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System analysis

= Three domains
o Time domain: impulse response, convolution sum

o0

y[n]=x[n]*h[n] = kZOOX[k]h[n —k]

o Frequency domain: fréquency response
Y(e')=X(E")H (")

o z-transform: system function
Y(z) = X(2)H(2)

= LTI system is completed characterized by ...
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Part I: Frequency response

= Frequency response

System functions

Relationship between magnitude and phase
All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase
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Frequency response

Relationship btw Fourier transforms of input and

output
Y(e')=X(e)HE™)

In polar form
o Magnitude - magnitude response, gain, distortion

Y (™) = X(e")|-|H(e")|
o Phase - phase response, phase shift, distortion

2Y(e17) = ZX (e”) + ZH (/)
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Ideal lowpass filter — an example

Frequency response

. 1, ok o.,

0, o, <w|l<7

o Frequency selective filter
Impulse response

sinw.n
h,[n] = £ —<N<®
m

?
o Noncausal, cannot be implemented! h[n]=0, n<0
o How to make a noncausal system causal?
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Make noncausal system causal

Cascading systems
o ldeal delay h{n]=do[n—-n,]

X[n] Forward difference  One-sameple delay vIn]
hin]=s[n+1-5[n]  hln]=4[n-1]
x[n] Backward difference y[n]

h[n]=o[n]-o[n-1]

o In general, any noncausal FIR system can be made
cause by cascading it with a sufficiently long delay!

o But ideal lowpass filter is an IIR system!
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Phase distortion and delay

Ideal delay system
hy[n]=d6[n—n,] Delay distortion
Hi (e) =71
|Hq ) =1
ZHy (8') =-any,|o|< 7 Linear phase distortion

Ideal lowpass filter with linear phase

H|p(eiw)={eMd' |o|< o,

0, o, <ol<z Ideal lowpass filter is
sinw, (n—n,) always noncausal!

he[n]=———~, -w<n<w

z(n—ny)
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Group delay

A measure of the linearity of the phase
Concerning the phase distortion on a narrowband

signal | A

X[n] = s[n]cos(aw,n) 0 W,
For this input with spectrum only around w,, phase

effect can be approximated around w, as the linear
approximation (though in reality maybe nonlinear)

ZH(e") = —any - ¢, ~
and the output is approximately
yIn1~| H(e'®)|s[n—nyJcos(@, (N —ny) — )
Group delay

= grd[H (e)] =~ {arg[H (")}
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An example of group delay

Qutput Signal y[n]

I [ I
0.5 |
=
-0.5 —
il | | | | | | |
0 50 100 150 200 250 300 350 400

Sample number(n)
Figure 5.3 Output signal for Example 5.1.

Since the filter has considerable attenuation at @ = 0.857, the pulse at that frequency
is not clearly present in the output. Also, since the group delay at w = 0.257 is
approximately 200 samples and at @ = 0.57 is approximately 50 samples, the second
pulse in x[n] will be delayed by about 200 samples and the third pulse by 50 samples,
as we see is the case in Figure 5.3
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Part II: System functions

m Frequency response

= System functions

= Relationship between magnitude and phase
m All-pass systems

m Minimum-phase systems

m Linear systems with generalized linear phase

12 Digital Signal Processing, V, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY




System function of LCCDE systems

Linear constant-coefficient difference equation

zN:aky[n—k]= ibmx[n—m]

z-transform format

ZN:akz‘kY(z) = ibmz‘mX(z)

m
M
b,z™"
Y(2) Zo !
H(z)= X(2) =T
>aczt (L-c,z ") in the numerator
k=0
M azeroatz=c,apoleatz=0
[Ta-c.z ™ s .
by \ w3 (1-d,z™)in the denominator
) | d
0 H(l_dkz—l) azeroatz:Oapo eatz =
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Stability and causality

Stable

o h[n] absolutely summable

o H(z) has a ROC including the unit circle

Causal

o h[n] right side sequence

o H(z) has a ROC being outside the outermost pole
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Inverse systems

Many systems have inverses, specially systems with
rational system functions
M
b H(l_ sz_l)

G(z)=H(2)H;(2) =1 H(Z):(a_o)m“:l—
H(@) =— 0 E(l_dkz_)
H(2) .
gln] = h[n]*h;[n] = o[n] . [Ta-d:z™)

H,(z) = ()42

by H(l— cnZ )
m=1

o Poles become zeros and vice versa.
o ROC: must have overlap btw the two for the sake of
G(2).

AALBORG UNIVERSITY
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Example
H(z)—ﬁ |z]>0.9
1-0.9z7"" '
~1-09z' 1 0.9z

H.(z) = = -
(2) 1-05z1 1-05z%' 1-05z7

So, |z[>05
h.[n] = (0.5)"u[n] —0.9(0.5)""u[n -1]

16 Digital Signal Processing, V, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY




Part III: Magnitude and phase

m Frequency response

m System functions

= Relationship between magnitude and phase
m All-pass systems

m Minimum-phase systems

m Linear systems with generalized linear phase
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Relationship btw magnitude and phase

= In particular, for systems with rational system
functions, there is constraint btw magnitude and
phase
H(e™) 4 H(e™) [e e
= Consider the square of the magnitude
[HE")P=HE")H (")=H@H /)]

, [1a-c.z™ T | ()
H(Z):(a—‘J)imNzl H (1/z ):(‘,Jl—‘))i””,:1
° T]a-dz™M * T]a-d 2

k=1 k=1

IM[(l—cmz’l)(l—cm*z)

C(z)= H(z)H*(l/z*):(Z—O)2 m-1
0 1-d.zH(1-d,”

g( W2 ) « )
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Example 5.11 Systems with the Same C(z)

Consider two stable systems with system functions ]

21—z (1 +05z7") o
7) = —— - — — (5.83)
Mz (1= 08eir/*z-)(1 — 0.8e~/7/4z-T)
and
=1 e ot =
Hylz a-zha+2eh) (5:88)

)= (1 =087z T)(1 — 0.8¢~17/4z71)

The pole—zero plots for these systems are shown in Figures 5.19(a) and 5.19(b),

respectively.
Now,

Citg)= J’f|(.‘}”|‘[1,r'.."]

2(1 = z71)(1 +0.527")2(1 — 2)(1 +0.52) (5.85)

= T 08 iz-1)(1 — 0.8e 77

~
ra
™~
Il

Ha()H3(1/27)

g — g

(1 =08l Az-1)(1 — 0.8¢-7"/z)( [ — 08¢

B e IR

1)1 = 0.8e—17/4z)(1 — 0.8¢i™/iz)

(1 =21 42271 — 2)(1 +22) (5.86)

2)(1 —08eimz)’

I8
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Figure5.19 Pole-zero plots for two system functions and their common magnitude- L
squared function, (a) Hy(2). (b) Hz(2). (c) C(2). Cal2). TY
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Part VI: All-pass systems

m Frequency response

m System functions

m Relationship between magnitude and phase
= All-pass systems

m Minimum-phase systems

m Linear systems with generalized linear phase
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All-pass systems

= Consider the folllowi*ng stable system function

z7-a
H.,(2) =
® l1-az™
o el -a’
Hap (1) = -——
1-ae™”
* ]CU
oo l-ae

“ia

= |H,(E")L aII-palss system: for which the
frequency response magnitude is a constant.

= General form

27 —d, Mo (27 _ek*)(z_l —€)

M
H, (z) = AIl -
ap ks1l—d, z 7" k= l-ez)1-e 2z
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An example

P275 Example 5.13, First-
order all-pass system
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An example
Second-order all-pass
system i
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Part V: Minimum-phase systems

Frequency response

System functions

Relationship between magnitude and phase
All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase
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Minimum-phase systems

= Magnitude does not uniquely characterize the
system

o Stable and causal = poles inside unit circle, no
restriction on zeros

o Zeros are also inside unit circle - inverse system is
also stable and causal (in many situations, we need
inverse systems!)

o - such systems are called minimum-phase systems
(explanation to follow): are stable and causal and
have stable and causal inverses
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Minimum-phase and all-pass decomposition

Any rational system function can be expressed as:
H(z)=H min (2)H ap (2)
Suppose H(z) has one zero outside the unit circle at
z=1/c",|ck1
H(z)=H,(z)(z" -¢')
27t ¢’
1-cz™
minimum-phase all-pass

— H,(2)1-cz )
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Frequency response compensation

When the distortion system is not minimum-phase
system:

Hy(2) = Hymin (2)H 4 (2) HC(Z):;

dmin(z)
G(z)=H,y(9)H () =H,,(2)

| Distorting Compensating
—_— system system —_
sln] Hy(z) saln] H(z) | seln]

Figure 5.25 Illustration of distortion
e R compensation by linear filtering.

Frequency response magnitude is compensated
Phase response is the phase of the all-pass
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Properties of minimum-phase systems

From minimum-phase and all-pass decomposition
H(z)=H min (2)H ap (2)

arg[H (e’")]=arg[H ;, (e"")]+arg[H,, (e")]

From previous figures, the continuous-phase curve
of an all-pass system is negative for 0<w<~x

So change from minimum-phase to nonminimum-
phase (+all-pass phase) always decreases the
continuous phase or increases the negative of the
phase (called the phase-lag function). Minimum-
phase is more precisely called minimum phase-lag
system
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Part VI: Linear-phase systems

Frequency response

System functions

Relationship between magnitude and phase
All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase
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Design a system with non-zero phase

System design sometimes desires
a Constant frequency response magnitude
o Zero phase, when not possible

accept phase distortion, in particular linear phase since
it only introduce time shift

Nonlinear phase will change the shape of the input
signal though having constant magnitude response
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Ideal delay

H, (") =e 1 | ol x
|Hy (") =1

ZHy, (') =—oa,|o|< 7
grd[H, (€)=«

sinz(n-a)
Wi == T ideall ith linear ph
ﬁ(n — a) eal lowpass with linear phase
when o =n .
d sinw,(n—ny)
hIp [n] =
ha[n] = SIn—n,] Z(n-n,)
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Generalized linear phase

Linear phase filters
H(e") s H(e") e
Generalized linear phase filters

H(e'”) = A(e!?)e 1o+
A(e'”) isa real function of ,
a and g are real constants
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Summary

Frequency response

System functions

Relationship between magnitude and phase
All-pass systems

Minimum-phase systems

Linear systems with generalized linear phase
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