Digital Signal Processing

http://kom.aau.dk/~zt/cources/DSP/

Exercises of Lecture 8 (MM8)

Exercise 8.1. We wish to use the Kaiser window method to design a descrete-time filter with generalized linear phase that meets specifications of the following form :

$ H(e^{j\omega}) \leq 0.01,$	$0 \leq \omega \leq 0.25\pi$
$0.95 \leq H(e^{j\omega}) \leq 1.05,$	$0.35\pi \leq \omega \leq 0.6\pi$
$ H(e^{j\omega}) \leq 0.01,$	$0.65\pi \leq \omega \leq \pi$

(a) Determine the minimum length (M+1) of the impulse response and the value of the Kaiser window parameter β for a filter that meets the preceding specifications.

(b) What is the delay of the filter?

(c) Determine the ideal impulse response $h_d[n]$ to which the Kaiser window should be applied.

Exercise 8.2. We wish to design and FIR lowpass filter satisfying the specifications

$$\begin{array}{ll} 0.95 < H(e^{j\omega}) < 1.05, & 0 \le |\omega| \le 0.25\pi \\ -0.1 < H(e^{j\omega}) < 0.1, & 0.35\pi \le |\omega| \le \pi \end{array}$$

by applying a window w[n] to the impulse response $h_d[n]$ for the ideal discrete-time lowpass filter with cutoff $\omega_c = 0.3\pi$. which of the windows listed in Table 7.1 can be used to meet this specification.

Exercise 8.3. A fourth order Type I linear-phase FIR filter, h[n], is to be designed using the window method.

The ideal (wanted) impulse response of the filter is defined as (M is the filter order):

$$h_d[n] = \frac{\sin(n-\frac{M}{2})\frac{\pi}{4}}{(n-\frac{M}{2})\pi}$$

(a) Find and sketch h[n] using a Hamming window

(b) Find the transfer function, H(z), of the filter

(c) Is the filter stable? (Justify your answer)