)
but instead output a sequence of piecewise constant values or
rectangular pulses”

A A

==
S
Ammmn

ee et
=
T -

Ideally sampled signal. Piecewise constant signal typical
of a practical DAC output.

From http://en.wikipedia.org/wiki/Digital-to-analog converter.
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Applications

Discrele-time

syslem
! " .

1 ! Figure 4.11 Discrete-lime processing

T ~ L - of continuous-time signals.

—_————

he(7)
H(j)

|

|

|

T .

bewe o | F'g“re4-15 COﬂTinuousvﬂme
********** processing of discrete-time signals.
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Part II System analysis

m Part I: sampling and reconstruction

= Part ll: system analysis

Frequency response

System functions

All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase

O
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System analysis

= Three domains
o Time domain: impulse response, convolution sum

0

y[n]=x[n]*h[n] = > x[kIn[n—k]

k=—0

o Frequency domain: frequency response

Y(e')=X(")H(E")
o z-transform: system function

Y(2)=X(2)H(2)

= LTI system is completed characterized by ...
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Part II-A: Frequency response

m Part I: sampling and reconstruction

= Part ll: system analysis

Frequency response

System functions

All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase

O
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Frequency response

= Relationship btw Fourier transforms of input and
output
Y(e')=X(E")H (")
= In polar form

o Magnitude - magnitude response, gain,
distortion

Y (™) = X (&™) |- H(e")]|
o Phase - phase response, phase shift, distortion
ZY (1) = ZX (') + ZH (e'?)
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Ideal lowpass filter — an example

Frequency response
H(e') :{

o Frequency selective filter
Impulse response

1 |ol< @,
0, o, <w|l<xz

sina,n ?
h[n] = 7;’ —m<n<oo h[n]=0, n<0

o Noncausal, cannot be implemented!

o How to make a noncausal system causal?

In general, any noncausal FIR system can be made
causal by cascading it with a sufficiently long delay!

But ideal lowpass filter is an IR system!
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Phase distortion and delay

Ideal delay system
hy[n]=0o[n—n,] Delay distortion

H (e17) = e

| Hy ') =1
ZHy, (8') =-any | o|< 7 Linear phase distortion
Ideal lowpass filter with linear phase
) —jang
e[ Lo
. e <oz Ideal lowpass filter is

. always noncausal!

h [n]_sma)c(n—nd)

plh]=——7"———=, -—o<n<wx
z(n-ny)
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Group delay

A measure of the linearity of the phase
Concerning the phase distortion on a narrowband

signal | A

X[n] = s[n]cos(w,n) 0 W,
For this input with spectrum only around w,, phase
effect can be approximated around w, as the linear
approximation (though in reality maybe nonlinear)

ZH (") =~ —on, — ¢, ~
and the output is approximately
yInl~| H (e'*) | s[n—ny Jcos(w, (N —ny) — ¢y)
Group delay

r=grd[H(e')] = —;—w{arg[H ')
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g U An example of group delay

Radian frequens g

;ﬂm mfﬁ e

Flgure 5.1 Frequancy responees it -1
l"'EIII.::IP 2 BquUancy re sponse magnitude and group delay for the filter in

by
32 Digital Signal Processing, 11, Zheng-Hua Tan  Figure 5.2 input signal and associated
Example 5.1
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An example of group delay

Qutput Signal y[n]
1
T I I I

veln]
o

| | | | |
0 50 100 150 200 250 300 350 400
Sample number(r)

Figure 5.3 Output signal for Example 5.1.

Since the filter has considerable attenuation at w = 0.85x, the pulse at that frequency
is not clearly present in the output. Also, since the group delay at @ = 0257 is
approximately 200 samples and at @ = 0.57 is approximately 50 samples, the second
pulse in x[n] will be delayed by about 200 samples and the third pulse by 50 samples,
as we see is the case in Figure 5.3.
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Part II-B: System functions

m Part I: sampling and reconstruction

= Part II: system analysis
o Frequency response
o System functions
o All-pass systems
o Minimum-phase systems
o Linear systems with generalized linear phase
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System function of LCCDE systems

Linear constant-coefficient difference equation

ZN:aky[n—k]= ibmx[n—m]

z-transform format

iakz‘kY(z) = ibmz‘mx (2)

m=0

H(Z):Y(Z) m=0

M
Dbz "
O
a,z
kZ:; "

(1-c,z')in the numerator
azeroatz=c_apoleatz=0

M
1-cz7 N .
(bo)lm_{( n? ) (1-d,z™)in the denominator
N B B
° T[a-dz™) azeroatz=0apoleatz=d
k=1
35 Digital Signal Processing, 111, Zheng-Hua Tan AALBORG UNIVERSITY

Stability and causality

Stable

o h[n] absolutely summable

o H(z) has a ROC including the unit circle

Causal

o h[n] right side sequence

o H(z) has a ROC being outside the outermost pole

36 Digital Signal Processing, 111, Zheng-Hua Tan AALBORG UNIVERSITY

18



Inverse systems

Many systems have inverses, specially systems with
rational system functions
M
bo H(l—CmZ_l)

G(Z)ZH(Z)Hi(Z)Zl H(Z):(a_) mN:1
@i oo
H(z) .
g[n] = h[n]*h;[n]=o[n] . [Ta-d.z™
Hi(2)=(b—°) v
* T]a-c,z)
m=1

o Poles become zeros and vice versa.
o ROC: must have overlap btw the two for the sake
of G(2).
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Example
H(z)—ﬂ |z]>0.9
1-0.9z7' '
_1-09z7" 1 0.9z

(z) = = _
(2) 1-05z% 1-05z*% 1-05z7°

|z|>0.5
° h.[n] = (0.5)"u[n]—-0.9(0.5)""u[n 1]
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Part II-C: All-pass systems

m Part I: sampling and reconstruction

= Part ll: system analysis

Frequency response

System functions

All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase

O
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All-pass systems

= Consider the following stable system function

z'-a
Hop(2) =

1-az™

el _gq"

1-ae @

- 1-a‘el
1-ae @

Hap(ejw) =

= |H,E") =1 all-pass system: for which the
frequency response magnitude is a constant.
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Example: First-order all-pass system

P275 Example 5.13

i |
\
- \\__
Radian freg
{
a ' 4 Figure 5.22 Frequency response for all-pass filters with real poles at 2 = 0.9
 Radian frequency (o) {solid ling) and z = —0.9 (dashed line). (a) Log magnitude (b) Phase (principal

value). (c) Group delay.

Part II-D: Minimum-phase systems

m Part I: sampling and reconstruction

= Part II: system analysis

Frequency response

System functions

All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase

O
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Minimum-phase systems

Magnitude does not uniquely characterize the
system

o Stable and causal = poles inside unit circle, no
restriction on zeros

o Zeros are also inside unit circle - inverse system
is also stable and causal (in many situations, we
need inverse systems!)

o - such systems are called minimum-phase
systems (explanation to follow): are stable and
causal and have stable and causal inverses
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Minimum-phase and all-pass decomposition

Any rational system function can be expressed as:

H(z)=H min (2)H ap (2)
Suppose H(z) has one zero outside the unit circle at
z=1/c",|ck1

H(z)=H,(2)(z" -¢")

zt-¢”

=H,(z){1-cz™) 1ot

minimum-phase all-pass
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Frequency response compensation

When the distortion system is not minimum-phase
system:

Hd(z)szmin(z)Hap(z) HC(Z):
G(z) =H,(2)H (2) =H,,(2)

1
H d min (Z)

I
| T
| Distorting Compensating

—_— system system et

sfn) ! Hylz) sqln] Hi(z) | Seln] ;

g - o - | Figure 5.25 lllustration of distortion
! compensation by linear filtering.

Frequency response magnitude is compensated
Phase response is the phase of the all-pass
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Properties of minimum-phase systems

From minimum-phase and all-pass decomposition
H(z)=H min (2)H ap (2)

arg[H (e’*)] = arg[H ;, (e"*)] +arg[H ,, ()]

From the previous figure, the continuous-phase
curve of an all-pass system is negative for 0<w <~z

So change from minimum-phase to non-minimum-
phase (+all-pass phase) always decreases the
continuous phase or increases the negative of the
phase (called the phase-lag function). Minimum-
phase is more precisely called minimum phase-lag
system
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Part II-E: GLP systems

m Part I: sampling and reconstruction

= Part ll: system analysis

Frequency response

System functions

All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase

O
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Design a system with non-zero phase

= System design sometimes desires
o Constant frequency response magnitude

o Zero phase, when not possible

= accept phase distortion, in particular linear phase since
it only introduce time shift

= Nonlinear phase will change the shape of the input
signal though having constant magnitude response
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Ideal delay

H, (e")=e 1" ok x
[ Hy ') =1

Z/Hy, (') =~oa, o< ©
grd[H; (')l =«

sinz(n—-a)
WI==0 T ideall ith linear ph
z(n-a) eal lowpass with linear phase

when o =n, .
h [n]_sma)c(n—nd)
| —-_ ¢P 4/

hig[n] = 6[n—ny] P z(n—ny)
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Generalized linear phase

Linear phase filters
H(e")=[H(e")le"™

Generalized linear phase filters
H(e'”) = A(e!”)e 1 ¥
A(e'”) isa real function of o,
o and g are real constants
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Summary

Part I: sampling and reconstruction
o Periodic sampling

o Frequency domain representation

o Reconstruction

Part Il: system analysis

Frequency response

o System functions

o All-pass systems

o Minimum-phase systems

o Linear systems with generalized linear phase

O
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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Fourier transform
and Z-transform

Sampling and
reconstruction

Filter design

MM5
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