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General information

Course website

Q

Q

http://474043.9.portal.aau.dk/elektronik-it/......
http://kom.aau.dk/~zt/cources/digital_signal_processing/

Textbook:

Q

Oppenheim, A.V., Schafer, R.W, "Discrete-Time Signal
Processing", 2nd Edition, Prentice-Hall, 1999.

Readings:

Q

Steven W. Smith, “The Scientist and Engineer's Guide to
Digital Signal Processing”, California Technical Publishing,
1997. http://www.dspguide.com/pdfbook.htm (You can
download the entire book!)

Kermit Sigmon, "Matlab Primer", Third Edition, Department
of Mathematics, University of Florida.

V.K. Ingle and J.G. Proakis, "Digital Signal Processing
using MATLAB", Bookware Companion Series, 2000. ﬂ;
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General information

4

Duration
o 1 ECTS (5 Lectures)

Prerequisites:
o Background in advanced calculus including complex

variables, Laplace- and Fourier transforms.

Course type:
o Study programme course (SE-course), running evaluation

Lecturer:

Associate Professor, Ph.D., Zheng-Hua Tan
Niels Jernes Vej 12, A6-319
zt@es.aau.dk, +45 9635-8686
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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Sampling and
reconstruction

Fourier transform
and Z-transform

Filter design

MM5
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Course objectives

To understand the concepts of discrete-time signals
and systems

To understand the Z- and the Fourier transform and
their inverse

To understand the relation between digital filters,
difference equations and system functions

To understand the principles of sampling and
reconstruction

To be able to apply digital filters according to known
filter specifications

To know the principles behind the discrete Fourier
transform (DFT) and its fast computation

To be able to apply MATLAB to DSP problems
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What is a signal ?

A flow of information.

(mathematically represented as) a function of
independent variables such as time (e.g.
speech signal), position (e.g. image), etc.

A common convention is to refer to the
independent variable as time, although may
in fact not.
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Example signals

Speech: 1-Dimension signal as a function of
time s(t);.

Grey-scale image: 2-Dimension signal as a
function of space i(x,y)

Video: 3 x 3-Dimension signal as a function
of space and time {r(x,y,t), g(x,y,t), b(x,y,t)} .

i
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Types of signals

The independent variable may be either continuous
or discrete

o Continuous-time signals

o Discrete-time signals are defined at discrete times and
represented as sequences of numbers

The signal amplitude may be either continuous or
discrete

o Analog signals: both time and amplitude are continuous
o Digital signals: both are discrete

Computers and other digital devices are restricted to
discrete time

Signal processing systems classification follows the
same lines
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Types of signals

Analog signal Discrete-time signal

amplitude -->
amplitude -->

[
L1
5 910
Sample number ——>

Digital signal

amplitude —-—>

From http://www.ece.rochester.edu/courses/ECE446
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Digital signal processing
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Modifying and analyzing information with
computers — so being measured as
sequences of numbers.

Representation, transformation and
manipulation of signals and information they
contain

Digital Signal Processing, I, Zheng-Hua Tan AALBORG UNIVERSITY

Typical DSP system components
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Input lowpass filter to avoid aliasing
Analog to digital converter (ADC)
Computer or DSP processor

Digital to analog converter (DAC)
Output lowpass filter to avoid imaging
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ADC and DAC

Transducers Analog-to-digital
e.g. microphones converters

Physical signals Analog signals Digital signals

Output devices Digital-to-Analog
converters
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Pros and cons of DSP

= Pros
o Easy to duplicate

o Stable and robust: not varying with temperature, storage
without deterioration

o Flexibility and upgrade: use a general computer or
microprocessor
= Cons
o Limitations of ADC and DAC

o High power consumption and complexity of a DSP
implementation: unsuitable for simple, low-power
applications

o Limited to signals with relatively low bandwidths
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Applications of DSP
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Speech processing

o Enhancement — noise filtering

o Coding, synthesis and recognition

Image processing

o Enhancement, coding, pattern recognition (e.g. OCR)
Multimedia processing

o Media transmission, digital TV, video conferencing
Communications

Biomedical engineering

Navigation, radar, GPS

Control, robotics, machine vision

Digital Signal Processing, I, Zheng-Hua Tan AALBORG UNIVERSITY

History of DSP
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Prior to 1950’s: analog signal processing
using electronic circuits or mechanical
devices

1950’s: computer simulation before analog
implementation, thus cheap to try out

1965: Fast Fourier Transforms (FFTSs) by
Cooley and Tukey — make real time DSP
possible

1980’s: IC technology boosting DSP
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Part II: Discrete-time signals
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Discrete-time signals
Discrete-time systems

Linear time-invariant systems
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Discrete-time signals

= Sequences of numbers o

x={x[n]}, —o<n<o _ Xy  xn

where n is an integer 2]

= Periodic sampling of an I
analog signal

X[n] =x, (nT), —0<N< o
whereT is called the sampling period.

Sl [
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Sequence operations

The product and sum of two sequences x[n] and
y[n]: sample-by-sample production and sum,
respectively.

Multiplication of a sequence x[n] by a number ¢ :
multiplication of each sample value by o.

Delay or shift of a sequence x[n]

yIn]=x[n—n,]
where nis an integer
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Basic sequences

Unit sample sequence (discrete-time impulse,
impulse) J

Ulnit sample

0, n=0,
é‘[n] = B i T
1, n ::0’ 4 5

Any sequence can be represented as a sum of
scaled, delayed impulses

X[n]=a 30[n+3]+a ,0[n+2]+...+a;0[n—-5] .

More generally

0

x[n]= > x[k]6[n-K]

k=—o0
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Unit step sequence

Defined as it

wncfe 0 JIIT

n<o, .

Related to the impulse by
u[n]=d[n]+d[n-1]+o[n-2]+...
or

ufn] = i ulk]o[n—k] = i&[n —K]
Conversely, -~

o[n] =u[n]—u[n-1]
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Exponential sequences

Extremely important in representing and analyzing
LTI systems.

Defined as
X[n] = Aa"

Real exponenrial

MmﬂmL‘T

If A and o are real numbers, the sequence is real.

If 0<a <1 and A is positive, the sequence values
are positive and decrease with increasing n.

If -1<a <0, the sequence values alternate in sign,
but again decrease in magnitude with increasing n.

If |a[|>1 ,the sequence values increase with

H H x[n]=2-(0.5)"
Increasing n. n]=2-(08)"
x[n]=2-2"
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Combining basic sequences

An exponential sequence that is zero for n<0

Aa", n>0,
X[n] =
0, n<0

X[n]= Aa"u[n]
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Sinusoidal sequences

X[n] = Acos(w,n + ¢), foralln el

1 -

_ e,
with Aand ¢@ real constants. - 1! ra N

The A«"with complex «a has real and imaginary
parts that are exponentially weighted sinusoids.

If  =|a|e’® and A=|A|e’, then
x[n]= Aa" =| Ale¥ |a|" e!™"
:l A|| a |n g J(@on+g)

= Al a|" cos(w,n+¢)+ j| Al | sin(w,n+ @)
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Complex exponential sequence

When |« |=1,
x[n] =] Al el ™ o Al cos(w,n+ @)+ j| Alsin(w,n + @)

By analogy with the continuous-time case, the
quantity ¢, is called the frequency of the complex
sinusoid or complex exponential and ¢ is call the
phase.

n is always an integer - differences between
discrete-time and continuous-time
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An important difference — frequency

Consider a frequency (w, +27)

X[n] _ Aej(wo+27z)n — AejwonejZﬂn — Aeja)on

More generally (@, + 2ar), r being an integer,
x[n] = Ael(@o+2N — pgleongiZam _ pgieon

Same for sinusoidal sequences
X[n] = Acos[(@, + 2ar)n+ ¢] = Acos(w,n + @)

So, only consider frequencies in an interval of 2

such as
—nr<w,<rm or 0<w,<2r
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An important difference — frequency

For a continuous-time sinusoidal signal
X(t) = Acos(Q,t + ¢),
as Q, increases, X(t) oscillates more and more rapidly

For the discrete-time sinusoidal signal

X[n] = Acos(a,n + ),
as w, increases from 0 towards 7, x[n] oscillates more and more rapidly
as w, increases from z towards 27, the oscillations become slower.

AALBORG UNIVERSITY
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Another important difference — periodicity

In the continuous-time case, a sinusoidal signal and
a complex exponential signal are both periodic.

In the discrete-time case, a periodic sequence is

defined as
x[n]=x[n+N], foralln

where the period N is necessarily an integer.
For sinusoid,
Acos(w,n+ @) = Acos(w,n + wyN + @)
which requires that @w,N =27k or N =27k /w,

where Kk is an integer.
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Another important difference — periodicity

Same for complex exponential sequence
eij(rH'N) — eijn
which is true only for w,N = 27K

So, complex exponential and sinusoidal sequences
o are not necessarily periodic in n with period (27/ w,)

o and, depending on the value of @, , may not be periodic at
all.

Consider
X,[n] = cos(zn/4), with a period of N =8
X,[n] = cos(37n/8), with a period of N =16

Increasing frequency - increasing period!
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LR

ﬂl ll“hlI

(b,

l "r 1\1

JHw i,w '
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N:8-I|;

barin,cos(8" 0.1

Part III: Discrete-time systems

Introduction

Discrete-time signals
Discrete-time systems

Linear time-invariant systems

m System impulse response
m Linear constant-coefficient difference
equations
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Discrete-time systems

A transformation or operator that maps input into
output

y[n]=T{x[n]}

xn]  — 1} — v

Examples:
o The ideal delay system
y[n] = x[n—n,], —0<N<
o A memoryless system
y[n]= (x[n])?, —0<N<®

33 Digital Signal Processing, I, Zheng-Hua Tan AALBORG UNIVERSITY

Linear systems

A system is linear if and only if
additivity property

T4 N]+ %, [} =TL{x, [n]}+T{X,[n]} = y,[n]+ y,[n]
and

T{ax[n]}=aT{x[n]}=ay[n]  scaling property
where a is an arbitrary constant

Combined into superposition

T{ax,[n]+bx,[n]} = aT{x,[n]}+aT{x,[n]} = ay,[n] +ay,[n]
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Examples

Accumulatornsystem —alinear system
y[n] = Zx[k]

k=—o0

yinl= Y xlkl  yanl= 3 %Kl
k=-o0 k=-o0

Yslnl= D (@x[k]+ bx,[K]) = ays[n] + by,[n]

k=—o0

A nonlinear system

y[n] = log,, (| x[n]|)
Consider x,[n] =1and x,[n] =10
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Time-invariant systems

For which a time shift or delay of the input sequence
causes a corresponding shift in the output sequence.

X,[n]=x[n—-n,]= y;[n] = y[n—n,]

Accumulator system

n—np
yn—ngl= > x[k]
k=—o0
n n
yi[n] = le[k] = Zx[k —No]
k=—0 k=—o0
n—ngp
= > xlk]=yln-n]
Ky =—o0
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Causality

The output sequence value at the index n=n,

depends only on the input sequence values for
n<=n,,.

Example y[n]=Xx[n-n,], —00<N<®

o Causal for ng>=0
o Noncausal for ny<0
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Stability

A system is stable in the BIBO sense if and only if
every bounded input sequence produces a
bounded output sequence.

Example
yInl = (x[n])*, —0 <N <o
stable
38 Digital Signal Processing, I, Zheng-Hua Tan AALBORG UNIVERSITY

19



Part IV: Linear time-invariant systems

Course overview

Discrete-time signals

Discrete-time systems
Linear time-invariant systems
System impulse response

Linear constant-coefficient difference
equations
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Linear time-invariant systems

= Important due to convenient representations and
significant applications

= A linear system is completely characterised by its
impulse response B

yIn]=T{x[n]}=T{ Z x[klo[n—kT}

o0

= S HKIT{SIn kD = 3 x{k]h, [n]

k=—c0

= Time invariance h,[n]=h[n-k]

*ETH = Sk -k

k=-o0

= x[n]*h[n] Convolution sum
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Forming the sequence h[n-K]

e 1] H L u |, HEA = H0-1

T

(b)

- K] = bk~ )
e o ._”fh_l I,—[ L[J I.J_T;_*__

"

{c)
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Computation of the convolution sum

0

yIn]=x[n]*hin] = " x[K]h[n—K]

k=—o0

Obtain the sequence h[n-k]
o Reflecting h[k] about the origin to get h[-k]
o Shifting the origin of the reflected sequence to k=n

Multiply x[k] and h[n-Kk] for —owo <k <o
Sum the products to compute the output
sample y[n]
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Computing a discrete convolution

Example 2.13 pp.26

Impulse response Hlm H||u._;m
h[n]=u[n]-u[n—N]
B 1, 0<n<N-] HHHI| |
_{0, otherwise. LU i s

input

x[n] =a"u[n] H\I: || ||H|

0, n<0,
an+1
y[n ]— 0<n<N-1, ]
USSR I||||| 111
a”‘“”(—l 2y, N-1<n |
1-a” ' [
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Properties of LTI systems

Defined by discrete-time convolution
o Commutative

x[n]*h[n] = h[n]*x[n]
o Linear

x[n]* (h [n]+h,[n]) = x[n]*h,[n]+ X[n]*h, [n]

o Cascade connection (Fig. 2.11 pp.29)
h[n] = h,[n]*h,[n]

o Parallel connection (Fig. 2.12 pp.30)

h{n] = hy[n]+h,[n]
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Properties of LTI systems

= Defined by the impulse response
o Stable

S = i| h[k]|< oo

o Causality
h[n]=0, n<0
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Part V: System impulse response

Course overview
Discrete-time signals
Discrete-time systems

Linear time-invariant systems
System impulse response

Linear constant-coefficient difference
equations
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FIR systems — reflected in the h[n]

|deal delay
y[n]=x[n—-n;], —o<n<wo
== h[n]=5[n-n,], n,apositive integer. +
Forward difference d
y[n]=x[n+1]—x[n] 0
==) h[n]=95[n+1]-J[n] 1

Backward difference

y[n]=x[n]—x[n-1]
==) h[n]=0[n]-o[n-1] 0
Finite-duration impulse response (FIR) system

o The impulse response has only a finite number of nonzero
samples.
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IIR systems — reflected in the h[n]

Accumulator

y[n]=k§x[k] Tt
0

=) h[n]= i&[k]:u[n]

Infinite-duration impulse response (IIR) system
o The impulse response is infinitive in duration.
Stability S=Y" |h[n]|<e

o FIR systems always are stable, if each of h[n] values is
finite in magnitude.

o lIR systems can be stable, e.9. h[n]=a"u[n]with|a|<1

s=lal =ya-la) <=
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Cascading systems

Causality hn]=0, n<0
o Ideal delay h[n]=6[n—n,]

X[n] Forward difference One -sameple delay vIn]
hin]=o[n+1-o[n]  h[n]l=d[n-1]
x[n] Backward difference y[n]

h[n]=o[n]-46[n-1]

o Any noncausal FIR system can be made causal
by cascading it with a sufficiently long delay!
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Cascading systems

Accumulator + Backward difference system

X[n] Accumulator system Backward difference
h[n] = u[n] h[n]=d[n]-d[n-1]

4

x[n] x[n]

h[n] = o[n]

— . X[n]

Inverse system:

h[n]*h;[n] = h;[n]*h[n] = &[n]
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Part VI: LCCD equations

Course overview
Discrete-time signals
Discrete-time systems

Linear time-invariant systems

System impulse response

Linear constant-coefficient difference
equations
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LCCD equations

= An important class of LTI systems: input and output
satisfy an Nth-order LCCD equations

ZN:aky[n—k] = ibmx[n—m]

= Difference equation representation of the accumulator

n

nl= > xk
¥rl= 2,4 (] yin]
n-1 +
yIn-11= Y x[k]
k=—n
n-1 One-sample
y[n]=x[n]+ > x[k]=x[n]+y[n—1] delay
k=—0
yIn]-y[n—1]=x[n] yln-1]
Recursive representation
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MATLAB

An interactive, matrix-based system for
numeric computation and visualization

Kermit Sigmon, "Matlab Primer", Third
Edition, Department of Mathematics,
University of Florida.

Matlab Help (>> doc)
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Summary

Course overview
Discrete-time signals
Discrete-time systems

Linear time-invariant systems
System impulse response

Linear constant-coefficient difference
equations
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Course at a glance

Discrete-time
signals and systems

System
analysis

MM3

MM1 System

Sampling and
reconstruction

Fourier transform
and Z-transform

Filter design

MM5

55 Digital Signal Processing, I, Zheng-Hua Tan AALBORG UNIVERSITY

28



