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Course at a glance
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representation
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System implementation

LTI systems with rational system function e.g.
b, +bz™
1-azt’
Impulse response
h[n] = b,a"u[n]+b,a" u[n-1]
Linear constant-coefficient difference equation
y[n]—ay[n—1] =b,x[n]+b,x[n—-1]
Three equivalent representations!

How to implement, i.e. convert to an algorithm or
structure?

H(2) = |z~ al
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System implementation

The input-output transformation x[n] = y[n] can be
computed in different ways — each way is called an
implementation

o An implementation is a specific description of its
internal computational structure

o The choice of an implementation concerns with
computational requirements
memory requirements,
effects of finite-precision,
and so on
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Part I: Block diagram representation

= Block diagram representation of
computational structures

= Signal flow graph description

m Basic structures for IIR systems
m Transposed forms

m Basic structures for FIR systems
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System implementation

= Impulse response
h[n]=b,a"u[n]+ba"*u[n-1]

y[n]=x[n]*h[n]
is infinite-duration, impossible to implement in this way.

= However, linear constant-coefficient difference
equation provides a means for recursive computation
of the output

yIn] - ay[n 1] = b,x{n] + bx[n 1]
yIn] = ayln ~1+ byx[n] + bx[n 1]
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Basic elements

Implementation based on the recurrence formula
derived from difference equation requires

> adders yIn] = ay[n — 1]+ box[n] + bx[n ~1]
o multipliers —

o memory for storing delayed sequence values

vL‘.:|”§

()
xy[n] el vy [n] + xa[n]
{a)
t[n) (5) ax|n]
Figure 6.1 Block diagram symbols.
v|n] : v[n-1] (a) Addition of two sequences.
: (b) Multiplication of a sequence by a
7 (€) constant. (c) Unit delay RG UNIVERSITY

Example of block diagram representation

A second-order difference equation
yln]=a,y[n-1]+a,y[n—2]+byx[n]
bO

H(z)=
-1 -2
1-az7-a,z
by Ty
x[n] Y
-1
Demonstrates the & L
complexity, the steps, ' yln-1]
the amount of resources 4
required. . :
. yln-2]

8 Digit Figure 6.2 Example of a block diagram representation of a difference equation.




General Nth-order difference equation

yInl =Y a,yIn—k]+ Y bxn—K] bz
- - v[n] H(@)=—F—
1->az"

x[n]

x[n -

A cascade of two systems!
X[n]=>vn],  vIn]>yIn]

Figure 6.3 Block diagram
) representation for a general Nth-order
yln-N] difference equation. ‘gﬂ;v

x[n-M]

Rearrangement of block diagram

= A block diagram can be rearranged in many ways
without changing overal function, e.g. by reversing
the order of the two cascaded systems.

~ win] by
x[n] L& l l g y[n

by
wln=1] ——-——(—)

O P O

2l Figure 6.4 Rearrangement of block
diagram of Figure 6.3. We assume for

ay i by convenience that _.F.I'_ = M._If N#M \verSITY
wn-N] some of the coefficients will be zero.




System function decomposition

. vin]
Zbkz f 1 M
H(Z) =—F—— =H,(@OH,(2)=| —— (Zbksz
1-> az" 1-> a2 N
k=1 k=1
M N 1
= Hl(z)Hz(z):(Zbkz J —
| k=0 1-> az"
k=1
wn]
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In the time domain

y[n] =Zak>’[n—k]+zbkx[n—k]

v[n] = ibk x[n—K]

yln]= Zak yln—k]+v[n]

w[n] = i awn—kJ]+x[n]

yIn]= > bw{n k]
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Minimum delay implementation

One big difference btw the two implementations
concerns the number of delay elements

) wn] -: ~\ N + M
v[n i / y[n]
. i l - max(N, M)
a b
; 0
(Y h
O
ax I by Figure 6.5 Combination of delaysin ymiveRSITY
Figure 6.4,

Direct form I and II

Direct form | as shown in Fig. 6.3
o A direct realization of the difference equation

Direct form Il or canonic direct form as shown in Fig.
6.5

o There is a direct link between the system function
(difference equation) and the block diagram
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An example

= Direct form | and direct form Il implementation
1+2z7!

H(z)=
(2) 1-1.52"+0.927?
)
x[n] J l' yin]
144
¢ RO T e
-0.9 ( 1.5 2

=

Figure 6.6 Direct form | implementation of Eq. (6.16).

-0.9
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Part II: Signal flow graph description

m Block diagram representation of
computational structures

= Signal flow graph description

m Basic structures for IIR systems
m Transposed forms

m Basic structures for FIR systems
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Signal flow graph (SFG)

As an alternative to block diagrams with a few

notational differences.

A network of directed branches connecting nodes.

wiln]

w; [7]

variable

e
a
Source e Sink
Wn[#]

I/’
Node k

node x[n] wiln] v[n) node

Figure 6.8 Example of nodes and
branches in a signal flow graph.

Figure 6.9 Example of a signal flow ;t
graph showing source and sink nodes. TY

u[nl by
x[n] S ; C vn]

LD, ]

(a)

Source Sink
node (0 | 2 by : node 5
o > — 0
t|n] w[n]| Delay / yln

Y branch /
|
i . ! > 'l’g
S P
4
(b)
wy[n] waln]  p, waln]
C o o - o
x[n] \ | / v[n]
-1 /
1z
~ A,
e -
.

waln]

Nodes in SFG represent
both branching points
and adders (depending
on the number of
incoming branches),
while in the diagram a
special symbol is used
for adders and a node
has only one incoming
branch.

SGF is simpler to draw.
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From flow graph to system function

-1 w[n] a Walnl

| Wt
w; [n] = w,[n]-x[n]
x[n] yn] Wz[n] = dVVl[n]
* w;[n] = w,[n]+x[n]

el w, ] = w; 1]
Figure 6.12  Flow graph not in standard direct form. y[n] = w,[n]+w,[n]
Not a direct form,
o cannot obtain H(z) by inspection.
o But can write an equation for each node

w,[n]=ws[n-1] involve feedback, difficult to solve
By z-transform - linear equations
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From flow graph to system function

W,(2) =W, (2) - X(2)

W, (2) = aW, (z) W, (2) = a(W,(2) - X(2))

W;(2) =W, (2) + X(2)

W, (2) = 27'W,(2) W,(2) = 27 W, (2) + X (2))

Y (2) =W, (2) +W, (2) Y (2) =W, (2) +W, (2)

Y(2) {Zl“ijxa)
1-oz

H(z) = 2 -a If «isreal, thesystemis?  All-pass
1-oz7t

h[n] = a""u[n-1]-a""u[n] Causal!
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From flow graph to system function

Figure 6.13 Direct form | equivalent of Figure 6.12.
‘ 1wl o woln]

7

e Yoo
x[n] / \ ] vln]
I o . \\t:

wiln] 27" wyln]

Figure 6.12 Flow graph not in standard direct form.
Different implementations, different amounts of
computational resources
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Part III: Basic structures for IIR systems

m Block diagram representation of
computational structures

= Signal flow graph description

= Basic structures for IIR systems
m Transposed forms

m Basic structures for FIR systems
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Direct form I

y[n]=ZN:aky[n—k]+ibkx[n—k] ibkz‘k

by v[n]

o Lo

x[n]
1
by )
xln-1] - —
by 1 a,
x[n - 2] o— - : -«

|
|
|
|
by ' ! ay-1 h
x[n-N+ l]g— ?--—1—0'\'[n N+ 1]

1 =
by ay |
x[n-N] L o, Syln-N|

Figure 6.14  Signal flow graph of direct form | structure for an Nth-order system.
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Direct form 11

N M M
-k
y[n1=> a.y[n—k]+ > b x[n—k] > bz
k=1 k=0 _ k=0
H (Z) - N
wn] by l— ak Z_k
o O
gl B vl k=1
a ‘ b
71

ay b?
| I |
I | \
I | I
I | I
! ay - i by I

A Figure 6.15 Signal flow graph of
ay ) B direct form 11 structure for an
< - Nth-order system.
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o——0—>——0 0
Example x[n] T | y[n]
71 z
2 0.75
-1, -2 T
H(2) = 1+ 2z_1 +12 . -
1-0.752z27 +0.125z ‘ o155
=0.125

o——

Figure 6.16 Direct form | structure for Example 6.4.

x[n) yln]

0575 2

-0.125

- T

Flgure 6 17 Direct form Il structure for Example 6.4.
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Cascade form

Factor the numerator and denomlnator polynomials

Zb " H(l—f Z’l)H(l 9z )(l-g,z7)

H(z) =—=%; = AL
1->az* H(1-ckz-l)H(l—dkz-l)(l—d;z-l)
k=1 k=1 k=1

N -1 -2
H(z):ﬁb°k+blkz +b,,z
va l-a,z'-a,z7?

Wi [ﬂ] v (7]

Figure 6.18 Cascade structure for a sixth-order system with a direct form Il
realization of each second-order subsystem.
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An example: from 2"9-order to 1st-order cascade

H(z) = 142z +272 @+ {@+zY
1-0.75221+0.125272 (1-0.5z7')1(1-0.25z7")
,(\3’[11] | l _ ! *l JL ."[’?]
§ | |
0.5 0.25

()

0.5 0.25

B e
: 1 | 1 t¢
- ) > >
+ 1
x[n] ) 0138
Z"] 2! =
Flgure 6.16  Diract form | structuse for Example 6.4,
tlu] vl
4 1

(b)

Figure 6.19 Cascade structures for Example 6.5. (a) Direct form |

(b) Direct form Il subsections. Figure 6,17 Directform I structure for Exampls 6.4

Parallel form by partial fraction expansion

Cy
N "
X p 1
\ K
Hz)=YCz + Y
wy[n] o viln] "\_‘ k=0 k=1 1_Ckz
[ - N -1
| 51 N\ Np B,(l-e z7)
) N\ k
i - NY +Z 1 1
- - . N\ — —
i Sa-dzhe-dz?
1 | 1= N\
7 X
B | \\t._\
b\
walml e valn] \
[o—— . - y
‘ . T VAT
1
ay | i /
]\ ] /
an i /’j
|
wvyfm] valn] ,/
1z ]
1
[ o |
| |
12
|
Figure 6.20 Parallel-form structure for sixth-order system (M = N = 6) with AALBORG UNIVERSITY

the real and complex poles grouped in pairs.
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Feedback in IIR systems

xlnl o Feedback loop: a closed path
; ! Necessary but not sufficient
a'uln] condition for IIR system

(Feedback introduced poles
could be cancelled by zeros)

(a)

2,2
H(z):—1 a Z_l =1+az™
l-az

y[n]=ay[n]+x[n]

y[n]=x[n]/(1-a) All loops must contain at least

one unit delay element

x[n] y[nl

Figure 6.23 (a) System with feedback

loop. (b) FIR system with feedback loop. ﬂ
(c) (c) Noncomputable system. T

Part IV: Transposed forms

m Block diagram representation of
computational structures

= Signal flow graph description

m Basic structures for IIR systems
= Transposed forms

m Basic structures for FIR systems
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Transposed form for a first-order system

Flow graph reversal or i q
transposition also
provides alternatives: !

reversing the directionsFigure 6.24 Flow graph of simple first-order system.
of all branches and

reversing the input and i T o
output

Resulting in same H(z) ’

Figure 6.25 Transposed form of Figure 6.24.

1 <] T
H(z)=— - ;
(2) 1-az? )

a

31 Digital Signal Processing, \  Figure 6.26  Structure of Figure 6.25 redrawn with input on left.

Transposed direct form IT and direct form II

The transposed direct form Il implements the zeros
first and then the poles, being important effect for
finite-precision existing ;,

o
x[nl y[n]

b, a
=i
by a
_ e &
| | |
| | |
&
! \ \ |
I |
by an_1
by | ay
, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY
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Part V: Basic structures for FIR systems

m Block diagram representation of
computational structures

= Signal flow graph description

m Basic structures for IIR systems
m Transposed forms

= Basic structures for FIR systems
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Direct form

= So far, system function has both poles and zeros.
FIR systems as a special case.

= Causal FIR system function has only zeros (except
for poles as z=0)

[n]_ib X[n k] h[n]_ bn’ n=01,...,M
. =2 10, otherwise

= Form | and form Il are the same.

Zil z -1
o Z

x[n]

h[0] )h[]} h[2] hM-1] Yh[M]

Il iiversiTy
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Cascade form

Factoring the polynomial system function

M M,
H(z) =) hinlz" =] [ (by +byz ™" +b,z7?)
n=0

k=1

by, by bom

x[n] yln]
= \ 71 =
by b1y b1ps
4 -~ 7!
by by bt
o—— e

Figure 6.33 Cascade-form realization of an FIR system.

Linear-phase FIR systems

Generalized linear-phase system
H(e!) = A(e'?)e 1=k
A(e’®) is a real function of ,
a and S are real constants

Causal FIR systems have generalized linear-phase
if h[n] satisfies the symmetry condition
h[M —n]=h[n], n=01,...,.M "
or y[n]= > bx[n—k]
h[M —n]=—h[n], n=041,...,M 0
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Linear-phase FIR systems

if M isaneveninteger

yln]= Z hlkIx[n —K]

- Mf:lh[k]x[n —K]+h[k/M]x[n—M /2] + ih[k]x[n —k]

k=M /2+1

M/2-1 M/2-1

= > hKIX[n—Kk]+h[k/M]x[n—M /2]+ > h[M —k]x[n—M +Kk]
k=0 k=0
if ([M —n] = h[n]
M/2-1
yInl= > hIkI(xIn—Kk]+x[n—M +k])+h[k/M]x[n-M /2]
k=0
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Linear phase FIR systems

M is an even integer and h[M-n]=h[n]
M/2-1

y[n]= > h[k]J(x[n—Kk]+ X[n—M +Kk])+h[k/M]x[n—M /2]

h[M /2]
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Discussions

Implementation of FIR and IIR systems

Use signal block diagram flow graph representation
to show the computational structures

Although two structures may have equivalent input-
output charateristics for infinite-precision
represenations of coefficients and variables, they
may have dramatically different behaviour when the
numerical precision is limited.
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Summary

Block diagram representation of
computational structures

Signal flow graph description
Basic structures for IR systems
Transposed forms

Basic structures for FIR systems
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Course at a glance

Discrete-time
signals and systems

MM1 System

System
analysis

Fourier-domain Sampling and

representation reconstruction MM5 MM6
Filter design
MM7, MM8
MM3 MM9, MM10
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