Digital Signal Processing

http://kom.aau.dk/~zt/cources/DSP/

Exercises of Lecture 3 (MM3)

Exercise 3.1. Find the Z-transform and ROC of the following sequences

- a) $(\frac{1}{2})^n u[n]$
- b) $-(1/2)^n u[-n-1]$
- c) $(\frac{1}{2})^n u[-n]$
- d) $\delta[n-1]$
- e) $\delta[n+1]$
- f) $(\frac{1}{2})^n \left[u[n] u[n-10] \right]$
- g) $x[n] = \alpha^{|n|}$

Exercise 3.2. The input to a LTI-system is u[n] and the output y[n] is $y[n] = \left(\frac{1}{2}\right)^{n-1} u[n+1]$. Find the transfer function, H(z).

Exercise 3.3. Find the Z-transform of the sequence

$$x[n] = \begin{cases} n, & 0 \le n \le N-1, \\ N, & N \le n. \end{cases}$$

Hint: Express x[n] using u[n].

Exercise 3.4. Given the Z-transform $X(z) = \frac{1}{(1 + \frac{1}{2}z^{-1})}$, $|z| > \frac{1}{2}$. Use power series expansion (long division) to find x[n].

Exercise 3.5. Given the Z-transform $X(z) = \frac{1 - \frac{1}{2}z^{-1}}{(1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2})}, |z| > \frac{1}{2}$. Try both using partial

fraction expansion and power series expansion (long division) to find x[n].

Exercise 3.6. Given the transfer function $H(z) = \frac{1+z^{-1}}{(1-\frac{1}{2}z^{-1})(1+\frac{1}{4}z^{-1})}$ of a causal LTI system.

Is the system stable? (First find the ROC)