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Part I: Filter design

Filter design
IIR filter design
Analog filter design
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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Filter design process

Filter, in broader sense, covers any system.

Three design steps

Specifications
Problem Solution 

realizationApproximations

Magnitude response
Phase response
(frequency domain)
Complexity 

Structure 

System function

IIR or FIR
Subtype

Performance 
constraints 
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Specifications – an example

Specifications for a discrete-time lowpass filter
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Specifications of frequency response 

Typical lowpass filter specifications in terms of 
tolerable

Passband distortion, as smallest as possible
Stopband attenuation, as greatest as possible
Width of transition band: as narrowest as possible

Improving one often worsens others a tradeoff
Increasing filter order improves all
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DT filter for CT signals

Discrete-time filter for the processing of continuous-
time signals

Bandlimited input signal 
High enough sampling frequency

Then, specifications conversion is straightforward 

Fig. 7.1
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Specifications – an example

Specifications for a continuous-time lowpass filter

Fig 7.2(a)(b)
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Design a filter

Design goal: find system function to make frequency 
response meet the specifications (tolerances) 
Infinite impulse response filter

Poles insider unit circle due to causality and stability 
Rational function approximation 

Finite impulse response filter
Linear phase is often required 
Polynomial approximation 
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E.g. IIR filter design

For rational system function

find the system coefficients such that the 
corresponding frequency response 

provides a good approximation to a desired response 

∑

∑

=

−

=

−

−
= N

k

k
k

M

k

k
k

za

zb
zH

1

0

1
)(

ω
ω

jez
j zHeH

=
= |)()(

H(z)
•Rational system function
•Stable
•causal

)()( ωω j
desired

j eHeH ≈



6

Digital Signal Processing, VII, Zheng-Hua Tan, 200611

FIR or IIR

Either FIR or IIR is often dependent on the phase 
requirements
Only FIR filter can be at the same time stable, 
causal and GLP

If H(z) is stable and GLP, any non-trivial pole p inside 
the unit circle corresponds a pole 1/p outside the unit 
circle, so that H(z) cannot have a causal impulse 
response (as ROC is a ring including unit circle).

Design principle
If GLP is essential FIR
If not IIR preferable (can meet specifications with 
lower complexity)
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FIR and IIR

IIR
Rational system 
function
Poles + zeros 
Stable/unstable
Hard to control 
phase
Low order (4-20)
Designed on the 
basis of analog filter 

FIR
Polynomial system 
function
Zeros 
Stable
Easy to get linear 
phase
High order (20-
2000)
Unrelated to analog 
filter
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Part II: IIR filter design

Filter design
IIR filter design
Analog filter design 
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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Design IIR filter based on analog filter

The mapping is direct

Advanced analog filter design techniques

Designing DT filter by transforming prototype CT 
filter:

Transform (map) DT specifications to analog
Design analog filter
Inverse-transform analog filter to DT
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Transformation method

Transform (map) DT specifications to analog

Design analog filter

Inverse-transform to DT
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• The imaginary axis of the s-plane 
the unit circle of the z-plane
• Poles in the left half of the s-plane 
poles inside the unit circle in the z-
plane (stable)

Digital Signal Processing, VII, Zheng-Hua Tan, 200616

Part III: Analog filter design

Filter design
IIR filter design
Analog filter design
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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Analog filter design

Butterworth
Chebyshev I
Chebyshev II
Ellipical 
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Butterworth lowpass filters

The magnitude response
Maximally flat in the passband
Monotonic in both passband and stopband

The squared magnitude response 

2.1.FigB
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Poles in s-plane
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Chebyshev filters

Chebyshev II filters: equiripple in passband, flat in 
the stopband

Chebyshev II filters: equiripple in stopband, flat in 
the passband
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Elliptic filters

Equiripple both in stopband and in the passband
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Part IV: Design by impulse invariance

Filter design
IIR filter design
Analog filter design
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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Filter design by impulse invariance 

Impulse invariance: a method for obtaining a DT 
system whose is determined by the    
of a CT system.

In DT filter design, the specifications are provided in 
the discrete-time, so Td has no role. Td is included for 
discussion though. Td also has nothing to do with C/D 
and D/C conversion in Fig. 7.1
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Relationship btw frequency responses

Impulse response                 sampling:

Frequency response

if the CT filter is bandlimited

then

This is also the way to get CT filter specifications from
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Aliasing in the impulse invariance design
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Relationship btw system functions

The transform from CT to DT is easy to carry out as 
a transformation on the system function
Rational system function, after partial fraction 
expansion
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Impulse invariance with a Butterworth filter

Specifications 

Since the sampling interval Td cancels in the impulse 
invariance procedure, we choose Td=1, so
Magnitude function for a CT Butterworth filter

Due to the monotonic function of Butterworth filter 
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Impulse invariance with a Butterworth filter

Squared magnitude function of a Butterworth filter
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Impulse invariance with a Butterworth filter

12 poles for the 
squared magnitude 
function
The system function 
has the three pole 
pairs in the left half of 
the s-plane 
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Impulse invariance with a Butterworth filter
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Impulse invariance with a Butterworth filter

Digital Signal Processing, VII, Zheng-Hua Tan, 200632

Part V: Design by bilinear transformation

Filter design
IIR filter design
Analog filter design
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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Bilinear transformation

By using impulse invariance, the relation between 
CT and DT frequency is linear (except for aliasing), 
thus the shape of the frequency response is 
preserved. But only proper for bandlimited filters, 
problem for e.g. highpass
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Bilinear transformation
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Bilinear transformation – frequency relationship

Consider frequency Ω= js
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Bilinear transformation

The bilinear transformation maps the entire       -axis 
in the s-plane to one revolution of the unit circle in 
the z-plane.
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Bilinear transformation of a Butterworth filter

Specifications 

Magnitude function for a CT Butterworth filter

Due to the monotonic function of Butterworth filter 
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Bilinear transformation of a Butterworth filter

Squared magnitude function of a Butterworth filter
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Bilinear transformation of a Butterworth filter
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Summary

Filter design
IIR filter design
Analog filter design
IIR filter design by impulse invariance
IIR filter design by bilinear transformation
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