Digital Signal Processing

http://kom.aau.dk/~zt/cources/DSP/

Exercises of Lecture 2 (MM2)

Exercise 2.1. The Fourier transform $X\left(e^{j \omega}\right)=\frac{1}{1-a e^{-j \omega}}$, with $-1<a<0$.
a) What is the value of $\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$ - the real part of $X\left(e^{j \omega}\right)$?
b) What is the value of $\operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}$ - the imaginary part of $X\left(e^{j \omega}\right)$?
c) What is the value of $\left|X\left(e^{j \omega}\right)\right|$?
d) What is the value of $\angle X\left(e^{j \omega}\right)$?

Exercise 2.2. Let $X\left(e^{j \omega}\right)$ denote the Fourier transform of $x[n]$.
a) Using the definitions for the Fourier transform or its inverse, what is the Fourier transform of $x^{*}[n]$ (the complex conjugate of $\left.x[n]\right)$?
b) Using the definitions for the Fourier transform or its inverse, what is the Fourier transform of $x^{*}[-n]$?

Exercise 2.3. Let $X\left(e^{j \omega}\right)$ denote the Fourier transform of the signal $x[n]$ shown in the figure below. What is the value of $\left|X\left(e^{j \omega}\right)\right|_{\omega=0}$?

Exercise 2.4. Imagine an ideal low-pass filter, $H\left(e^{j \omega}\right)$, with cut-off frequency ω_{C}. If the output sequence, for some input, is given by

$$
y[n]=\left\{\begin{array}{c}
1,0 \leq n \leq 6 \\
0, \text { otherwise }
\end{array},\right.
$$

what is the only possible value of ω_{C} ?

Exercise 2.5. What is the frequency response, $H\left(e^{j \omega}\right)$, of the 11-point moving, or running, averager:

$$
y[n]=\frac{1}{11} \sum_{k=0}^{10} x[n-k]
$$

