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The discrete-time Fourier transform (DTFT)

The DTFT is useful for the theoretical analysis of
signals and systems.

But, according to its definition

0

X(”)=> xng

N=-00
computation of DTFT by computer has several
problems:

o The summation over n is infinite
o The independent variable w is continuous
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The discrete Fourier transform (DFT)

In many cases, only finite duration is of concern

o The signal itself is finite duration

o Only a segment is of interest at a time

o Signal is periodic and thus only finite unique values
For finite duration sequences, an alternative Fourier
representation is DFT

o The summation over n is finite

o DFT itself is a sequence, rather than a function of a
continuous variable

o Therefore, DFT is computable and important for the
implementation of DSP systems

o DFT corresponds to samples of the Fourier transform
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Part I: The discrete Fourier series

= The discrete Fourier series

m The Fourier transform of periodic signals
s Sampling the Fourier transform

m The discrete Fourier transform

m Properties of the DFT

m Linear convolution using the DFT
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The discrete Fourier series

= A periodic sequence with period N
X[n] = X[n+rN]
= Periodic sequence can be represented by a Fourier
series, i.e. a sum of complex exponential sequences

with frequencies being integer multiples of the

fundamental frequency (2~ / N)associated with the X[n]
i[n] _ %Z )Z[k]e i@/ N)kn The frequency of the periodic sequence.
k

o Only N unique harmonically related complex

exponentials since
ej(27z/N)(k+mN)n _ ej(27r/N)knej27zmn _ ej(27z/N)kn

N-1 _ )
o SO )"(‘[n]:%Zx[k]eJ(Zﬂ/N)kn
k=0
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The Fourier series coefficients

The coefficients
N-1 )
i[n] - i Z X [k]e j(2z/N)kn
N i

~ N-1 .
x [k] — Z i[n]e—j(Ziz’/ N)kn

The sequence is periodic with period N
X[k +N]= zx[n]e JERINNIN T ]

n=0
For convenience, define W _ i@z

Synthesisequation  X[n] = Z X KW,
N Very similar equations
Analysisequation  X[k] = Zi[n]w,j” = duality
n=0
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DFS of a periodic impulse train

Periodic impulse train
X[n]= > oIn—rN]

The discrete Fourier series coefficients
_ N-1
X[k]= > snw," =1
n=0

By using synthesis equation, an alternative
representation of X[n] is

v —kn 1 < —kn 1 S P n
X[n] == ZX[k]w " =sz_:e’(2 o
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Part I1: The Fourier transform of periodic signals

m The discrete Fourier series

= The Fourier transform of periodic signals
s Sampling the Fourier transform

m The discrete Fourier transform

m Properties of the DFT

= Linear convolution using the DFT
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The Fourier transform of periodic signals

= Fourier transform of complex exponentials
x[n]=>ae!™", —wo<n<om
k

XE©'")=Y > 2m,6(0- o, +2ar)

r=—o k

= Fourier transform of X[n]
N-1 i
R[] = — 3 X[kJe @</
N o

Xey=3 %i[kla(w—%)

k=-00
X (e)”) has the required periodicity with period 27z
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Fourier transform of a periodic impulse train

Periodic impulse train  _ ©
P p[n]= > 6[n—rN]

o The discrete Fourier series coefficients
~ N-1
P[k]= > sInWw," =1
n=0
27

Per)= 3 2250228

k=—00

o Fourier transform

Finite duration signal x[n] ( x[n] = 0outside of [0, N —1])
a Construct X[n] ) )
X[n] = x[n]* p[n] = x[n]* >_S(n—=rN) =>"x(n—rN)

o Its Fourier transform

~ =, =2, 27K
X(e¥)=X(")P()= > XS (0 -=)
— N N°
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The Fourier transform of periodic signals

Compare
X ()= X (e")P(e™)= %X(ej(z’”“)k)&w—%)

k=—o0

X (/) = > 2z X[K]6(e —%) -> First represent it as Fourier series
N N and then calculate Fourier transform

k=—0

Conclude that
X[K]= X (87@™%) = X (1) |, - 20 n3x

i.e. the DFS coefficients of Xx[n] are samples of the
Fourier transform of the one period of x[n]

X[n], 0<n<N-1
0, otherwise

12 Digital Signal Processing, X, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY




Part I1I: Sampling the Fourier transform

m The discrete Fourier series

m The Fourier transform of periodic signals
= Sampling the Fourier transform

m The discrete Fourier transform

m Properties of the DFT

= Linear convolution using the DFT
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Sampling the Fourier transform

= An aperiodic sequence and its Fourier transform
X(E'”)= > xnk " < x[n]=2ij” X (e dw
n=-—o0 T
= Sampling the Fourier transform _
X[K]=X(€") loezeini= X (g7

o generates a periodic sequence in k with period N since
the Fourier transform is periodic in @ with period 27

Jm

< Z-plane
2

N

Re
Figure 8.7 Points on the unit circle at
which X(z) is sampled to obtain the

periodic sequence )"([k] (N =8). RG UNIVERSITY

Unit
circle

ah




Sampling the Fourier transform

Now we want to see if the sampling sequence >Z[k] IS
the sequence of DFS coefficients of a sequence X[n]
this can be done by using the synthesis equation

1 N-1
= XKW,
N k=0

00

:%g[ Zx[m]e—j(ZMN)km]\NN—kn
-y x[m]{% Sz_lw,;“”-m)} — > [mlp[n-m]
i X[n—rN]

r=—o

= f[n] A periodic sequence resulting from aperiodic convolﬁon
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[ x|n|

(a)

¥[n] = 2 x[n-r12
r=—-o

M ettt

(b)

Figure 8.8 (a) Finite-length sequence x[n]. (b) Periodic sequence ¥[n) corre-
sponding to sampling the Fourier transform of x[n] with N =12,

In this case, the Fourier series coefficients for a
periodic sequence are samples of the Fourier
transform of one period
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Examples

X|n]= p ;x x|n=r7]

Al

14 - 0 1 14 n
N=7

Figure 8.9 Periodic sequence X[ n] corresponding to sampling the Fourier trans-

form of x[n] in Figure 8.8(a) with N = 7.
In this case, still the Fourier series coefficients for x[n]
are samples of the Fourier transform of x[n]. But,
one period of X[n] is no longer identical to x[n]
This is just sampling in the frequency domain as
compared in the time domain discussed before.
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Sampling in the frequency domain

The relationship between x[n] and one period of X[n]
in the undersampled case is considered a form of
time domain aliasing.

Time domain aliasing can be avoided only if XInl has
finite length, just as frequency domain aliasing can
be avoided only for signals being bandlimited.

If x[n] has finite length and we take a sufficient
number of equally spaced samples of its Fourier
transform (specifically, a number greater than or
equal to the length of x[n] ), then the Fourier
transform is recoverable from these samples,
equivalently x[n]is recoverable from X[n].
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Sampling in the frequency domain

Recovering x[n]
X[n], 0<n<N-1

X[n = { 0, otherwise
i.e. recovering X[n] does not require to know its
Fourier transform at all frequencies
Application: represent finite length sequence by
using Fourier series (coefficients) > DFT

x[n] — X[n] — DFS, X [K] — X[n] — x[n]

AALBORG UNIVERSITY
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Sampling the Fourier transform

Fourier transform X (j) =" x(t)e " dt
X(t) 1 [© x(je™de
2

Discrete-time Fourier transform

o0

X (€)= > x[ne

oo o e
x[n]=—| X(e'*)e!”"d
== [" X (e")e!do

Discrete Fourier transform
N-1 )
X [k] — Z X[n]e—j(Zﬁ/N)kn

n=0

1 N2 )
X[n] - Z X [kk j(27/N)kn
N k=0

AALBORG UNIVERSITY
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Part IV: The DFT

m The discrete Fourier series

m The Fourier transform of periodic signals
s Sampling the Fourier transform

= The discrete Fourier transform

m Properties of the DFT

m Linear convolution using the DFT
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The discrete Fourier transform

= Consider a finite length sequence x[n] of length N
samples (if smaller than N, appending zeros)

o Construct a periodic sequence
X[n]= > x[n-rN]
Assuming no overlap btw x[n—rN]
X[n] = x[(n modulo N)] = x[((n)) ]
o Recover the finite length sequence
{i[n], 0<n<N-1
X[n] = .
0, otherwise

= To maintain a duality btw the time and frequency
domains, choose one period of X[k] as the DFT
X[k]z{X[k], 0<k<N-1

0, otherwise
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The DFT

Periodic sequence and DFS coefficients

XK1= 3 Ry

S XKW,

X[n] = L
N k=0 —

Since summations are calculated btw 0 and (N-1)

n=0

X[k]—{NZlX[n]Wﬁ”, 0<k<N-1

0, otherwise

0, otherwise

1N—1
— S X[kW* 0<n<N-1
x[n]_{N;)[M
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Generally
N-1
ISEDI 1
:f_:%l =)
X[n]=—> X[kW"
N S
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The DFT

A finite or periodic sequence has only N unique

values, x[n] for 0<=n<N

Spectrum is completely defined by N distinct

frequency samples

DFT: uniform sampling of DTFT spectrum
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Part V: Properties of the DFT

m The discrete Fourier series

m The Fourier transform of periodic signals
s Sampling the Fourier transform

m The discrete Fourier transform

= Properties of the DFT

= Linear convolution using the DFT
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Properties of the DFT — linearity

Linearity

a0 [N + b, [] <> aX ,[k]+ bX, [K]

The lengths of sequences and their DFTs are all equal
to the maximum of the lengths of x,[n] and x,[n]
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Circular shift of a sequence

= Given
x[n] < X[k]
DFT .
x,[n] > X [K] = e 1Ny k]
= Then
X[n]=X[n-m]=x[((n-m)),], 0<n<N-1
Xl[n] = .
0, otherwise
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Figure 8.12  Circular shift of a finite-length sequence; i.e., the effect in the time AALBORG UNIVERSITY
domain of multiplying the DFT of the sequence by a linear phase factor.
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Duality

X[n] 33 X[K]

X[n] <> NX[((—K)), ], 0<k<N-1
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Circular convolution

X;[n] = Nz_lil[m]iz[n—m], 0<n<N-1

N

(M) Il -m), ], 0<n<N-1

S Imbl(n-m),], 0<n<N-1

In linear convolution, one sequence is multiplied by
a time —reversed and linearly shifted version of the
other. For convolution here, the second sequence is
circularly time reversed and circularly shifted. So it is
called an N-point circular convolution

X;[n] = Xl[n]®x2[n]
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Circular convolution with a delayed impulse

= tylm]
1111, x[n] = [n—ny]
[}] N " X [k] _Wkno
. 1 — 'IN
xy[m
. _ kno
- ‘ e X3[k] =Wy X, [k]
[ N m
[0 -my 0=m=N-1
e S —I I l ] . & s .
(] N
el -m))y) 0= m=N-1
. { 5 1 B
0 N m
x3lm] = 5y [n] () (]
e { AR
[l N n
Figure 8.14 Circular convolution of a finite-length sequence xz[n] with a single AALBORG UNIVERSITY

delayed impulse, x;[a] = 6[n — 1]

Summary of properties of the DFT

TABLE 8.2
Finite-Length Sequence (Length M) N-point DFT {Length N)
1. x|n]
xy [, xzfee]
3 axy[n] + baan]
4 X[n]

xlifn — mhn]

6. Woxln)

7.5 xtm)el(n —m)x Xy LK) X2l k)

'\ \_.‘ X OX3[ (k= £))w

B xylnfuan

9. x*[n] YL~k
10, & [({=n))n] X*[k]

1. Relx[n]) Xen k] [ XD N] + X L=
12, jTmixln)) Yoplk] = LIXT(RNN] = X [(=kN)x])
13, xeplm] = Lixfn] + x*[({=mn]) Re| X[k])

14, xoplii] = Lixfn] = x*[({=nD)n]) i T Xk}

roperties 15-17 apply only when x|n] is real

Y [({~k)w]

Re| XU~k
Tml XT((-k})x]
XTi—kNw]
AR ((E VY ]

5. Symmelry propertics

tepln] = Lx[n] + x[t(-nm))x]

AALBORG UNIVERSITY
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Part VI: Linear convolution of the DFT

m The discrete Fourier series

m The Fourier transform of periodic signals
s Sampling the Fourier transform

m The discrete Fourier transform

m Properties of the DFT

= Linear convolution using the DFT
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Linear convolution using the DFT

= Procedure
o Compute the N-point DFTs X,[k] and X,[k] of two
sequences x[n] and x,[n], respectively
o Compute the product of X,[k]= X,[k]X,[k] forO<k <N-1
a Compute the sequence x,[n] = x,[n]N)x,[n] as the
inverse DFT of X,[k]
= As we know, the multiplication of DFTs corresponds
to a circular convolution of the sequences. To obtain
a linear convolution, we must ensure that circular
convolution has the effect of linear convolution.
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Linear convolution of two finite-length sequences

1

Xnl= Y x[mlx,n-m HHH

......................

Figure B.17 Example o
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a) Finite-kength sequence xy

Circular convolution as linear convolution with alaising

Fourier transform of x,[n]: X,(e'”) = X,(e'”) X, (e'*)
Definea DFT:  X,[k]= X,(e'®™*'™), 0<k<N-1
Also X, [k]= X, (&'@Y X, (e!®™*™), 0<k<N-1
S0, X,[k]=X,[K]X,[k]

the inverse DFT of X,[k]:

D %[n-rN], 0<n<N-1

0, otherwise
X3p [n]= X1[ﬂ]®> Xz[n]

The circular convolution corresponding to X,[k]X,[K] is identical
to the linear convolution corresponding to x (e*)x,(e/)if the length
of DFTs satisfies N>L+P-1
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X3p[n] =
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Circular convolution as linear convolution with alaising

------------

oooooo

ty[n - N
N L L]

et
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Summary

The discrete Fourier series

The Fourier transform of periodic signals
Sampling the Fourier transform

The discrete Fourier transform
Properties of the DFT

Linear convolution using the DFT
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Course at a glance

Discrete-time
signals and systems

MM1 System

System
analysis

Fourier-domain Sampling and

representation reconstruction MM5 MM6
MM7, MM8
MM3 MM9, MM10
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