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Course at a glance
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Part I: System impulse response

= System impulse response

m Linear constant-coefficient difference
equations

m Fourier transforms and frequency response
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FIR systems — reflected in the h[n]

= |deal delay
y[n]=x[n—-n,], —o<n<o
==  h[n]=6[n-n,], n, apositive integer.

= Forward difference
y[n]=x[n+1]-x[n] T o
==) h[n]=o[n+1]-4[n] -1
= Backward difference
y[n]=x[n]-x[n-1]
==) h[n]=4[n]-5[n-1] 410—f
= Finite-duration impulse response (FIR) system

o The impulse response has only a finite number of nonzero
samples.
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IIR systems — reflected in the h[n]

Accumulator

n

y[nl= > xK]
A
==) h[n]= > [k]=uln] 0

Infinite-duration impulse response (IIR) system
o The impulse response is infinitive in duration.
Stability S=Y" |hn]|<os

o FIR systems always are stable, if each of h[n] values is
finite in magnitude.

o lIR systems can be stable, e.9. h[n]=a"u[n]with|a]<1

s=Y"al =y(-|a)) <o
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Cascading systems

Causality h[n]=0, n<0
o Ideal delay h[n]=d[n-n,]

X[n] Forward difference One -sameple delay
h[n]=s[n+1-5[n]  h[n]=4n-1]

!

x[n] Backward difference y[n]
h[n] = o[n]-o[n-1]

— . y[n]

o Any noncausal FIR system can be made cause
by cascading it with a sufficiently long delay!
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Cascading systems

= Accumulator + Backward difference system

X[N] — Accumulator system Backward difference X[n]
h[n] = u[n] h[n]=o[n]-d[n-1]
x[n] x[n]
h[n] = o[n]

Inverse system:

h[n]*hy[n] = hy[n]*h[n] = Tn]
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Part II: LCCD equations

m System impulse response

= Linear constant-coefficient difference
equations

m Fourier transforms and frequency response
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LCCD equations

= An important class of LTI systems: input and output
satisfy an Nth-order LCCD equations

Y a,yin—K1= b,x[n -]

= Difference equation representation of the accumulator

n

nl= > xk
vl kzz_w d x[n] y[n]
n-1
yIn-1= > x[k]
K=—c0
n-1 One-sample
y[nl=x[n]+ > x[k]=x[n]+ y[n—1] delay
k=—00
y[n]-y[n-1] = x[n] yin-1]
Recursive representation
9 Digital Signal Processing, 11, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY

Part III: Fourier transforms

m System impulse response

m Linear constant-coefficient difference
equations

= Fourier transforms and frequency response

o Frequency-domain representation of discrete-time
signals and systems

o Symmetry properties of the Fourier transform
a Fourier transform theorems
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Signal representations

A sum of scaled, delayed impulse

x 0

x[n]= > x[klo[n—-k] =mp y[n]= ZX[k]h[n—k]
Sinusoidal and complex exponential sequences

o Sinusoidal input = sinusoidal response with the same
frequency and with amplitude and phase determined by
the system  x[n]= Acos(w,n + @)

o Complex exponential sequences are eigenfunctions of LTI
systems. x[n] =e"

-> signal representation based on sinusoids or complex
exponentials
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Eigenfunctions

Complex exponentials as input to system h[n]
x[n]=el", —o<n<ow

=T jony _ . hrk jo(n-k)

yln]=T{e""} k;@O[]e Af = \f

=(2] h[k]e 1*¢) el A — linear operator
k=-0 _

Define ~ HE")= kzz_wh[k]e'j”k

Then y[n]=H (eiw)ejwn

Eigenfunction
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Eigenvalue — called frequency response

Frequency response is generally complex
H(e')=Hg(e")+ jH, (")
= H(e'”)|e!" ') describes changes in magnitude and phase
Frequency response of the ideal delay system
y[nl=x[n—-n,] - h[n]=d6[n—n,]
o Method 1: using the eigenfunction

y[n] = T{ejwﬂ} = glo(n=ng) _ g=iong g jon _
— H.(e'”) = cos(en,),

H(el?) = g iom _
H,(e'”) =—sin(en,).
o Method 2: using the impulse response |H(e")|=1,
H(e')= > oln-n,Je " =e i ZH(e") = —on,.
N=—o0
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Frequency response

The frequency response of discrete-time LTI
systems is always a periodic function of the
frequency variable w with period 27 .

H (ej(w+27r)) — ih[n]efj(aHer)n — Zh[n]efjwnefjbm -H (ejw)

N=—o0 N=—o0

o Only specify overthe interval —gz<w<nx
o The ‘low frequencies’ are close to 0
o The *high frequencies’ are close to +r
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Ideal frequency-selective filters

= For which the frequency response is unity over a
certain range of frequencies, and is zero at the

remaining frequencies.

o Ideal low-pass filter: passes only low and rejects high

Figure 2.17  Ideal lowpass filter showing (a) periodicity of the frequency response
and (b} one period of the periodic frequency response )

AALBORG UNIVERSITY

Ideal frequency-selective filters

Hyple™)

i - e i a) Highpass filter. (b) Bandstop
Figure 2,18 Ideal frequency-selective filters. (a) Highpass filter. (D}
rilger. (c) Bandpass filter. In éacr: case, the frequency respanse is periodic with
period 2. Only one period is shown.
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Sinusoidal response of LTI systems

Sinusoidal input = sinusoidal response with the
same frequency and with amplitude and phase
determined by the system

X[n] = Acos(a,n + @)

_ Agisgioon | Aoisg-ion
2

y[n] = ?e”’H (ejwo )ej%n + ?eMH (e—J'wo )e-jwon

if h[n]isreal, then
H(e ™) = H'(e!) = H(e™™) e ™ g H(el) e’

then y[n]=A|H (e'™®)|cos(w,n+ ¢+ )
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Signal representation

More than sinusoids, a broad class of signals can be
represented as a linear combination of complex
exponentials:

x[n]=> o'
k
yInl =Y a H (e )e!™
k
If X[n] can be represented as a superposition of
complex exponentials, output y[n] can be computed

by using the frequency response, which is similar to
the function of impulse response.
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Frequency-domain representation of x[n]

By Fourier transforms = Fourier representation:

X[n] = ij‘” X (ej‘”)e jeng . Inverse Fourier transform
2w w is continuous-time variable

where X (e!”) = Z x[ne " Fourier transform
o n is discrete-time variable
represent x[n] as
a superposition of infinitesimally small complex sinusoids
1 S
—X(e')e'”"dw
2 Fourier spectrum

In general, Fourier transform is complex SPectu™

X (e QiZX(eI?) Phase spectrum
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Magnitude spectrum
X ()= X, (') + jX, (e') Amplitude spectrum

Frequency and impulse responses

Are a Fourier transform pair
Recall  H(e™)= 3 h[nJe

1 ¢x o
h[n]=—| H(e'*)e'"d
[n=——[ HE"e " do

Fourier transform is periodic with period 2~

X (e1) = ix[n]e“'””
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Sufficient condition for Fourier transform

Condition for the convergence of the infinite sum
| X (€)=Y xnk " |

< §| X[n] [ |
Si' X[n] | < o

X[n] is absolutely summable, then its Fourier
transform exists (sufficient condition).
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Example: ideal lowpass filter

Frequency response  y iey_| & @k
P 0,0, Jowl<r

_sinayn

h, [n] = i et ndo =

—o0 < N<oo

)Ml

o Noncausal.
o Not absolutely summable.

. z sinw,n __;
Hlp(e]w): Z C efja)n

N=-o0
; Mosino.n
Joy _ c —jon

Hy ()= > ——e
n=-M
Figure 2.21 Convergence of the Fourier transform. The oscllatory hahe
- . . w = ae is often called the Gibbs phenomenon. The oscillatory behavior at
22 Digital Signal Processing, I, Zher F enon
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Example: Fourier transform of a constant

= Constant sequence x[n]:zij” X (e')e dw
71- =T

x[n]=1 , © :
where X (e!”)=> x[ne~ "

= Its Fourier transform is defined as the periodic
impulse train

X(e") = 3 278(w+ 2ar)

r=—oo
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Part III: Fourier transforms

m System impulse response

m Linear constant-coefficient difference
equations

= Fourier transforms and frequency response

o Frequency-domain representation of discrete-time
signals and systems

o Symmetry properties of the Fourier transform
o Fourier transform theorems
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Symmetry properties of Fourier transform

= Conjugate-symmetric sequence X,[n]=x, [-n]
= Conjugate-antisymmetric sequence x[n]=-x, [-n]
= Any X[n], xin]=2dnl+ X )+ (] - X [-n)

define  x,[n]= %(x[n] +x'[-n]) = x;[-n]

x,[n] = %(x[n] —X[-n]) = —x.[-n]
X[n] = x,[n] + ¥, ]

X (€17) = X, (1) + X, ()

where

xe(ei“):%(X(e"m X" (e 1) = X[ (e717)

X (€)= 2(X () - X (€7 ==X (e ™)
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TABLE2.1  SYMMETRY PROPERTIES OF THE FOURIER TRANSFORM

Sequence Fourier Tmesfurm
x[n] X(e/*)
1. x*[n] X*(e 1)
2. x*[-n] X*(e/v)
3. Refx[n]) Xe(e!”)  (conjugate-symmeltric part of X (e/*))
4. jTmix[n]) Xo(e/*) (conjugate-antisymmetric part

of X (e/))

5. xe[n] (conjugate-symmetric part  Xg(e/”) = Re[ X (e/®))
of x[n])

6. xu[n] (conjugate-antisymmetric j Xy = | Tmi X (el™))
part of x[n])

The following properties apply only when x|n] is real:

7. Any real x[n] X{e!) = X*(e”/™) (Fourier transform is
conjugate symmetric)

8. Any real x[n] Xr(e/”) = Xg(e™/™) (real part is even)

9. Any real x[n] Xi(e!) = = Xp(e 1) (imaginary part is odd)

10. Any real x[n] | X (&) = | X (e~ ) (magnitude is even)

11. Any real x[n) 4X(e/) = —aX(e7/®) (phase is odd)

12. x.[n] (even part of x[n]) Xpl(el™)

13. xg[n]  (odd part of x[n]) i Xy (eley

IIVERSITY
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Part III: Fourier transforms

m System impulse response

m Linear constant-coefficient difference
equations

= Fourier transforms and frequency response

o Frequency-domain representation of discrete-time
signals and systems

o Symmetry properties of the Fourier transform
a Fourier transform theorems
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Linearity of the Fourier Transform

x[n] <> X, (")
X, [T <> X, (&)

ax,[n] + bxz[n]<i>axl(ej“’) +bX, (e')
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Time shifting and frequency shifting

x[n]<E>X(ej“’)
x[n - nd]<i>e*"“’nd X (e1?)

. F .
e]a)onx[n]e X (ej(wfwo))
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Time reversal

X[n]<> X (€7*)

X[-n] <> X (€71°)
if x[n] isreal.

x[—n]gx*(ej”’)
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Differentiation in frequency

X[n]<> X ()
dX ()
(0]

F
nx[n]<> j
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Parseval’s theorem

x[n]<i>X(e"”))

_ < 2 _ 1 ¢ joy |2
E= YUl =] IX(e")[ do

N=—o0
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The convolution theorem

X[n]<> X (e7)

h[n]<> H ()

y[n1= > x[kIh[n-k]=x[n]*h[n]

k=—x

Y(e)=H(")X (")
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The modulation or Windowing theorem

x[n];X(ej“)

w[n]<i>W (e')

y[n] = x[n]win]

Y(eiw)=ij” X (€)W (eI )de
27 -~
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TABLE2.2  FOURIER TRANSFORM THEOREMS

Sequence Fourier Transform

x[n] X(el®)

] Ye)
L. ax[n] + by[n] aX(el®) + bY(e/®)
2. x[n—nq]  (ng an integer) e~dena X (giw)y
3 (./’“(‘"x[}z] X(ej[(u—cun))
4. x[-n] X(e™'?)

X*(el®) if x[n] real.
5. nx[n] id_L(ef‘”)
dew

6. x[n] * y[n) X(e/)Y(el®)y

7. x[n]y[n]

Parseval’s theorem;

5= [ XY@ D)ag

o0
2 2 1 !
8. E [x[n]|* = - / | X (/Y dew

n=—00

9. Z x[n]y*[n] = 2L / X(ej‘”)Y“(ﬁ—’(”)r{ru

b4
n=—00 ST
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TABLE2.3  FOURIER TRANSFORM PAIRS

Sequence

Fourier Transform

1. 8[n]
2. 8[n — )

i1 (—o¢ <= n = o)
4 a"uln] (lal =1)

wn

. uln]

b (n+ Da"uln]  (lal = 1)

! sinewpin+ 1)

7. - ) (Jr| =
s a ]
3 Sin g, n
i
1, 0=n=M
9 x|n] = TR
[n] {0. otherwise
10, efwon
11. cos{won + )

1)

1

e feartp

o

Z 2mélew + 2nk)

k==00

1 -
+ E mélew + 2wk
== (e + 2m k)

f—

1
(1 — ge—fo)?
1

1 = 2r cosawpe /o +rie= i

we < |w| <7

sinfe( M+ 1)/2] | s
sin|« o JuM2

sinfes/2)

Z 2ni(w — wo + 2mk)

km-og

= =]
I er - Y I
E e’ 8(mw — wo + 27k) + me 8w + wq
[

+2n k)]

P UNIVERSITY
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Example

Determining a Fourier transform using Tables 2.2
and 2.3

x[n]=a"u[n-5]

1
1-ae
x,[n1=x[n-5]  (i.e.=a"°u[n-5])

e—jSa)

x [n]= a”u[n]; X, (e¥) =

X, (') =e X (e) = —
1-ae™”
x[n] = a®x,[n] (i.e.=a"u[n-5])

aSE—jSaz

X (e) = :
™) l1-ae™ @
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Summary

System impulse response

Linear constant-coefficient difference
equations
Fourier transforms and frequency response

o Frequency-domain representation of discrete-time
signals and systems

o Symmetry properties of the Fourier transform
o Fourier transform theorems
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Course at a glance

Discrete-time
signals and systems

MM1

Fourier-domain
representation

Sampling and
reconstruction

MM4

MM3 MM9,MM10
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MM5

MM7

System

System
analysis

MM6

Filter

Filter design
MM8

AALBORG UNIVERSITY

20



