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Part I: Introduction

Introduction (Course overview)
Discrete-time signals 
Discrete-time systems
Linear time-invariant systems
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General information

Course website
http://kom.aau.dk/~zt/cources/DSP/

Textbook:
Oppenheim, A.V., Schafer, R.W, "Discrete-Time Signal 
Processing", 2nd Edition, Prentice-Hall, 1999.

Readings:
Steven W. Smith, “The Scientist and Engineer's Guide to 
Digital Signal Processing”, California Technical Publishing, 
1997. http://www.dspguide.com/pdfbook.htm (You can 
download the entire book!)
Kermit Sigmon, "Matlab Primer", Third Edition, Department 
of Mathematics, University of Florida.
V.K. Ingle and J.G. Proakis, "Digital Signal Processing 
using MATLAB", Bookware Companion Series, 2000.
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General information

Duration
2 ECTS (10 Lectures)

Prerequisites:
Background in advanced calculus including complex 
variables, Laplace- and Fourier transforms. 

Course type:
Study programme course (SE-course) , meaning a written 
exam at the end of the semester!

Lecturer:
Associate Professor, PhD, Zheng-Hua Tan
Niels Jernes Vej 12, A6-319
zt@kom.aau.dk, +45 9635-8686
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Course at a glance

Discrete-time 
signals and systems

Fourier-domain 
representation

DFT/FFT

System
structures

Filter structures Filter design

Filter

z-transform
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MM9,MM10MM3

MM6

MM4
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Sampling and
reconstruction MM5

System
analysis

System
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Course objectives (Part I)

To give the students a comprehension of the 
concepts of discrete-time signals and 
systems
To give the students a comprehension of the 
Z- and the Fourier transform and their inverse
To give the students a comprehension of the 
relation between digital filters, difference 
equations and system functions
To give the students knowledge about the 
most important issues in sampling and 
reconstruction
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Course objectives (Part II)

To make the students able to apply digital 
filters according to known filter specifications
To provide the knowledge about the 
principles behind the discrete Fourier 
transform (DFT) and its fast computation
To make the students able to apply Fourier 
analysis of stochastic signals using the DFT
To be able to apply the MATLAB program to 
digital processing problems and 
presentations
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What is a signal ?

A flow of information. 
(mathematically represented as) a function of 
independent variables such as time (e.g. 
speech signal), position (e.g. image), etc.
A common convention is to refer to the 
independent variable as time, although may 
in fact not.
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Example signals

Speech: 1-Dimension signal as a function of 
time s(t);.
Grey-scale image: 2-Dimension signal as a 
function of space i(x,y)
Video: 3 x 3-Dimension signal as a function 
of space and time {r(x,y,t), g(x,y,t), b(x,y,t)} .
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Types of signals

The independent variable may be either continuous 
or discrete

Continuous-time signals
Discrete-time signals are defined at discrete times and 
represented as sequences of numbers

The signal amplitude may be either continuous or 
discrete

Analog signals: both time and amplitude are continuous
Digital signals: both are discrete

Computers and other digital devices are restricted to 
discrete time 
Signal processing systems classification follows the 
same lines
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Types of signals

From http://www.ece.rochester.edu/courses/ECE446
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Digital signal processing

Modifying and analyzing information with 
computers – so being measured as 
sequences of numbers.
Representation, transformation and 
manipulation of signals and information they 
contain



7

Digital Signal Processing, I, Zheng-Hua Tan, 200613

Typical DSP system components

Input lowpass filter to avoid aliasing
Analog to digital converter (ADC)
Computer or DSP processor
Digital to analog converter (DAC)
Output lowpass filter to avoid imaging
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ADC and DAC

Physical signals Analog signals Digital signals

Transducers
e.g. microphones

Analog-to-digital
converters

Digital-to-Analog
converters

Output devices
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Pros and cons of DSP

Pros
Easy to duplicate
Stable and robust: not varying with temperature, storage 
without deterioration
Flexibility and upgrade: use a general computer or 
microprocessor

Cons
Limitations of ADC and DAC
High power consumption and complexity of a DSP 
implementation: unsuitable for simple, low-power 
applications
Limited to signals with relatively low bandwidths
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Applications of DSP

Speech processing
Enhancement – noise filtering
Coding 
Text-to-speech (synthesis)

Next generation TTS @ AT&T
Recognition

Image processing
Enhancement, coding, pattern recognition (e.g. OCR)

Multimedia processing
Media transmission, digital TV, video conferencing

Communications
Biomedical engineering
Navigation, radar, GPS 
Control, robotics, machine vision
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History of DSP

Prior to 1950’s: analog signal processing 
using electronic circuits or mechanical 
devices
1950’s: computer simulation before analog 
implementation, thus cheap to try out
1965: Fast Fourier Transforms (FFTs) by 
Cooley and Tukey – make real time DSP 
possible
1980’s: IC technology boosting DSP
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Part II: Discrete-time signals 

Introduction
Discrete-time signals
Discrete-time systems
Linear time-invariant systems
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Discrete-time signals

Sequences of numbers

Periodic sampling of an 
analog signal

integeran  is  where
]},[{

n
nnxx ∞<<∞−=

period. sampling  thecalled is  where
),(][

T
nnTxnx a ∞<<∞−=

x[1]

x[2]

x[n]x[-1]

x[0]
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Sequence operations

The product and sum of two sequences x[n] and 
y[n]: sample-by-sample production and sum, 
respectively.
Multiplication of a sequence x[n] by a number     : 
multiplication of each sample value by .
Delay or shift of a sequence x[n]

α
α

integeran  is  where
][][ 0

n
nnxny −=
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Basic sequences

Unit sample sequence (discrete-time impulse, 
impulse)

Any sequence can be represented as a sum of 
scaled, delayed impulses

More generally
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Defined as 

Related to the impulse by 

Conversely,

Unit step sequence

⎩
⎨
⎧

<
≥

=
,0,0
,0,1

][
n
n

nu

∑∑
∞

=

∞

−∞=

−=−=

+−+−+=

0

][][][][

or
...]2[]1[][][

kk

knknkunu

nnnnu

δδ

δδδ

]1[][][ −−= nununδ



12

Digital Signal Processing, I, Zheng-Hua Tan, 200623

Exponential sequences

Extremely important in representing and analyzing 
LTI systems.
Defined as

If A and     are real numbers, the sequence is real.
If                  and A is positive, the sequence values 
are positive and decrease with increasing n.
If                  , the sequence values alternate in sign, 
but again decrease in magnitude with increasing n.
If               , the sequence values increase with 
increasing n.
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Combining basic sequences

An exponential sequence that is zero for n<0
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Sinusoidal sequences

with A and       real constants.
The        with complex       has real and imaginary 
parts that are exponentially weighted sinusoids.
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Complex exponential sequence

By analogy with the continuous-time case, the 
quantity        is called the frequency of the complex 
sinusoid or complex exponential and        is call the 
phase.
n is always an integer differences between 
discrete-time and continuous-time 

φ
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An important difference – frequency range

Consider a frequency 

More generally                       being an integer, 

Same for sinusoidal sequences

So, only consider frequencies in an interval of        
such as  

njnjnjnj AeeAeAenx 000 2)2(][ ωπωπω === +
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Another important difference – periodicity

In the continuous-time case, a sinusoidal signal and 
a complex exponential signal are both periodic.
In the discrete-time case, a periodic sequence is 
defined as

where the period N is necessarily an integer. 
For sinusoid, 

integer.an  is   where
/2or    2 that   requireswhich 
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Another important difference – periodicity

Same for complex exponential sequence

So, complex exponential and sinusoidal sequences 
are not necessarily periodic in n with period                  
and, depending on the value of      , may not be periodic at 
all.

Consider 
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Another important difference – frequency

For a continuous-time sinusoidal signal 

For the discrete-time sinusoidal signal 
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Frequency 
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Part II: Discrete-time systems 

Introduction 
Discrete-time signals 
Discrete-time systems
Linear time-invariant systems
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Discrete-time systems

A transformation or operator that maps input into 
output

Examples:
The ideal delay system

A memoryless system

]}[{][ nxTny =

T{.}x[n] y[n]

∞<<∞−−= nnnxny d            ],[][

∞<<∞−= nnxny            ,])[(][ 2
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Linear systems

A system is linear if and only if

Combined into superposition

Example 2.6, 2.7 pp. 19

constantarbitrary an  is  where
][]}[{]}[{

and
][][]}[{]}[{]}[][{ 212121

a
naynxaTnaxT

nynynxTnxTnxnxT

==

+=+=+
additivity property

scaling property
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Time-invariant systems

For which a time shift or delay of the input sequence
causes a corresponding shift in the output sequence.

Example 2.8 pp. 20

][][][][ 0101 nnynynnxnx −=⇒−=
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Causality 

The output sequence value at the index n=n0
depends only on the input sequence values for 
n<=n0.

Example

Causal for nd>=0
Noncausal for nd<0

∞<<∞−−= nnnxny d            ],[][
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Stability

A system is stable in the BIBO sense if and only if
every bounded input sequence produces a 
bounded output sequence.

Example

stable
∞<<∞−= nnxny            ,])[(][ 2
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Part III: Linear time-invariant systems 

Course overview
Discrete-time signals 
Discrete-time systems
Linear time-invariant systems
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Linear time-invariant systems

Important due to convenient representations and 
significant applications
A linear system is completely characterised by its
impulse response

Time invariance

][*][       

][][][

nhnx

knhkxny
k

=

−= ∑
∞

−∞=

∑∑

∑
∞

−∞=

∞

−∞=

∞

−∞=

=−=

−==

k
k

k

k

nhkxknTkx

knkxTnxTny

][][}][{][

}][][{]}[{][

δ

δ

][][ knhnhk −=

Convolution sum

Digital Signal Processing, I, Zheng-Hua Tan, 200640

Forming the sequence h[n-k]
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Obtain the sequence h[n-k]
Reflecting h[k] about the origin to get h[-k]
Shifting the origin of the reflected sequence to k=n

Multiply x[k] and h[n-k] for 
Sum the products to compute the output 
sample y[n]

Computation of the convolution sum

∑
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Computing a discrete convolution

Example 2.13 pp.26
Impulse response
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Properties of LTI systems

Defined by discrete-time convolution
Commutative

Linear 

Cascade connection (Fig. 2.11 pp.29)

Parallel connection (Fig. 2.12 pp.30)
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Properties of LTI systems

Defined by the impulse response
Stable 

Causality 
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MATLAB

An interactive, matrix-based system for 
numeric computation and visualization

Kermit Sigmon, "Matlab Primer", Third 
Edition, Department of Mathematics, 
University of Florida.
Matlab Help (>> doc)
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Summary 

Course overview
Discrete-time signals 
Discrete-time systems
Linear time-invariant systems

Matlab functions for the exercises in this 
lecture are available at
http://kom.aau.dk/~zt/cources/DSP_E/MM1/
Thanks Borge Lindberg for providing the 
functions.


