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System analysis

Three domains
Time domain: impulse response, convolution sum

Frequency domain: frequency response

z-transform: system function

LTI system is completed characterized by …
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Part I: Frequency response

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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Frequency response

Relationship btw Fourier transforms of input and 
output 

In polar form
Magnitude magnitude response, gain, distortion 

Phase phase response, phase shift, distortion 
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Ideal lowpass filter – an example

Frequency response

Frequency selective filter
Impulse response

Noncausal, cannot be implemented! 
How to make a noncausal system causal?
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Make noncausal system causal

Cascading systems 
Ideal delay 

In general, any noncausal FIR system can be made 
cause by cascading it with a sufficiently long delay!
But ideal lowpass filter is an IIR system!
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Phase distortion and delay

Ideal delay system

Ideal lowpass filter with linear phase 
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Linear phase distortion
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Ideal lowpass filter is
always noncausal!
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Group delay

A measure of the linearity of the phase
Concerning the phase distortion on a narrowband
signal

For this input with spectrum only around w0, phase 
effect can be approximated around w0 as the linear 
approximation (though in reality maybe nonlinear)

and the output is approximately 

Group delay
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An example of group delay

Figure 5.1, 5.2, 5.3
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An example of group delay
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Part II: System functions 

Frequency response
System functions
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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System function of LCCDE systems

Linear constant-coefficient difference equation

z-transform format
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Stability and causality

Stable
h[n] absolutely summable
H(z) has a ROC including the unit circle

Causal
h[n] right side sequence
H(z) has a ROC being outside the outermost pole
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Inverse systems

Many systems have inverses, specially systems with 
rational system functions

Poles become zeros and vice versa.
ROC: must have overlap btw the two for the sake of 
G(z).
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Example 

So,
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Part III: Magnitude and phase

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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Relationship btw magnitude and phase

In particular, for systems with rational system 
functions, there is constraint btw magnitude and 
phase

Consider the square of the magnitude
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An example

P271, Example 5.11
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An example



11

Digital Signal Processing, V, Zheng-Hua Tan, 200621

Part VI: All-pass systems

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems
Minimum-phase systems
Linear systems with generalized linear phase 
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All-pass systems

Consider the following stable system function

all-pass system: for which the 
frequency response magnitude is a constant.
General form
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An example

P275 Example 5.13, First-
order all-pass system
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An example

Second-order all-pass 
system
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Part V: Minimum-phase systems

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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Minimum-phase systems

Magnitude does not uniquely characterize the 
system

Stable and causal poles inside unit circle, no 
restriction on zeros
Zeros are also inside unit circle inverse system is 
also stable and causal (in many situations, we need 
inverse systems!)

such systems are called minimum-phase systems 
(explanation to follow): are stable and causal and 
have stable and causal inverses
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Minimum-phase and all-pass decomposition

Any rational system function can be expressed as:

Suppose H(z) has one zero outside the unit circle at 

minimum-phase all-pass
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Frequency response compensation

When the distortion system is not minimum-phase 
system:

Frequency response magnitude is compensated
Phase response is the phase of the all-pass
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Properties of minimum-phase systems

From minimum-phase and all-pass decomposition

From previous figures, the continuous-phase curve 
of an all-pass system is negative for 
So change from minimum-phase to nonminimum-
phase (+all-pass phase) always decreases the 
continuous phase or increases the negative of the 
phase (called the phase-lag function). Minimum-
phase is more precisely called minimum phase-lag 
system

)()()( min zHzHzH ap=

πω ≤≤0

)](arg[)](arg[)](arg[ min
ωωω j

ap
jj eHeHeH +=

Digital Signal Processing, V, Zheng-Hua Tan, 200630

Part VI: Linear-phase systems

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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Design a system with non-zero phase

System design sometimes desires
Constant frequency response magnitude
Zero phase, when not possible 

accept phase distortion, in particular linear phase since 
it only introduce time shift
Nonlinear phase will change the shape of the input 
signal though having constant magnitude response
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Ideal delay
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Generalized linear phase

Linear phase filters

Generalized linear phase filters
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Summary

Frequency response
System functions  
Relationship between magnitude and phase
All-pass systems 
Minimum-phase systems
Linear systems with generalized linear phase 
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