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Part I: Introduction

Introduction (Course overview)
Discrete-time signals
Discrete-time systems

Linear time-invariant systems

2 Digital Signal Processing, I, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY




General information

Course website
o http://kom.aau.dk/~zt/cources/DSP/

Textbook:

o Oppenheim, A.V., Schafer, R.W, "Discrete-Time Signal
Processing", 2nd Edition, Prentice-Hall, 1999.

Readings:

o Steven W. Smith, “The Scientist and Engineer's Guide to
Digital Signal Processing”, California Technical Publishing,
1997. http://www.dspguide.com/pdfbook.htm (You can
download the entire book!)

o Kermit Sigmon, "Matlab Primer", Third Edition, Department
of Mathematics, University of Florida.

o V.K. Ingle and J.G. Proakis, "Digital Signal Processing
using MATLAB", Bookware Companion Series, 2000.
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General information
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Duration
o 2 ECTS (10 Lectures)

Prerequisites:

o Background in advanced calculus including complex
variables, Laplace- and Fourier transforms.

Course type:

o Study programme course (SE-course) , meaning a written
exam at the end of the semester!

Lecturer:
Associate Professor, PhD, Zheng-Hua Tan
Niels Jernes Vej 12, A6-319
zt@kom.aau.dk, +45 9635-8686
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Course at a glance

Discrete-time
signals and systems

MM1 System

System
) ) ) analysis
Fourier-domain Sampling and
representation reconstruction MM5 MM6

Filter

MM4
MM3 MM9,MM10 MM7 MMS
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Course objectives (Part I)

To give the students a comprehension of the
concepts of discrete-time signals and
systems

To give the students a comprehension of the
Z- and the Fourier transform and their inverse

To give the students a comprehension of the
relation between digital filters, difference
equations and system functions

To give the students knowledge about the
most important issues in sampling and
reconstruction
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Course objectives (Part II)

To make the students able to apply digital
filters according to known filter specifications

To provide the knowledge about the
principles behind the discrete Fourier
transform (DFT) and its fast computation

To make the students able to apply Fourier
analysis of stochastic signals using the DFT

To be able to apply the MATLAB program to
digital processing problems and
presentations
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What is a signal ?

A flow of information.

(mathematically represented as) a function of
independent variables such as time (e.g.
speech signal), position (e.g. image), etc.

A common convention is to refer to the

independent variable as time, although may
in fact not.
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Example signals
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Speech: 1-Dimension signal as a function of
time s(t);.

Grey-scale image: 2-Dimension signal as a
function of space i(x,y)

Video: 3 x 3-Dimension signal as a function
of space and time {r(x,y,t), g(x,y,t), b(x,y,0)} .
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Types of signals
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The independent variable may be either continuous

or discrete

o Continuous-time signals

o Discrete-time signals are defined at discrete times and
represented as sequences of numbers

The signal amplitude may be either continuous or

discrete

o Analog signals: both time and amplitude are continuous

o Digital signals: both are discrete

Computers and other digital devices are restricted to

discrete time

Signal processing systems classification follows the

same lines
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Types of signals

Analog signal Discrete-time signal
T

[
5 910
Sample number —->

Digital signal

From http://www.ece.rochester.edu/courses/ECE446
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Digital signal processing

Modifying and analyzing information with
computers — so being measured as
sequences of numbers.

Representation, transformation and
manipulation of signals and information they
contain
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Typical DSP system components

= Input lowpass filter to avoid aliasing

= Analog to digital converter (ADC)

= Computer or DSP processor

= Digital to analog converter (DAC)

= Output lowpass filter to avoid imaging
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ADC and DAC
Transducers Analog-to-digital
e.g. microphones converters

Physical signals Analog signals Digital signals

Output devices Digital-to-Analog
converters
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Pros and cons of DSP

Pros
o Easy to duplicate

o Stable and robust: not varying with temperature, storage
without deterioration

o Flexibility and upgrade: use a general computer or
microprocessor

Cons
o Limitations of ADC and DAC

o High power consumption and complexity of a DSP
implementation: unsuitable for simple, low-power
applications

o Limited to signals with relatively low bandwidths
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Applications of DSP

Speech processing
o Enhancement — noise filtering
o Coding
o Text-to-speech (synthesis)
- Next generation TTS @ AT&T
o Recognition
Image processing
o Enhancement, coding, pattern recognition (e.g. OCR)
Multimedia processing
o Media transmission, digital TV, video conferencing
Communications
Biomedical engineering
Navigation, radar, GPS
Control, robotics, machine vision
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History of DSP

17

Prior to 1950’s: analog signal processing
using electronic circuits or mechanical
devices

1950’s: computer simulation before analog
implementation, thus cheap to try out

1965: Fast Fourier Transforms (FFTs) by
Cooley and Tukey — make real time DSP
possible

1980's: IC technology boosting DSP
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Part II: Discrete-time signals
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Introduction

Discrete-time signals
Discrete-time systems

Linear time-invariant systems
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Discrete-time signals

Sequences of numbers

x ={x[n]}, —o<N<®

where nis an integer

Periodic sampling of an
analog signal

X[n] = x,(nT), —00<N< o
whereT is called the sampling period.

d N
| ; // \'\_\ /

/ \\\ I_.-" /
/
\,/
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Sequence operations

The product and sum of two sequences x[n] and
y[n]: sample-by-sample production and sum,

respectively.

Multiplication of a sequence x[n] by a number « :
multiplication of each sample value by «.

Delay or shift of a sequence x[n]

yIn]=x[n—n,]
where nis an integer
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Basic sequences

Unit sample sequence (discrete-time impulse,
impulse) s

0, n£0,
o[n]= Ea s PN
1’ n ::O, 9 "

Any sequence can be represented as a sum of
scaled, delayed impulses

x[n]=a_,0[n+3]+a_,o[n+3]+...+a,6[n-5] .

More generally

0

x[n]= > x[kIs[n-K]

k=—00
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Unit step sequence

Defined as WS

ot e JIT

0

n<0, = "

Related to the impulse by
ufn]=ao[n]+d[n-1+6[n-2]+...

or
ufn] = iu[k]5[n—k]=i5[n—k]
Conversely, -~

o[n]=u[n]—u[n-1]
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Exponential sequences
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Extremely important in representing and analyzing

LTI systems.
MHH_ULT Lo

Defined as

X[n]= Aa"

If A and o are real numbers, the sequence is real.

If O0<a<1 and A is positive, the sequence values
are positive and decrease with increasing n.

If -1<a <0, the sequence values alternate in sign,
but again decrease in magnitude with increasing n.

If |a[>1 ,the sequence values increase with

increasing n. e

x[n]=2-2"

Digital Signal Processing, |, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY

Combining basic sequences
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An exponential sequence that is zero for n<0

Aa", n>0,

X[n]=
[n] 0, n<0

x[n] = Aa"u[n]
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Sinusoidal sequences

X[n] = ACOS(a)On + ¢), for a_” n Sinnsoidal

N ]
with Aand ¢ real constants. WIJ NIl

The Acg"with complex a has real and imaginary
parts that are exponentially weighted sinusoids.

If & =|a|e’® and A=| Ale!’, then
x[n] = Aa" =| Ale¥ |a]|" el"
:l A|| a |n g J(@on+¢)

= Al a|" cos(wn+@)+ j| Al | sin(w,n+ @)
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Complex exponential sequence

When | |=1,
x[n] =] Ae)“™ | A|cos(w,n+¢) + j| Alsin(a,n + @)

By analogy with the continuous-time case, the
quantity @, is called the frequency of the complex
sinusoid or complex exponential and ¢ is call the
phase.

n is always an integer - differences between
discrete-time and continuous-time
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An important difference — frequency range

Consider a frequency (w, + 27)
X[n] — Aej(a}0+27r)n — AejwonejZﬂn _ Aejwon

More generally (@, + 2ar), r being an integer,
X[n] = Agl(@0o*2mn — pgloong 2 _ pgleon

Same for sinusoidal sequences
X[n] = Acos[(@, + 2ar)n+ ¢] = Acos(w,n + @)

So, only consider frequencies in an interval of 2

such as
—7T<w,<m or 0<w,<2r
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Another important difference — periodicity

In the continuous-time case, a sinusoidal signal and
a complex exponential signal are both periodic.

In the discrete-time case, a periodic sequence is

defined as
x[n]=x[n+N], foralln

where the period N is necessarily an integer.

For sinusoid,
Acos(w,n + @) = Acos(wyn+ oy N + @)

which requires that @w,N =27k or N =27k /w,
where Kk is an integer.
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Another important difference — periodicity

Same for complex exponential sequence
eja)o(n+N) — eja)on
which is true only for o,N = 27k

So, complex exponential and sinusoidal sequences
o are not necessarily periodic in n with period (27 /w,)

o and, depending on the value of @, , may not be periodic at
all.

Consider
X,[n] = cos(zn/4), with a period of N =8

X,[n] = cos(37n/8), with a period of N =16
Increasing frequency - increasing period!
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Another important difference — frequency

For a continuous-time sinusoidal signal
X(t) = Acos(Q,t + @),

as Q, increases, x(t) oscillates more and more rapidly
For the discrete-time sinusoidal signal

X[n] = Acos(aw,n + ¢),
as m, increases from O towards 7, x[n] oscillates more and more rapidly
as w, increases from z towards 2, the oscillations become slower.
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Part II: Discrete-time systems

= Introduction

m Discrete-time signals

= Discrete-time systems

m Linear time-invariant systems

AAAAAAAAAAAAAAAAA

16



Discrete-time systems

A transformation or operator that maps input into

output
y[n]=T{x[n]}

xn]  — 1} —  VIn

Examples:
o The ideal delay system

y[n] = x[n—n,], —0<N<©
o A memoryless system

y[n] = (x[n])?, —0<N<®
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Linear systems

A system is linear if and only if

additivity property
T{GIN]+ X [T} =T [N} + T{X, [n]} = y;[n] + y,[n]

and

T{ax[n]}=aT{x[n]}=ay[n]  scaling property
where a is an arbitrary constant

Combined into superposition
T{ax,[n]+bx,[n]} = aT{x,[n]}+aT{x,[n]} = ay,[n] +ay,[n]

Example 2.6, 2.7 pp. 19
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Time-invariant systems

For which a time shift or delay of the input sequence
causes a corresponding shift in the output sequence.

X,[n]=x[n—=n,]= y;[n] = y[n—n,]

Example 2.8 pp. 20
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Causality

The output sequence value at the index n=n,
depends only on the input sequence values for
n<=n,,.

Example y[n]=x[n-n,]1, —00<N<®

o Causal for ng>=0
o Noncausal for ny<0

36 Digital Signal Processing, I, Zheng-Hua Tan, 2006 AALBORG UNIVERSITY

18



Stability

= A system is stable in the BIBO sense if and only if
every bounded input sequence produces a
bounded output sequence.

= Example
y[n] = (x[n])?, —<N<®
stable
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Part III: Linear time-invariant systems

Course overview

Discrete-time signals
Discrete-time systems
Linear time-invariant systems
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Linear time-invariant systems

Important due to convenient representations and
significant applications

A linear system is completely characterised by its
Impulse response

y[n]=T{x[n]}= T{Zx[k]é[n KT}
= Z X[KIT{o[n -k} = Z x[k]h,[n]
Time invariance h,[n]=h[n—k]
yin= > X[KIh[n k]
= x[n]*h[n] Convolution sum
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Forming the sequence h[n-k]

hk]

. rlJ { H 1, .

o] U J__ ' _[ I_I 41 =hl0- 4

- ———o—»

o,

0 f n+3 k

k
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Computation of the convolution sum

o0

y[n] = x[n]*h[n] = > xkIh[n—K]

k=—0

Obtain the sequence h[n-k]
o Reflecting h[k] about the origin to get h[-k]
o Shifting the origin of the reflected sequence to k=n

Multiply x[k] and h[n-k] for —w <k < o0
Sum the products to compute the output

sample y[n]
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Computing a discrete convolution

Example 2.13 pp.26
Impulse response
h[n]=u[n]-u[n—N]
1, 0<n<N-1
:{ 0, otherwise.
input
x[n]=a"u[n]

0, n <0,
_ n+1
y[n]= 1-a 0<n<N-1,
1-a .
a”‘“*l(i), N-1<n.
1-a
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Properties of LTI systems

Defined by discrete-time convolution
o Commutative

X[n]*h[n] = h[n]*Xx[n]
o Linear

x[n]* (hy[n]+h,[n]) = x[n]* Ry [n]+ X[n]*h, [n]

o Cascade connection (Fig. 2.11 pp.29)
h[n] = h,[n]*h,[n]

o Parallel connection (Fig. 2.12 pp.30)

h[n]=h[n]+h,[n]
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Properties of LTI systems

Defined by the impulse response
o Stable

S= i| h[k] |< o0

o Causality
h[n]=0, n<o0
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MATILAB
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An interactive, matrix-based system for
numeric computation and visualization

Kermit Sigmon, "Matlab Primer", Third
Edition, Department of Mathematics,
University of Florida.

Matlab Help (>> doc)
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Summary
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Course overview
Discrete-time signals
Discrete-time systems

Linear time-invariant systems

Matlab functions for the exercises in this
lecture are available at

http://kom.aau.dk/~zt/cources/DSP_E/MM1/

Thanks Borge Lindberg for providing the
functions.
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