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The discrete-time Fourier transform (DTFT)

The DTFT is useful for the theoretical analysis of 
signals and systems.
But, according to its definition 

computation of DTFT by computer has several 
problems:

The summation over n is infinite
The independent variable w is continuous
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The discrete Fourier transform (DFT)

In many cases, only finite duration is of concern  
The signal itself is finite duration
Only a segment is of interest at a time
Signal is periodic and thus only finite unique values 

For finite duration sequences, an alternative Fourier 
representation is DFT

The summation over n is finite 
DFT itself is a sequence, rather than a function of a 
continuous variable
Therefore, DFT is computable and important for the 
implementation of DSP systems
DFT corresponds to samples of the Fourier transform
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Part I: The discrete Fourier series

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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The discrete Fourier series

A periodic sequence with period N

Periodic sequence can be represented by a Fourier 
series, i.e. a sum of complex exponential sequences 
with frequencies being integer multiples of the 
fundamental frequency            associated with the

Only N unique harmonically related complex 
exponentials since  
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The Fourier series coefficients 

The coefficients

The sequence is periodic with period N

For convenience, define 
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DFS of a periodic impulse train

Periodic impulse train

The discrete Fourier series coefficients

By using synthesis equation, an alternative 
representation of          is
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Part II: The Fourier transform of periodic signals

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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The Fourier transform of periodic signals

Fourier transform of complex exponentials 

Fourier transform of

has the required periodicity with period  
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Fourier transform of a periodic impulse train

Periodic impulse train

The discrete Fourier series coefficients

Fourier transform

Finite duration signal        (                                 )
Construct

Its Fourier transform 
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The Fourier transform of periodic signals

Compare

Conclude that

i.e. the DFS coefficients of        are samples of the 
Fourier transform of the one period of 

∑
∞

−∞=

−==
k

kNjjjj

N
keX

N
ePeXeX )2()(2)(~)()(~ )/2( πωδπ πωωω

][~ nx
][~ nx

∑
∞

−∞=

−=
k

j

N
kkX

N
eX )2(][~2)(~ πωδπω

kN
jkNj eXeXkX )/2(

)/2( |)()(][~
πω

ωπ
===

⎩
⎨
⎧ −≤≤

=
otherwise           ,0

10  ],[~
][

Nnnx
nx

First represent it as Fourier series 
and then calculate Fourier transform



7

Digital Signal Processing, IX, Zheng-Hua Tan, 200613

Part III: Sampling the Fourier transform

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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Sampling the Fourier transform

An aperiodic sequence and its Fourier transform

Sampling the Fourier transform

generates a periodic sequence in k with period N since 
the Fourier transform is periodic in     with period
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Sampling the Fourier transform

Now we want to see if the sampling sequence        is 
the sequence of DFS coefficients of a sequence        
this can be done by using the synthesis equation
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Examples 

Case 1

Fig 8.8

In this case, the Fourier series coefficients for a 
periodic sequence are samples of the Fourier 
transform of one period 
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Examples 

Case 2

Fig 8.9

In this case, still the Fourier series coefficients for 
are samples of the Fourier transform of        . But, 
one period of         is no longer identical to
This is just sampling in the frequency domain as 
compared in the time domain discussed before.  
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Sampling in the frequency domain

The relationship between        and one period of        
in the undersampled case is considered a form of 
time domain aliasing.
Time domain aliasing can be avoided only if        has 
finite length, just as frequency domain aliasing can 
be avoided only for signals being bandlimited.
If         has finite length and we take a sufficient 
number of equally spaced samples of its Fourier 
transform (specifically, a number greater than or 
equal to the length of       ), then the Fourier 
transform is recoverable from these samples, 
equivalently       is recoverable from       .
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Sampling in the frequency domain

Recovering

i.e. recovering         does not require to know its 
Fourier transform at all frequencies  
Application: represent finite length sequence by 
using Fourier series (coefficients) DFT
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Sampling the Fourier transform

Fourier transform

Discrete-time Fourier transform

Discrete Fourier transform
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Part IV: The DFT

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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The discrete Fourier transform

Consider a finite length sequence        of length N 
samples (if smaller than N, appending zeros)

Construct a periodic sequence

Assuming no overlap btw

Recover the finite length sequence

To maintain a duality btw the time and frequency 
domains, choose one period of         as the DFT
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The DFT

Periodic sequence and DFS coefficients

Since summations are calculated btw 0 and (N-1)
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The DFT

A finite or periodic sequence has only N unique 
values, x[n] for 0<=n<N
Spectrum is completely defined by N distinct 
frequency samples
DFT: uniform sampling of DTFT spectrum
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The DFT of a rectangular pulse

Example 8.7 pp.561
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The DFT of a rectangular pulse
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Part V: Properties of the DFT

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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Properties of the DFT – linearity 

Linearity 

The lengths of sequences and their DFTs are all equal 
to the maximum of the lengths of           and 
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Circular shift of a sequence

Given

Then  
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Circular shift of a sequence – an example
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Duality
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Circular convolution

In linear convolution, one sequence is multiplied by 
a time –reversed and linearly shifted version of the 
other. For convolution here, the second sequence is 
circularly time reversed and circularly shifted. So it is 
called an N-point circular convolution
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Circular convolution with a delayed impulse

The delayed impulse sequence ][][ 01 nnnx −= δ
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Summary of properties of the DFT
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Part VI: Linear convolution of the DFT

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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Linear convolution using the DFT

Procedure
Compute the N-point DFTs and          of two 
sequences          and         , respectively
Compute the product of
Compute the sequence                                  as the 
inverse DFT of 

As we know, the multiplication of DFTs corresponds 
to a circular convolution of the sequences. To obtain 
a linear convolution, we must ensure that circular 
convolution has the effect of linear convolution. 
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Linear convolution of two finite-length sequences
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The circular convolution corresponding to                     is identical
to the linear convolution corresponding to                     if the length
of DFTs satisfies

Circular convolution as linear convolution with alaising
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Circular convolution as linear convolution with alaising
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Summary

The discrete Fourier series
The Fourier transform of periodic signals
Sampling the Fourier transform
The discrete Fourier transform
Properties of the DFT
Linear convolution using the DFT
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