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Course at a glance

Discrete-time
signals and systems

MM1 System

System
analysis

MM5 MM6

Fourier-domain
representation

Sampling and
reconstruction

MM4 Filter design

MM7, MM8

MM3 MM9, MM10
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Part I: Filter design

= Filter design

m |IR filter design

= Analog filter design

= |IR filter design by impulse invariance

= |IR filter design by bilinear transformation
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Filter design process

Filter, in broader sense, covers any system.

Three design steps

Eg:scf[:gﬁ?sce System function uti
Problem Solution

Specifications — Approximations — realization

Magnitude response IR or FIR Structure
Phase response Subtype

(frequency domain)

Complexity
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Specifications — an example

Specifications for a discrete-time lowpass filter
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Specifications of frequency response

Typical lowpass filter specifications in terms of
tolerable

o Passband distortion, as smallest as possible
o Stopband attenuation, as greatest as possible
o Width of transition band: as narrowest as possible

Improving one often worsens others - a tradeoff
Increasing filter order improves all
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DT filter for CT signals

Discrete-time filter for the processing of continuous-
time signals

o Bandlimited input signal
o High enough sampling frequency
Then, specifications conversion is straightforward

. HEe "), |Qkxz/T
He (1) =
0, | Q> 7T
i .
H (e’ )=Heﬁ(1?), o<z o=QT
— C/D > H(e/*) — DIC pP—>
x,(1) x|n| v|n] Y (0)
1 T Figure 7.1 Basic system for
A 5 discrete-time filtering of

continuous-time signals.

Specifications — an example

Specifications for a continuous-time lowpass filter
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Design a filter

Design goal: find system function to make frequency
response meet the specifications (tolerances)
Infinite impulse response filter

o Poles insider unit circle due to causality and stability

o Rational function approximation

Finite impulse response filter

o Linear phase is often required

o Polynomial approximation
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E.g. IIR filter design

For rational system function ib 77k
k
H(z)=—% ——

0
1—ZN:akz"‘
K=

1

find the system coefficients such that the
corresponding frequency response

HE")=H (@),
provides a good approximation to a desired response
H (ejw) ~ Hdesired (ejw)

H(z)

*Rational system function
*Stable

scausal
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FIR or IIR

Either FIR or IIR is often dependent on the phase
requirements

Only FIR filter can be at the same time stable,
causal and GLP

a If H(z) is stable and GLP, any non-trivial pole p inside
the unit circle corresponds a pole 1/p outside the unit
circle, so that H(z) cannot have a causal impulse
response (as ROC is a ring including unit circle).

Design principle
o If GLP is essential > FIR

o If not = IIR preferable (can meet specifications with
lower complexity)
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FIR and IIR
IR FIR
o Rational system o Polynomial system
function function
o Poles + zeros o Zeros
o Stable/unstable o Stable
2 Hard to control o Easy to get linear
phase phase
o Low order (4-20) . g(l)%%order (20-
o Designed on the )
basis of analog filter . H?related to analog
ilter

Digital Signal Processing, VII, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY




Part II: IIR filter design

m Filter design

= |IR filter design

= Analog filter design

m |IR filter design by impulse invariance

m |IR filter design by bilinear transformation
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Design IIR filter based on analog filter

= The mapping is direct

) HEe"), |Qk#/T
He (1) = 7). el
0, |Qp> 7T
.a) _a)
H (e’ )=Heﬁ(1;), lol< 7

= Advanced analog filter design techniques

- Designing DT filter by transforming prototype CT
filter:

a Transform (map) DT specifications to analog
o Design analog filter
o Inverse-transform analog filter to DT
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Transformation method

= Transform (map) DT specifications to analog

o=QT
= Design analog filter s=o+jQ
H.(s) or h.(t) H(s)=[" h(t)e “dt

= Inverse-transform to DT
H(z) or h[n]

H(jQ) =" h(te "t

z=re’ )
» The imaginary axis of the s-plane > . o .
the unit circle of the z-plane X(e')= Z x[n]e™’
* Poles in the left half of the s-plane > n=-e
poles inside the unit circle in the z- < _n
plane (stable) X(2)= z X[n]z
N=—
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Part III: Analog filter design

m Filter design

m |IR filter design

= Analog filter design

m |IR filter design by impulse invariance

m |IR filter design by bilinear transformation
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Analog filter design

Butterworth
Chebyshev |
Chebyshev I
Ellipical
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Butterworth lowpass filters

The magnitude response

o Maximally flat in the passband

o Monotonic in both passband and stopband
The sauared maanitude response

|1 H( eyl 2

1

H.(JjQ) f= —————
| H. (1) T @/o)™

Figure B.1 Magnitude-squared
function for continuous-time
Butterwarth filter.

| 1 # eyl

Figure B.2 Dependence of Butterworth

magnitude characteristics on the AALBORG UNIVERSITY
order N.




Poles in s-plane

|/

X\_Hr/x
Figure B.3 s-plane pole locations for a
third-nrder Ruttarumnrth filter
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Chebyshev filters

Chebyshev Il filters: equiripple in passband, flat in
the stopband

| H.(j)!

Figure B.4 Type | Chebyshev lowpass
filter approximation.

Chebyshev Il filters: equiripple in stopband, flat in
the passband
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Elliptic filters

= Equiripple both in stopband and in the passband

| H.(j0)

Figure B.6  Equiripple approximation
in both passband and stopband.
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Part IV: Design by impulse invariance

m Filter design

m |IR filter design

= Analog filter design

= |IR filter design by impulse invariance

m |IR filter design by bilinear transformation
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Filter design by impulse invariance

Impulse invariance: a method for obtaining a DT
system whose H(e') is determined by the H_(jQ)

of a CT system.

h[n]=T;h.(nT,)
T, -'design'samplinginterval

o In DT filter design, the specifications are provided in
the discrete-time, so T4 has no role. T, is included for
discussion though. T, also has nothing to do with C/D
and D/C conversion in Fig. 7.1
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Relationship btw frequency responses

Impulse response sampling:
h[n]=T4h, (nT;) x[n] = x.(nT)
Frequency response ] e _ ok
e o 2 XE)=Z Y X (2T
He )= Y H (j—+j==k) T T T
k=-o0 Td Td

if the CT filter is bandlimited
H.(JQ)=0, |Q>xz/T,

then

HE)=H, (j2), |olz
Td

This is also the way to get CT filter specifications from
H(e') by applying the relation Q= o /T,
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Aliasing in the impulse invariance design

h[n] =T,h.(nT,)

: o ] .2
HE™)= Y Ho(i—=+j<Zk)
k;w T T

d d
L w
H, JT[)
/\
w
H (el®)
i Rl o SN P )
P \}, ~ So
-~
=2 Dar w
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Relationship btw system functions

The transform from CT to DT is easy to carry out as
a transformation on the system function

Rational system function, after partial fraction
expansion

A
H.(5)=2,

k=1 S — Sy h[n]=Tgh, (nTy)

N / N SKNT,

> Ae™, 20 = > T, AE™ M uln]
hc (t) =9k=L erjl

0, t<0 = TyA ) uln]

/ k=1
N T Ak
_ d
H (Z) - ;1_e5k1—d Zfl
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Impulse invariance with a Butterworth filter

Specifications
0.89125<|H(e'’)|<1, 0<w|<0.27
|[H(e'”)|<0.17783, 03z<wlk~

Since the sampling interval Td cancels in the impulse

invariance procedure, we choose Td=1,s0 o=Q

Magnitude function for a CT Butterworth filter
0.89125<|H_(jQ) <1, 0< Q<027
|H.(jQ)|<0.17783, 037 <|Q|<7x

Due to the monotonic function of Butterworth filter
|H,(j0.27) > 0.89125
|H,(j0.37)|<0.17783
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Impulse invariance with a Butterworth filter

Squared magnitude function of a Butterworth filter

IH.(jQ) |2= 1 ,ﬂ |H.(j0.27) |> 0.89125
‘ 1+(Q/Q,)™ |H,(j0.37) < 0.17783
<2>l
027 1 @ N=6

1 2N — 2
o)~ Gorzs
VLN I SV
0, 0.17783 Q, =0.7032
) \ |

1
N =5.8858 H()H (-8)=————
Q, =0.70474 L+(s/50)
B 1
1+(s/ j0.7032)%
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Impulse invariance with a Butterworth filter

12 poles for the
Squared magnitude Pole pair 1: —0.182 + j(0.679),

functlon Pole pair 2: —0.497 £ j(0.497).
The System funCtlon Pole pair 3: —0.679 £ j{0.182).
haS the th ree pOIe Lol : - s-plane
pairs in the left half of v [
P
the s-plane N
?‘f NI
- ><I ?é hte
x . x
Sxo]x

Figure 7.4 s-plane locations for poles of Hg(s)H:(—s) for sixth-order

29 Digital Signe g erworth filter in Example 7.2.

Impulse invariance with a Butterworth filter

0.12093
(s? +0.3640s + 0.4945)(s? + 0.9945s + 0.4945)(s? +1.3585s + 0.4945)

H.(s)=

_0.2871-0.44662""

 (1-1.2971z 7 +0.6949z 2)

. —-2.1428+1.1455z7" . 1.8557 -0.6303z"
(1-1.0691z 7 +0.3699z72) (1-0.9972z7 +0.2570z27?)

H(2)
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Impulse invariance with a Butterworth filter

Figure 7.5 Frequency response of sixth-o "
impulse invariance, (a) Log magnitude in dB. (b) Magnitude. (c) Group delay
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der Butterworth filter transtormed by)

Part V: Design by bilinear transformation

m Filter design

m |IR filter design

= Analog filter design

m |IR filter design by impulse invariance

= |IR filter design by bilinear transformation
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Bilinear transformation

By using impulse invariance, the relation between
CT and DT frequency is linear (except for aliasing),
thus the shape of the frequency response is
preserved. But only proper for bandlimited filters,
problem for e.g. highpass

Bilinear transformation between s and z

2 1-z77 2 1-z77
S=— H(z)=H_.[—
Ty 1+ z’l) (2) C[Td (1+ z’l)]
Inverse
. 1+(T, /2)s
1-(T,/2)s
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Bilinear transformation

Given s=o0+jQ if  s=jQ
C14(T,/2)s  1+0T,[2+ jQT, /2 g 2110712
1-(T,/2)s 1-oT,/2—jQT, /2 1-J0T, /2

so, |z|=1, for anys
on the jQ-axis
i.e.the jQ-axis maps
onto the unit circle

if 0<0, |z|<1 for any Q
if >0, |z>1 for any Q

s-plane z-plane

O Fm
o Image of
5 =j (unit circle)

Re

Image of
left half-plane . )
Figure 7.6 Mapping of the s-plang

onto the z-plane using the bilinear
transformation.




Bilinear transformation — frequency relationship

Consider frequency s 2 _gie— i 12T
2 (1 2t ) gt
T, 1+z7
2 (1 e J“) i[Ze’jw’z(jsina}IZ)]_2_jtan(w/2)
T, 1+e 2" T, 2e7 1 (cosw/2) " T,

Q= 2 tan(w/ 2)
Td
o = 2arctan(QT, / 2)

0
__,l/‘ Figure 7.7 Mapping of the
|- 77777 continuous-time frequency axis onto thy

discrete-time frequency axis by bilinear

35 Digital S I
transformation.

Bilinear transformation

The bilinear transformation maps the entire jQ -axis
in the s-plane to one revolution of the unit circle in

the z-plane.

Compare with Q= @/T,
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Bilinear transformation of a Butterworth filter

Specifications
0.89125<|H(e’’)|<1, 0<w|<0.27
|[H(e'”)|<0.17783, 03z<wlk~

Magnitude function for a CT Bu%terw%rg; filter
0.89125<|H (jQQ) <1, 0<|Q< T—tan('T)

d

|H,(jQ) < 0.17783, Titan(%) Q<o

d
Due to the monotonic function of Butterworth filter

Choose T, =1 | H,(j2tan(0.17)) |> 0.89125
|H,(j2tan(0.157)) |< 0.17783
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Bilinear transformation of a Butterworth filter

Squared magnitude function of a Butterworth filter

H (i) = 1 | H,(j2tan(0.17)) |> 0.89125
| C(J )l - 2N ¢
1+(Q/Q,) | H,(j2tan(0.157)) |< 0.17783

N =5.305

l

N =6
O, =0.766
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tionc \

Flgure7.11  Frequency res sty €Ng-HUa Tan, 200 oo Fraquuney response of sixiarder Butterwarth fite transtormed by Y
Bilinear transform. (a) Log mpules invarianca. (a) L T tisge in ¢B. (b) Magnitude. (¢) Group delx

Summary

Filter design

lIR filter design

Analog filter design

lIR filter design by impulse invariance

lIR filter design by bilinear transformation
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Course at a glance

Discrete-time
signals and systems

MM1 System

System
analysis

Fourier-domain Sampling and

representation reconstruction MM5 MM6
Filter design
MM7, MM8
MM3 MM9, MM10
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