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Digital computation of the DFT

The DFT of a finite-length sequence of length N

The inverse DFT

Due to the duality, focus on the DFT only.
Use the number of arithmetic multiplications and 
additions as a measure of computational complexity.
Fast Fourier transform (FFT) is a set of algorithms 
for the efficient and digital computation of the N-
point DFT, rather than a new transform. 
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Part I: Direct computation of the DFT

Direct computation of the DFT
Decimation-in-time FFT algorithms
Decimation-in-frequency FFT algorithms
Fourier analysis of signals using the DFT
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The DFT of a finite-length sequence of length N

Direct computation: N2 complex multiplications and 
N(N-1) complex additions

Compute and store (only over one period)

Compute the DFT using stored        and input 
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Direct computation of the DFT
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For each k

Therefore, for each value of k, the direct computation 
of X[k] requires 4N real multiplications and (4N-2) 
real additions.
The direct computation of the DFT requires            
real multiplications and                    real additions.  
The efficiency can be improved by exploiting the 
symmetry and periodicity properties of 
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Symmetry and periodicity of complex exponential

Complex conjugate symmetry

Periodicity in n and k

For example

The number of multiplications is reduced by a factor of 
2.
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Part II: Decimation-in-time FFT algorithms

Direct computation of the DFT
Decimation-in-time FFT algorithms
Decimation-in-frequency FFT algorithms
Fourier analysis of signals using the DFT
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FFT

Cooley and Tukey (1965) published an algorithm for 
the computation of the DFT that is applicable when 
N is a composite number, i.e., the product of two or 
more integers. Later, it resulted in a number of 
highly efficient computational algorithms. 
The entire set of such algorithms are called the fast 
Fourier transform, FFT.
FFT decomposes the computation of the DFT of a 
sequence of length N into successively smaller 
DFTs.
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Decimation-in-time FFT algorithms

Where 
decomposition is done by decomposing the sequence 
into successively smaller subsequences, 
and both the symmetry and periodicity of complex 
exponential                             are exploited.

Consider                and separate x[n] into two (N/2)-
point sequences
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Decimation-in-time FFT algorithms
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Flow graph of the decimation-in-time

Periodicity is applied, e.g. G[7]=G[3]
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Decimation-in-time FFT

Further break down
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Combination of Fig. 9.3 and 9.4
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2-point DFT

Digital Signal Processing, X, Zheng-Hua Tan, 2005 16

Flow graph

N2log stages and 
each stage has N 
complex multiplications 
and N complex 
additions . 

NN 2logIn total,                 complex 
multiplications and additions.
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A reduction of 2 orders! 
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Flow graph of butterfly computation
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Flow graph

The number of complex multiplications are reduced 
by  a factor of 2 over the number in Fig. 9.7.
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Part III: Decimation-in-frequency FFT algorithms

Direct computation of the DFT
Decimation-in-time FFT algorithms
Decimation-in-frequency FFT algorithms
Fourier analysis of signals using the DFT
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Decimation-in-frequency FFT algorithms

Fig. 9.20
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Part IV: Fourier analysis of signals using the DFT

Direct computation of the DFT
Decimation-in-time FFT algorithms
Decimation-in-frequency FFT algorithms
Fourier analysis of signals using the DFT
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Fourier analysis of signals using the DFT

Finite-duration requirement of DFT windowing
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Fourier analysis of signals using the DFT

Fig. 10.2
Tapers off but is 
not band-limited. 

Not ideal. 

Low-pass filtered 
and modified. 
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Fourier analysis of signals using the DFT
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Effect of Windowing on Fourier analysis

Fig. 10.3

Effect of Windowing on 
Fourier analysis

A rectangular window of length 64.
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Effect of Windowing on Fourier analysis

Fig. 10.3
The DTFT of a sinusoidal signal
is a pair of impulses. 
Windowing broadens the impulses 
and reduces the distinction of 
signals that are close in frequency
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Summary

Direct computation of the DFT
Decimation-in-time FFT algorithms
Decimation-in-frequency FFT algorithms
Fourier analysis of signals using the DFT
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The end.

Thanks for your attention!


