Digital Signal Processing

http://kom.aau.dk/~zt/cources/DSP/

Exercises of Lecture 2 (MM2)

Exercise 2.1. The Fourier transform $X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}$, with -1 < a < 0.

a) What is the value of $\operatorname{Re}\{X(e^{j\omega})\}\)$ - the real part of $X(e^{j\omega})$?

- b) What is the value of $\text{Im}\{X(e^{j\omega})\}\)$ the imaginary part of $X(e^{j\omega})$?
- c) What is the value of $|X(e^{j\omega})|$?
- d) What is the value of $\angle X(e^{j\omega})$?

Exercise 2.2. Let $X(e^{j\omega})$ denote the Fourier transform of x[n]. a) Using the definitions for the Fourier transform or its inverse, what is the Fourier transform of $x^*[n]$ (the complex conjugate of x[n])? b) Using the definitions for the Fourier transform or its inverse, what is the Fourier transform of $x^*[-n]$?

Exercise 2.3. Let $X(e^{j\omega})$ denote the Fourier transform of the signal x[n] shown in the figure below. What is the value of $|X(e^{j\omega})|_{\omega=0}$?

Exercise 2.4. Imagine an ideal low-pass filter, $H(e^{j\omega})$, with cut-off frequency ω_c . If the output sequence, for some input, is given by

$$y[n] = \begin{cases} 1, 0 \le n \le 6\\ 0, otherwise \end{cases},$$

what is the only possible value of ω_c ?

Exercise 2.5. What is the frequency response, $H(e^{j\omega})$, of the 11-point moving, or running, averager:

$$y[n] = \frac{1}{11} \sum_{k=0}^{10} x[n-k]$$